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There has been a growing interest in the diagnosis 
and management of mild TBI, or concussion. With 
new research initiatives and skyrocketing levels of 

public awareness, society has gained a better understand-
ing of concussion and mild TBI, while we as a medical 
community have learned that we have a long way to go. 
Repetitive concussion and subconcussion have been 
linked to significant morbidity and death. This paper will 
review the forces behind the primary phase of injury, as 
well as the immediate and delayed cellular events respon-
sible for the secondary phase of injury leading to neuro-
nal dysfunction and possible cell death associated with 
mild TBI. While the cascade of events within the cells 
and neurons of the CNS are profound, the role of both 
acute and chronic inflammation is also important to ac-
knowledge.

There has also been increased public awareness re-
garding the long-term sequelae of repetitive mild head 

injuries or even subconcussive injuries. We will review 
some of the pertinent work on repetitive mild TBI and 
possible implications in the development of neurodegen-
erative disease, particularly chronic traumatic encepha-
lopathy. More frequent than posttraumatic chronic neu-
rodegenerative disease, however, is the increased risk for 
season-ending or career-ending effects of concussion or 
its mismanagement. Paramount to effective prevention, 
diagnosis, and management of the vast number of ath-
letes, soldiers, and patients affected by the sequelae of 
mild TBI is a sound understanding of the forces behind 
the primary injury and the pathophysiological cascade of 
events that ensue following the primary injury, when the 
brain falls victim to a concussive event or multiple events 
over time.

The Biophysics of Head Impact
Traumatic brain injury is traditionally believed to 

involve both primary and secondary injury phases. The 
primary injury is represented by the moment of impact, 
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resulting from the translation of kinetic energy and force 
vectors in either a linear acceleration-deceleration mech-
anism, through a rotational mechanism, or a combination 
of both. Newton’s Second Law of Motion enables the vi-
sualization of how forces in head impacts result in head, 
and consequently brain, acceleration:

force = mass × acceleration (Newton’s Second Law)
While this equation quantifies the linear forces that come 
into play with head injury, in instances of rotational force 
or torque, we have the equation:

torque = moment of inertia × angular acceleration
In understanding just these two basic physics concepts, a 
great deal can be appreciated in concussion biomechan-
ics, as linear and angular brain accelerations have been 
shown to be the most predictive variables of head injury. 
Most cases of head injury involve both linear and angular 
forces.

When considering the laws of conservation of energy, 
the sum of the kinetic energies of the struck patient and 
the striking object is equal to the total linear and angular 
energy imparted to the head, plus that energy dissipated 
from the head. A review of the equation for kinetic energy 
reveals the importance of velocity on the impacted neural 
structures:

kinetic energy = 1/2 mass × (velocity)2

When we consider modern day athletics, today’s athletes 
are not only larger (increased mass), but more important-
ly, the velocities at which impacts occur is also substan-
tially increased. With squaring of the velocity of impact 
in the kinetic energy rotation, the resulting increase in ki-
netic energy, and therefore imparted forces, is profound.

Early studies on the biophysics of concussion were 
performed in nonhuman primate models of concus-
sion.52,70,71,85,89,107 Analyses of the data at that time led in-
vestigators to believe that approximately half of the po-
tential for concussion during impact to the unprotected 
movable head was related to head rotation, with the re-
maining brain injury potential of the blow being related 
to the contact phenomena of the impact.71 Although the 
biodynamics in these primate models were likely more 
similar to human concussion, such studies were limited 
to small group size. With regard to our modern day ath-
letes and the biophysics of head injury, the mandatory 
use of helmets in American football has allowed for the 
systematic analysis of injury biomechanics and real-time 
measurements of forces, velocities, and accelerations of 
head impacts by implanted telemetry devices.33 The US 
National Football League has organized study of de-
tailed computerized video analysis of actual game film 
in 182 concussive and subconcussive hits that occurred 
between 1996 and 2001.73 Using these data, investigators 
were than able to remodel these impacts in the laboratory 
setting by incorporating crash test dummies. The results 
of the investigation demonstrated that the highest strain 
forces were imparted to the region corresponding to the 
deep midbrain level, occurring 10 milliseconds follow-
ing the impact. It was further inferred that these forces 
imparted to the mesencephalon, corpus callosum, and 
fornix may be responsible for concussion symptoms such 
as loss of consciousness, amnesia, and cognitive dysfunc-

tion.73 Even in less severe impacts, not resulting in loss 
of consciousness, there appeared to be significant forces 
transmitted to deep midbrain and brainstem structures, 
implying injury in subconcussive impacts as well.73

