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ABSTRACT Investigating the function of individual synapses is essential to under-
standing the mechanisms that influence the efficacy of chemical synaptic transmission.
The known simplicity of the synaptic structure at the crayfish neuromuscular junction
(NMJ) and its quantal nature of release allows an assessment of discrete synapses
within the motor nerve terminals. Our goal in this article is to investigate the effect of
the stimulation frequency on the number of active release sites (n) and the probability
of release (p) at those active sites. Because methods based on direct counts often provide
unstable joint estimates of (n) and (p), we base our analysis on mixture modeling. In
particular, the mixture modeling approach is used to estimate (n) and (p) for stimulation
frequencies of 1 Hz, 2 Hz, and 3 Hz. Our results indicate that as the stimulation
frequency increases, new sites are recruited (thus increasing n) and the probability of
release (p) increases. Synapse 47:15–25, 2003. © 2002 Wiley-Liss, Inc.

INTRODUCTION

Recruitment of synapses is postulated to be one of
the mechanisms that enhance synaptic transmission
when electrical activity is increased. For example, At-
wood and Wojtowicz (1999) speculate that short-term
facilitation (STF) may be due, in part, to activation of
previously silent synapses. Currently, various statisti-
cal measures and estimated parameters are used to
quantify synaptic efficacy. Mean quantal content (m) is
commonly used as an index of the average number of
single evoked events (or synaptic vesicles that fuse)
that occur per stimulus, with a parameter n represent-
ing the number of sites that release a vesicle and a
third parameter, p, representing the probability of an
event occurring at a release site (del Castillo and Katz,
1954). Since n and p cannot be directly measured ex-
perimentally, multiple approaches have been proposed
to estimate n and p using the distribution of evoked
events [see reviews: Faber et al., 1998; McLachlan,
1978). These methods work poorly when synaptic effi-
cacy is very low, often resulting in n � 1. In these cases,
the observed distribution is often fit using a Poisson
distribution (Zar, 1999). However, Poisson distribu-
tions arise as an approximation for binomial distribu-
tions with large n and small p; thus, the Poisson dis-
tribution represents the opposite extreme from n � 1.

Direct structure–function studies (Cooper et al., 1995a,
1996b) of discrete regions of motor nerve terminals have
revealed that there can be many synapses (30–40), each
with multiple active zones, and that the physiological
measures of synaptic currents, with subsequent determi-
nation of n and p, may estimate n � 1 despite quite large
variations in the sizes and shapes of single evoked syn-
aptic currents. The physiological and structural data
would indicate that multiple sites are being utilized for
vesicle fusion, but this is not reflected in the estimate of n.

This problem is consistent with results in the statis-
tical literature, in particular those of Olkin et al.
(1981), indicating that simultaneous estimation of n
and p is inherently unstable due to the fact that the
likelihood function is particularly flat as a function of n.

These results suggest that, if possible, we should
search for more information in the evoked currents
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that may be used to estimate n and p. The sizes and
shapes of single evoked synaptic currents is one such
source. Using counting methods, two currents which
both indicate one evoked event would be recorded iden-
tically (e.g., as one evoked event) even if the two cur-
rents appear distinctly different. Since differences in
current sizes or shapes may indicate different sites
firing, this may be useful information in determining
the overall number of sites. The “extra information” we
utilize is the area of each current trace for single
evoked events. We use mixture modeling to estimate
(n) and (p) from the area data. The area is a measure of
charge (current � time) and it is known to be less
susceptible to small deviations in amplitude then the
commonly used peak amplitude measures (Bekkers
and Stevens, 1991; Cooper et al., 1995b).