Since that time there has been an explosion in re-
search performed investigating the biomechanics and 
biophysics of mild TBI.5,11,12,15,27,28,60,73,82,87,100 Biophys-
ics data gathered through football helmet accelerometer 
studies at the youth, high school, and college level have 
shown that players may experience a wide range of head 
impacts, as well as magnitudes of force. This research 
has also suggested that it may more likely be that the cu-
mulative number of head impacts best correlates with the 
potential for concussion occurrence or chronic effects. 
The athlete’s risk of experiencing long-standing effects of 
repetitive blows is likely measured as a cumulative dose 
over a lifetime, and could include factors such as age at 
exposure, type and magnitude of exposure, recovery pe-
riods as well as differential rates of recovery, genotype, 
and others.

Among the numerous factors in understanding the 
increased risk of head trauma in contact and collision 
sports, the velocities of the collisions are of particular im-
portance. In actuality it is the change in velocity, through 
acceleration-deceleration, which relates to the energy 
transmitted to the player’s body and brain. In essence, the 
brain is suspended within fluid-filled space with a cer-
tain degree of movement, relatively tethered at discreet 
intervals, and housed within a rigid container. The brain 
is able to accelerate with this reserve volume (filled with 
CSF) through which the brain can accelerate and collide 
with the skull. This movement has been referred to as 
“brain slosh” due to the semisolid properties of neural 
tissue and its surrounding stromal cytoarchitecture.96

Pathophysiology Underlying Secondary Injury 
 in Mild TBI

Secondary injury is classically described as the indi-
rect result of the trauma and its subsequent pathophysi-
ological processes. These pathophysiological processes 
involve both immediate and delayed cellular events in-
cluding ultrastructural damage, ionic shifts, and neuro-
transmission effects, among other events.64 There are also 
remarkable effects on cerebral blood flow dynamics and 
the BBB contributing to the pathophysiology of second-
ary brain injury.

The forces imparted to the neural structures dis-
cussed above are believed to result in shear stress to neu-
rons, thereby resulting in axonal disruption.57 Although 
traumatic axonal injury is best described in more severe 
models of TBI, it is also believed to play an important 
role in mild TBI.97 Neurofilament compaction has been 
shown to occur as soon as 5 minutes after injury and lasts 
for approximately 6 hours. It is believed that this event 
is caused by phosphorylation, leading to instability.65,68,98 
Ultimately, the ultrastructural alterations of neurofila-
ments and microtubules cause focal swellings at the site 
of injury and interference of axonal transport.54,83 Eventu-
ally, blebbing of this region occurs, and signs of axonal 
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disconnection have been witnessed as early as 4 hours 
after injury.75 It has been reported that this detachment 
persists for days to weeks in humans.10

Returning to the more immediate effects of shear 
injury to neuronal membranes, dysregulation of protein 
channels within the neuronal plasmalemma then ensues, 
resulting in uncontrolled ion flux and neurotransmitter ef-
fects.22 Specifically, liberation of potassium, certain neu-
rotransmitters and excitatory amino acids occurs, particu-
larly glutamate.21,39 Glutamate then acts on several recep-
tors, including N-methyl-D-aspartate receptors, causing 
further depolarization and calcium influx into the neuron. 
As a result, adenosine triphosphate–dependent pumps are 
forced to work “on overdrive” to restore ionic homeosta-
sis, which results in a hypermetabolic state beginning ap-
proximately 30 minutes after injury.40,108 It has also been 
shown that there is a switch from a hypermetabolic state 
to a hypometabolic state 5–6 hours later, which can last 
up to 5 days or longer.7 Consequently, more glycolysis and 
anaerobic respiration occurs, and local extracellular aci-
dosis follows, possibly contributing to further membrane 
permeability.36

Glutamate-mediated accumulation of intracellular 
calcium ions also results in mitochondrial oxidative dys-
function.47,80,102,105 Hovda et al.34 showed that cytochrome 
oxidase, a marker of oxidative function, is downregulated 
after injury in rodent models up to 10 days after mild TBI. 
This downregulation likely further potentiates the cas-
cade of adverse events in mild TBI, in which a metaboli-
cally hyperactive brain, early in injury, has a hindrance in 
oxidative functioning. Certainly, this is disadvantageous 
for a brain in a hypermetabolic state with already reduced 
adenosine triphosphate, and it is believed that this exacer-
bates the cascade of events in acute concussion.

Cerebral Blood Flow Dynamics
In the uninjured brain CBF is highly regulated, with 

the ability to rapidly adjust perfusion levels to meet the 
brain’s metabolic needs. In TBI, however, CBF has been 
shown to be decreased immediately after injury.26,63 This 
was further shown by Yamakami and McIntosh106 in a 
rat model of concussion, in which there was decreased 
regional CBF in the perilesional area within 15 minutes 
and that persisted for at least 2 hours after injury.

A study of human CBF in 125 patients with severe 
TBI by Martin et al.50 documents 3 phases of blood flow 
dynamics. Phase I is characterized by an acutely hy-
poperfused state, lasting for 1 day. Phase II, beginning 
on the 2nd day, consists of significantly increased CBF. 
Phase III, which begins on Day 4, is characterized by 
vasospasm that may last until 15 days after the inciting 
injury. Angiographic vasospasm has been shown dur-
ing the time period designated as Phase III in a separate 
work.99 Maugans et al.53 studied pediatric patients ages 
11 to 15 years old. They examined 12 athletes at 3 time 
points after injury (within 3 days, at 14 days, and 30 days 
or greater after concussion), comparing blood flow using 
phase-contrast angiography. These investigators found a 
significant reduction in blood flow compared with con-
trols at the first time point, which continued through the 

final time point (compared with controls). In fact, only 
27% of the participants had returned to within 10% of 
control mean CBF by 2-week measurements, and only 
64% by the final time point.

Breakdown of the BBB 
The BBB is the highly regulated separation between 

the intravascular and extravascular content of the CNS. 
Blood-brain barrier breakdown is well documented in 
animal models of severe TBI.90 Furthermore, a study of 
patients with postconcussion syndrome demonstrated that 
BBB disruption can be observed weeks to months after 
the original insult.42 The events leading to BBB break-
down are likely multiple in nature. The shearing forces 
of primary injury are believed to damage the BBB endo-
thelium, resulting in increased small vessel permeability 
and dysregulation.93 A metabolic imbalance from isch-
emic zones of tissue hypoxia likely ensues, potentiating 
localized BBB destruction. Other mechanisms such as 
vasospasm, CBF alterations, irregularities in nitric oxide 
secretion, and coagulopathy may also contribute early af-
ter injury. At time points further from injury, astrocyte 
dysfunction, inflammation-mediated disturbances, and 
metabolic disturbances may further contribute to, or pro-
long, BBB breakdown.

Breakdown of the BBB has several untoward conse-
quences. First and foremost, fluid exudation from BBB 
breakdown results in brain edema. This edema may re-
sult in increased intracranial pressure, and lower cerebral 
perfusion pressure can ensue with sufficient fluid accu-
mulation. Excitotoxicity from neuronal membrane dam-
age may be further exacerbated by the loss of ionic flux 
control from BBB breakdown, resulting in extravasation 
of excitatory amino acids. Similarly, as other ions and 
molecules equilibrate in the serum and CSF, a neuronal 
microenvironment develops that creates a predisposition 
for focal seizure activity.42 Numerous in vitro studies of 
isolated brain slices have demonstrated enhanced corti-
cal excitability, hypersynchronicity, and epileptiform-like 
activity.3,81,84,88 These numerous studies provide a pos-
sible explanation for the seizure activity noted in animal 
models of mild head trauma66 and in several reports in 
humans.30,55

The Role of Neuroinflammation
The role of immunoexcitotoxicity is significant in 

TBI. In the brain, microglia play a key role in the ini-
tiation of inflammatory events following injury.20,25,32 As 
microglia become activated, anti- and proinflammatory 
cytokines, chemokines, nitric oxide, prostaglandins, tro-
phic factors, free radicals, lipid peroxidation products, 
and excitatory molecules are released into the extraneu-
ronal space within the 1st postinjury hour and may be 
present for up to 30 days.9,78 Some of these chemokines 
attract peripheral macrophages to the brain to transdiffer-
entiate into microglia and further participate in cytokine 
release.77,79