The previous methodology involves stochastic analy-
sis in the distribution of synaptic events measured on
the postsynaptic cell (i.e., the one receiving the trans-
mitter). An electrophysiological recording procedure,
such as with a focal macropatch electrode, allows single
vesicular events to be monitored directly at synaptic
sites (Cooper et al., 1995b; Dudel, 1965). These events
are in the form of unitary currents that represent the
amount of transmitter released from a single vesicle
(del Castillo and Katz, 1954). In synapses—for exam-
ple, those of the crayfish neuromuscular junction
(NMJ)— the activation of postsynaptic ligand gated ion
channels results in a measurable postsynaptic current.
Depending on the point-location within a synapse in
which the vesicle fuses with the plasma membrane, the
postsynaptic receptor area may only receive a portion
of the transmitter. This can occur when release is by a
boundary of the postsynaptic array. In theory, this may
result in a different size or shape of the unitary
postsynaptic current as compared to release over the
center of the receptor array, but this assumes that the
postsynaptic arrays of receptors are not saturated from
the release of a single vesicle. On the other hand, if the
postsynaptic receptor array is saturated by the release
of a single vesicle, then the currents should be uniform
each time that site is activated. For these two scenar-
ios, any fluctuation in the size or shape of the postsyn-
aptic currents observed may be either due to varied
sites releasing on the presynaptic face or that various
synapses are being utilized. There are examples for
both cases to account for the variation in the size or shape
of single vesicular events in various preparations. It is
also possible that both scenarios may coexist, since one
does not exclude the other from occurring. For a recent
review of such issues see, Faber et al. (1998).

MATERIALS AND METHODS
Animals

All experiments were performed using the first walk-
ing leg of crayfish, Procambarus clarkii, measuring
4–6 cm in body length (Atchafalaya Biological Supply

Co., Raceland, LA). The opener muscle of the first walk-
ing legs was prepared by the standard dissection (Coo-
per et al., 1995a). The tissue was pinned out in a
Slygard dish for viewing with a Nikon, Optiphot-2 up-
right fluorescent microscope using a 40� (0.55 NA)
Nikon water immersion objective. Dissected prepara-
tions were maintained in crayfish saline (modified Van
Harreveld’s solution: 205 mM NaCl; 5.3 mM KCl; 13.5
mM CaCl2; 2.45 mM MgCl2; 0.5 mM Hepes/NaOH, pH
7.4) at 14°C. The entire opener muscle is innervated by
a single tonic excitatory motor neuron (Cooper et al.,
1995a). To visualize the nerve terminals for placing the
macropatch electrode over a defined region of the nerve
terminal, we used the vital fluorescent dye, 4-[4-(dieth-
ylamino) styryl]-N-methylpyridinium iodide (4-Di-2-
Asp; Molecular Probes, Eugene, OR), to stain the prep-
aration. The synaptic transmission remained unaltered
by this dye, as previously shown (Cooper et al., 1995a).
The living preparation was stained with a 2–5 �M dye
solution for 2–5 min and then washed in crayfish sa-
line.

Evoked postsynaptic current (EPSC)

The EPSCs were obtained using the loose patch tech-
nique (Dudel, 1981) by lightly placing 10–15 �m diam-
eter, fire-polished glass electrodes directly over a vari-
cosity. The lumen of the patch electrode was filled with
the same solution as the bathing medium. The seal
resistance was in the range of 100 K° to 1 M°. All
events were obtained with an Axoclamp 2b (Axon In-
struments, Burlingame, CA) 0.1� LU head stage ac-
quired at 10 kHz without additional filtering. Re-
sponses were measured and calibrated with MacLab
Scope software 3.5.4 v. (ADInstruments, Grand Junc-
tion, CO). Stimulation was obtained by use of a Grass
S-88 simulator and a stimulus isolation unit (Grass,
SIU) with leads to a standard suction electrode (Cooper
et al., 1995a).

For each of three frequencies (1 Hz, 2 Hz, 3 Hz), the
excitatory axon was stimulated 1,000 times and the
resulting evoked EPSCs and mEPSCs (miniature exci-
tatory postsynaptic currents) were recorded. As shown
in Figure 1, in each synaptic current recording a trig-
ger artifact and a nerve spike can be visualized which
indicates nerve stimulation. Each current recording
was classified as a failure, single, or multiple event
based on the observed number of peaks of discrete
events in the recording. As demonstrated in Figure 1,
failures and single events are discernable and can be
quantified. Most of the results were failures and sin-
gles, and thus the remainder of the methodology fo-
cuses on the single events. For each single event, we
measured the area (i.e., charge) under the curve for a
period of time that encompasses the evoked events. The
area under the curve is current-time, which is a unit of
charge (Bekkers and Stevens, 1991; Cooper et al.,
1995b). The area of the evoked EPSCs, the synaptic
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charge, allows characterization of the postsynaptic
event (Fig. 1). Measures of the charge provide an index
to use over time as well as during perturbations of the
stimulation frequency (Fig. 2A). In addition, the charge
measures in conjunction with stochastic analysis pro-
vide the ability to determine if groupings in subtypes of
single evoked EPSCs occur, which would be indicative
of synaptic differences in the overall contribution to the
summed EPSCs for the entire muscle. Thus, our goal is
to classify the area data into distinct groups, each
corresponding to an individual site.

Details of area calculation

The specific calculation of area consisted of identify-
ing the duration of the EPSC from the current trace
(area 1 in Fig. 1C). The baseline charge was deter-
mined by observing an area near the end of the current
trace (area 2 in Fig. 1C) and computing the average
voltage for that region (Southard et al., 2000). Using an
average controls signal noise, while determining a sep-
arate baseline for each stimulus corrects for any DC
shift that may occur over the 1,000 stimulations. In
addition to the area measure, the peak amplitude was
calculated for each single.

Square root transformation of area

The square root was taken for each value of area
before performing further statistical analyses. This is a
standard method for handling area data, since area is
in squared units (much like using a standard deviation
instead of a variance). In addition, the observed data
indicated a “squaring” operation had occurred because
of a large number of outliers in the untransformed area
data. The square root is highly correlated with peak
amplitude (correlation 0.93). Finally, as shown in “Mix-
ture modeling” (below) a mixture of normal distribu-
tions fits the transformed data quite well.

Statistical methods
Direct count methods

A common method for obtaining the quantal param-
eters (n) and (p) is based on direct counts of the number
of failures, single events, double events, etc. As men-
tioned above, the current traces for each of the 1,000
stimulations were classified into failures, single events,
double events, and so on. Direct count methods may be
used to estimate the mean quantal content (the mean
number of events per stimulus, usually denoted as m),

Fig. 1. Representative excitatory postsynaptic current (EPSC)
traces obtained with a focal macropatch electrode placed over the
nerve terminal. A: Three superimposed traces in which no evoked
events are observed following nerve terminal depolarization. B: Four
superimposed EPSC traces of various sizes to illustrate the range. C:
A single EPSC represents the measures used to determine the area
(i.e., charge) of the evoked currents. Area 2 is subtracted from area 1
to adjust for noise and changes in baseline throughout a recording
period. The same amount of time (i.e., points) are contained in both
areas. The stimulus artifact (S.A.) and the extracellular response or
spike of the action potential induced in the nerve terminal are de-
picted by arrows.

Fig. 2. The charge of the EPSCs over time for 1 Hz, 2 Hz, and 3 Hz
stimulation frequencies are shown to illustrate the increased number
of evoked events for the higher stimulation frequencies. The compos-
ite of all the traces, including failures to evoked EPSCs, are shown in
A, whereas only single evoked EPSCs are shown in B. The failures
and traces with multiple evoked releases were removed to illustrate
the values used to determine subsequent analysis.
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or they may be used to estimate (n) and (p) by fitting
various discrete distributions such as a Poisson or
some type of binomial to the count data, thus predict-
ing the distribution of the number of events resulting
from each stimulus. As one might expect, it is easier to
estimate the mean of a distribution (m) than the entire
distribution. The central point of Olkin et al. (1981) is
that if both n and p are unknown in a binomial distri-
bution, then the mean np may be accurately estimated
(the mean quantal content m) but estimates of the
individual parameters n and p are unstable. Olkin et
al. (1981) discuss a variety of estimators in this con-
text, such as the estimators used by Wernig (1972) to
estimate n and p.