In normal reactions to a single mild TBI, over time 
microglia eventually enter a reparative phase composed 
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of phagocytic activity to repair any debris and damaged 
cells, and ultimately return to their resting state.8 With re-
peated brain injury, microglia may enter a constitutively 
activated state and become neurodestructive, which may 
translate into risk for chronic traumatic encephalopathy.8

Sequelae of Repetitive Mild TBI
In the past decade, there has been an increased interest 

in laboratory research focused on repetitive mild TBI.2,6,13,

14,18,23,38,43,48,76,92,101,109 Most studies have used rodent models, 
although some have investigated repetitive injury in pigs. 
DeFord et al.18 showed that compared with a single episode 
of mild TBI, repeat injury was associated with impairments 
in complex spatial learning and cognitive impairment, 
without overt cell death in the cortex or hippocampus, or 
BBB compromise. In this study, the authors characterized 
the head injury as mild by neurological assessment. The 
latency to right itself and latency to orient to a novel object 
within an open field (orientation to place) following each 
injury or sham injury was recorded. Mice were considered 
oriented to place when stable posture and at least 2 of the 
following criteria were observed: 1) remained alert for 10 
seconds without losing consciousness; 2) attended to the 
novel object within the open field by sniffing or touching 
it with forepaws; and 3) demonstrated exploratory behavior 
by standing up steadily on hind legs to investigate outside 
the open field.18 Kanayama et al.37 demonstrated that repeti-
tive mild TBI caused changes in cortical and hippocampal 
cytoskeletal proteins, whereas single injury did not. The 
authors in this study defined the magnitude of “sub-thresh-
old brain injury” that did not induce brain tissue damage 
by a single hit, and used this magnitude of head impact for 
mild TBI studies. Laurer et al.43 showed that a second inju-
ry induces both local and regional changes in the cerebral 
cortex. On the basis of their results, the authors suggested 
that the brain has an increased vulnerability to a second 
traumatic insult for at least 24 hours following an initial ep-
isode of mild brain trauma. From a behavioral standpoint, 
the magnitude of mild trauma in this study caused a tran-
sient motor deficit following a single hit, as measured on 
motor neurological score, which resolved by 1 week after 
injury. This motor deficit was much more pronounced and 
protracted in the repetitive head injury group. Interestingly, 
in this model of repetitive injury there were no differences 
in cognitive testing at any time point in both the single 
and repetitive mild TBI groups.43 Another study from this 
same group used microtubule-associated protein-2 stain-
ing techniques to demonstrate that local and remote injury 
were significantly greater if they occurred in a shorter time 
window following the initial injury in mice that were ob-
served to exhibit minimal behavioral response following 
head impact.48 Some of these studies have reported evi-
dence of CNS injury despite no overt behavioral deficits, 
consistent with subconcussive injury.94

A few studies have found increases in cellular mark-
ers associated with Alzheimer disease after repeated mild 
injuries.13,37,101 For example, Kanayama et al.37 showed an 
increase in tau immunoreactivity in neurons following 
multiple injuries. Uryu et al.101 and Conte et al.13 used a 
transgenic mouse model of Alzheimer disease–like amy-

loidosis, and demonstrated that amyloid levels and depos-
its increased in the brain after repeated injuries, but not 
after a single insult. Yoshiyama et al.109 used the same 
transgenic mouse model and analyzed the effects of 4 in-
juries given per day, once a week, for a period of 4 weeks, 
in an attempt to simulate dementia pugilistica. After 9 
months, only 1 mouse demonstrated pathology consistent 
with this syndrome. Although the findings were not sig-
nificant and more work is warranted, such studies suggest 
that repetitive head injury may be implicated in the devel-
opment of chronic neurodegenerative disease.

There is a spectrum of neurological sequelae that are 
likely related to repetitive concussive and subconcussive 
head injury, including postconcussion syndrome, pro-
longed postconcussion syndrome, posttraumatic stress 
disorder, mild cognitive impairment, chronic traumatic 
encephalopathy, and dementia pugilistica. Likely related 
to recent increased public awareness of the possible un-
toward effects of repetitive head injury on athletes and 
soldiers, there has been a recent surge of data in this 
field, particularly regarding chronic traumatic encepha-
lopathy. Initially described by Omalu et al. in 2005,69 
chronic traumatic encephalopathy is defined as a progres-
sive neurodegenerative syndrome caused by episodic and 
repetitive blunt force impacts to the head and transfer of 
acceleration-deceleration forces to the brain. Chronic 
traumatic encephalopathy usually presents clinically af-
ter a prolonged latent period as a composite syndrome of 
mood disorders, neuropsychiatric disturbance, and cogni-
tive impairment. Gross examination of the brain reveals 
normal findings and fails to disclose any area of remote 
injury, infarction, or atrophy. Direct microscopic brain 
tissue analysis reveals neuronal loss and hyperphosphory-
lated tau protein deposits in topographic neurofibrillary 
tangles and neuritic threads, usually without amyloid 
plaques, involving various areas of the neocortex and 
subcortical region, basal ganglia, and brainstem. Such 
emerging necropsy data has highlighted the importance 
of subconcussion in the development of neurological inju-
ry; however, data are limited to postmortem analysis and 
at present there is no animal model of chronic traumatic 
encephalopathy that has been described in the literature. 
Generally, it takes years before the onset of symptoms of 
neurodegenerative disorders after an individual has expe-
rienced a TBI, and therefore it requires an extremely long 
time to gather this type of epidemiological data from the 
human population.104 Thus, an experimental animal mod-
el could truly help decipher the mechanisms by which 
chronic traumatic encephalopathy, as well as any of the 
other neurological sequelae such as postconcussion syn-
drome or mild cognitive impairment, may be triggered by 
repetitive brain injury.

Future Directions
Much of what we know regarding the pathophysiol-

ogy of concussion is gleaned from animal work in more 
moderate and severe models of TBI. There has been 
concern over how well prior animal studies have mod-
eled concussion. Injury models such as controlled corti-
cal impact and fluid percussion injury have traditionally 
involved surgery and injury directly upon the exposed 
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brain. Animal choice also presents its challenges. Rodent 
models allow for genetic manipulation and are typically 
used in most animal studies for ease and cost; however, 
the brain anatomy of rodents is quite different than the 
anatomy studied in larger animal models such as the rab-
bit, sheep, pig, or nonhuman primate models, and this 
may affect the injury patterns observed. Additionally, 
these models have used anesthesia during the delivery of 
injury, which could confound the observed pathophysi-
ology as well as make it difficult to ascertain any sub-
sequent periods of unconsciousness. Newer models have 
been developed however, that have adapted these other 
methods in an attempt to lessen the injury and model 
mild TBI more effectively.41,58,61,62,101,109 Another difficult 
challenge in modeling concussion has been defining and 
quantifying “mild TBI” for the purposes of animal mod-
eling. The definition and perception of concussion has 
changed significantly over the last few years, let alone the 
last decade. In addition, the variable clinical nature with 
which each concussion presents makes 1 exact animal 
model not likely feasible.

In an effort to remain clinically applicable, experimen-
tal models should likely continue to use minimally inva-
sive methods and those that do not require a craniotomy, 
such as weight drop models. Models must also be adminis-
tered at a level that produces minimal, or preferably no fa-
tality. Studies should be careful to clearly characterize how 
they define concussion within the context of their animal 
model with regard to behavioral response to injury. Re-
search should also begin to focus on the emerging concept 
of subconcussion and its potential neurological effects. In 
addition to varying the injury severity, further research 
will be needed to investigate the effect of different inter-
injury intervals. Consideration will need to be given to the 
animal of study, as well as choosing appropriate compari-
son groups and proper end points for analysis. In addition, 
studies investigating the long-term effects (many months) 
following injury will be necessary to further elucidate the 
process of posttraumatic neurodegeneration.