Heuristically, this instability occurs because differ-
ent values of n and p produce similar predicted proba-
bilities. For example, consider a binomial distribution
with parameters n � 10 and p � 0.2 and a second
binomial distribution with n � 20 and p � 0.1. The first
binomial predicts the probabilities of 0 through 5 to be
0.122, 0.270, 0.285, 0.190, 0.090, and 0.032. The second
binomial predicts the probabilities of 0 through 5 to be
0.107, 0.268, 0.302, 0.201, 0.088, and 0.026. These
probabilities are almost identical, even though they
have different values of n and p. Note, however, they
have the same value of np. Stable estimation of the
mean quantal content m � np is possible, but because
different values of n and p produce similar predicted
probabilities, they are hard to differentiate on the basis
of counts alone.

Our goal in the current research is to estimate (n)
and (p) and thus we focus on the area data, which
provides more information than the count data alone.
The primary inferential technique is mixture modeling,
discussed in the next section.

Mixture modeling

We chose to model the data using a mixture of nor-
mal distributions. This model assumes that the occur-
rences at each particular site are normally distributed.
Although the overall data may be skewed, it is possible
for several overlapping normal distributions to produce
skewness. This assumption of normality is explored in
the Results section and appears to be acceptable in that
a mixture of normals fits the data well. With this as-
sumption, the data may be used to estimate the num-
ber of sites and the pattern of activity for a particular
site (i.e., the mean, variance, and probability of the
release for that site). Normal mixtures have been used
before to model EPSC data, in particular in Stricker
and Redman (1994) and Stricker et al. (1994). The
similarities between our work and theirs are primarily
methodological. We are using the same model and used
the EM algorithm to find the estimates of the param-
eters (with the slight extension that EM algorithm was
conducted with several randomly generated starting
points to search for multiple modes in the likelihood

surface). While our statistical goal is similar to Stricker
et al. (1994) in that we are attempting to determine the
number of normal components in the mixture, the un-
derlying data is different. Here we have attempted to
isolate single quanta and are trying to group the single
quanta events. In Stricker et al. (1994) the mixture
components were generated by multiple sites firing
simultaneously. Thus, our normal components are hy-
pothesized to correspond to the firing distribution of a
single site, with different normal components corre-
sponding to different sites. Estimation of the number of
sites n corresponds to determining the number of com-
ponents in the mixture. A second, more fundamental,
difference between our approach and Stricker et al.
(1994) corresponds to our model selection criteria of
BIC (Bayesian Information Criteria) as opposed to
AIC.