As we further investigate the pathophysiological 
cascades underlying concussion, particularly repetitive 
head injury, several points are worth considering. Repeti-
tive injury studies should attempt to evaluate cognitive 
function, for example using the Morris water maze test, 
as well as other measures of behavior observed clini-
cally in the postconcussive setting. Pathophysiological 
mechanisms underlying these behavioral deficits should 
be pursued, as correlates could pave the way for novel 
translational treatment approaches. Toward the pursuit of 
translational treatments, in addition to trying to prevent 
cells from dying following repetitive injuries, it will be 
important to learn how to restore normal cellular physiol-
ogy after head impacts. Combining studies at the cellular 
and behavioral levels is essential, and one area of interest 
will be the evaluation of the effects of repetitive TBI on 
both cortical and hippocampal synaptic plasticity.104

Shear strain and tissue deformation caused by rota-
tional acceleration after a closed head injury can result in 
diffuse axonal damage, and concussion can be viewed as 
residing at the very mild end of the diffuse axonal injury 
spectrum.4,44,51 Typically, diffuse axonal injury presents 

histologically with microscopic axonal damage including 
myelin loss, axonal degeneration, and/or axonal swell-
ings, as observed in much of the bench work previously 
discussed. These changes, however, are difficult to detect 
with traditional neuroimaging techniques.1,24,51,72,74,95 Al-
though there are a number of publications evaluating the 
sensitivity of MRI in mild TBI,19,31,35,46,103 no study has 
addressed the role of MRI in the management of sports-
related concussion, which may partly explain the absence 
of guidelines for the use of MRI as a routine tool in the 
investigation of concussion.17 Additionally, the overall 
availability of MRI machines and costs may limit its rou-
tine use. Another important point of consideration that has 
been raised in several recent reviews51,59 is that standard 
structural MRI does not correlate well with the number of 
self-reported postconcussive symptoms, performance on 
neuropsychological tests, or long-term outcome.35,45,67,86

Yet MRI may still play a role in the workup of the 
athlete with a head injury, and more importantly, could 
provide additional insight regarding the structural injury 
underlying concussion and subconcussion. Newer ad-
vanced structural MRI techniques include susceptibility-
weighted imaging, diffusion-weighted imaging/apparent 
diffusion coefficient mapping, quantitative MRI tech-
niques (such as voxel-based morphometry and brain seg-
mentation), diffusion tensor imaging, and high-density 
fiber tracking. Additionally, advanced functional imaging 
can possibly supplement behavioral and structural imag-
ing techniques by aiding in the evaluation of the patho-
physiological and functional sequelae of concussion;51 
such methods include functional MRI and magnetic reso-
nance spectroscopy. At present, most of these advanced 
imaging modalities are used primarily as research tools 
in the area of concussion and TBI in general. The analysis 
of these advanced neuroimaging techniques requires con-
siderable expertise, both in the reconstruction and in the 
interpretation of the data. There is also a need for stan-
dardization from one study to another.

Although imaging sequences such as diffusion tensor 
imaging and functional MRI are being used more com-
monly, their use as a regular tool in the diagnosis and 
management of concussion in adults and children remains 
to be seen. Some of the emerging data appear to corrobo-
rate some of the laboratory evidence suggesting that there 
may be a structural component to the injury (axonal in-
jury observed in diffusion tensor imaging studies),5,29,67 
as well as a functional/metabolic component (observed 
in functional MRI studies).11,100 The studies thus far have 
suggested that these two modalities in particular could be 
used in future research to evaluate treatment efficacy, giv-
en their enhanced sensitivity to alterations in the brain.5,11, 

16,29,49,67,91,100,110 Future studies may demonstrate that such 
advanced imaging modalities could potentially direct re-
habilitation after concussion and possibly aid in the deci-
sion of determining when it is safe for an athlete to return 
to play,56 although there is no evidence at the present time 
to support those conclusions.

Conclusions
Most scientific studies have focused on moderate 
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and severe TBI, but concussive and subconcussive head 
injuries affect more people, occur more frequently, and 
are an increasingly important silent epidemic because 
younger patients suffer more mild TBI as a consequence 
of sports activities and military experience. The science 
behind concussion continues to evolve at a rapid pace. As 
we learn more about the pathophysiology and biophysics 
underlying concussion and repetitive head injury, further 
questions arise. As this arena of TBI research continues 
to evolve, it will be imperative that models of repetitive 
injury replicate injuries in humans as closely as possible. 
It will also be important to appropriately model concus-
sive episodes and even lower-level injuries (such as sub-
concussion) as we search for translational treatment ap-
proaches as well as answers to how mild TBI results in 
the observed spectrum of neurological sequelae, particu-
larly chronic neurodegenerative disease.
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