Like a linear regression model, as more variables are
added the fit of a mixture model is improved. Thus, we
choose the appropriate number of components (sites)
by examining the tradeoff between improvement in fit
and the extra parameters required to add a new com-
ponent to the model. We evaluated this tradeoff using
BIC, where the number of components with the largest
BIC is chosen as the best mixture model for the data.
BIC is defined as �(�̂) � (d/2)ln s, where �(�̂ is the
maximal value of the loglikelihood, d is the number of
parameters in the model, and s is the sample size (here
the number of singles). In the mixture problem, d �
3k-1, where k is the number of components (a mean,
variance, and probability for each component, subject
to the constraint the probabilities must sum to 1). BIC
is related to AIC (used in Stricker et al., 1994) in that
it is a penalized likelihood criteria. However, BIC and
AIC are intended for different purposes. As discussed
(with further references) in Wasserman (2000), BIC is
aimed at choosing the correct model, while AIC opti-
mizes the predictive density (sometimes called the
“Akaike prediction problem”). While the mixture prob-
lem does not obey the regularity conditions typically
associated with BIC, Kerebin (1998) recently showed
that BIC is still consistent (for large samples BIC will
choose the correct number of components) in the mix-
ture problem. Since our goal here is to determine the
correct n, and recent results indicate that BIC per-
forms consistently for this purpose, we have chosen to
use BIC over AIC. Two review articles describing BIC,
and model selection in general, are Kass and Raftery
(1995) and Wasserman (2000). BIC is measured on the
log scale, thus arithmetic differences are used for cali-
bration. On the scale we used to compute BIC, a stan-
dard calibration in Kass and Raftery (1995, section 3.2)
states that a difference of 0–1, 1–3, 3–5, �5 in BIC
values indicates little, positive, strong and very strong
evidence respectively, in favor of the model with the
higher BIC value. The conclusions drawn for each of
the 1 Hz, 2 Hz, and 3 Hz datasets (discussed in Results)

18 K. VIELE ET AL.



all exceed this threshold for “strong evidence.” We con-
sidered models with one, two, three, and four compo-
nents for each of the 1 Hz, 2 Hz, and 3 Hz datasets and
found three or fewer components sufficient for each. If
we had chosen the maximal number of components
considered (four), we would have then considered five-
component models, six-component models, and so on.

RESULTS
Exploratory analysis

As described above, the 1,000 trials for each dataset
may be broken into three groups—failures, single
evoked events, and multiple evoked events. The ob-
served counts are shown in Table I. As can be seen, for
all three stimulation frequencies most of the stimula-
tions resulted in failures and there were very few mul-
tiple events (seven or fewer out of 1,000). There were
166 single evoked events for the 1 Hz data, 229 for the
2 Hz data, and 296 for the 3 Hz data. By themselves,
these numbers indicate that either 1) individual sites
fire more often at higher stimulation frequencies
and/or 2) more sites are being recruited at higher stim-
ulation frequencies. Statement (2) is actually a specific
case of statement (1), since we can define “recruitment”
as the probability of a site firing increasing from 0 to
something greater than 0.

Our hypothesis is that the singles can be classified
into distinct groups. As an exploratory first step, Fig-
ure 3 shows histograms of the Sqr(area) data for 2 Hz
with two different choices of histogram breaks. Al-
though histograms are unreliable as an inferential
technique, the histograms contain multiple peaks,
which indicate the data may contain distinct sub-
groups. The remainder of this section discusses the
results of the mixture modeling that was used to infer
(n) and (p) for each stimulation frequency.

Mixture modeling

We performed three analyses, one for each of the 1
Hz, 2 Hz, and 3 Hz datasets. Table II and Figure 4
summarize the results for the 1-Hz data. Table II
shows the BIC values and the parameter estimates,
while Figure 4 shows the predicted densities for each
possible number of components. The BIC shown in
Table II increases substantially as the number of com-
ponents is increased from one to two. This is shown
graphically in Figure 4. The two-component model out-

lines the histogram better than the one-component
model. The BIC decreases when the number of compo-
nents is increased to three and then to four components
for this dataset. This indicates that the extra compo-
nents found by the three- and four-component models

TABLE I. Observed distributions of failures, singles, and doubles
for each of the three stimulation frequencies

1 Hz 2 Hz 3 Hz

Events Obs Obs Obs
0’s 833 767 695
1’s 167 229 298
2’s 0 4 7
m 0.167 0.237 0.312

The last row provides the mean quantal content m.
‘m’—is the mean quantal content obtained from the direct counts [9].

Fig. 3. A: Histogram for the square root of the 2 Hz charge data
with breaks at 0, 2, 4,…,24. Visual inspection suggests that there may
be modes at about 5 and 11. B: Histogram for the square root of the 2
Hz charge data with breaks at 0, 1, 2,…,24. Visual inspection suggests
that there may be modes at about 5, 9, and 15.

TABLE II. Modeling of the 1 Hz charge data

# Components BIC Prob. of firing Mean Variance

1 �458.930 1.000 8.036 13.871
2 �443.552 0.433 4.599 1.500

0.567 10.661 7.408
3 �447.986 0.364 4.223 0.922

0.089 6.436 0.155
0.547 10.833 6.800

4 �453.633 0.025 2.297 0.043
0.320 4.265 0.546
0.109 6.365 0.191
0.547 10.837 6.780

# Components is the number of normal distributions mixed to form the model.
Mean (Variance) is the mean (variance) of each of the normal distributions. BIC
is the Bayesian information criteria. Prob. of firing is the probability, given that
one site fires, that that particular site fires.
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are more to chance clustering of the data than due to
the number of true release sites. In addition, the graph-
ical representation of the three- and four-component
models are not qualitatively better than the two-com-
ponent model (Fig. 4). It appears clear that there are
two modes in the one Hz data, one centered around 4.6
and the other at about 10.7.

The probabilities in the tables in this article provide
the proportion of single evoked events corresponding to
that site. Thus, the probabilities in Table II refer to the
166 single evoked events for the 1 Hz data. These
probabilities can also be rescaled to refer to the entire
1,000 trials (failures, single evoked events, and multi-
ple evoked events). First, we find that 43.29% of 166
trials is approximately 72 trials, which is 7.2% of the
1,000 total trials for 1 Hz. We refer to the 7.2% as the
“overall” probability. Of course, it is possible that this
percentage might be slightly incorrect because some of
those 1,000 trials consist of multiple evoked events,
which are not considered here. However, as stated in
the introduction to this section, there are only a very
small number of such trials in each dataset. In fact,
there were none for the 1 Hz data. Thus, for the 1 Hz
data the 7.2% is not subject to change by considering
the multiple evoked events, and the probabilities for
the 2 Hz and 3 Hz datasets described below are only
subject to a slight change (less than 1%) due to the
multiple evoked events not considered in this article.
For the other site in the two-component estimate, the
56.71% conditional probability (proportion of single

evoked events) corresponds to a 9.4% overall probabil-
ity.

The 2 Hz data are modeled in Table III and are
depicted graphically in Figure 5. The analysis is very
similar to the 2 Hz data, and again we conclude that
there are two modes at about the same places. The
conditional probabilities are almost exactly equal to
the 1 Hz data (43.38% and 56.62%), resulting in overall
probabilities of 9.97% and 13.02%. The overall proba-
bilities are higher for the 2 Hz data because there was
a larger proportion of single firings in the 2 Hz dataset.
Interestingly, the variance of the second component in
the two-component model is about twice the variance of
the second component in the two-component model in
the 1 Hz data. It is possible that a third component is
present with a higher mean but not in sufficient quan-
tity to be seen in this dataset. Table IV and Figure 6

Fig. 4. Modeling the square root of the 1 Hz charge data with a
mixture of normal distributions. Statistical modeling suggests that
there are two modes, one centered around 4.6 and the other at about
10.7 with conditional probabilities of firing being 43%, and 57%,
respectively.

TABLE III. Modeling of the 2 Hz charge data

# Components BIC Prob. of firing Mean Variance

1 �656.061 1.000 8.405 17.192
2 �637.393 0.434 5.104 2.099

0.566 10.933 14.019
3 �642.985 0.203 4.022 0.508

0.194 6.160 0.639
0.603 10.605 15.213

4 �649.162 0.460 5.081 2.171
0.490 10.621 9.227
0.041 16.387 0.449
0.0090 21.750 0.248

# Components is the number of normal distributions mixed to form the model.
Mean (Variance) is the mean (variance) of each of the normal distributions. BIC
is the Bayesian information criteria. Prob. of firing is the probability, given that
one site fires, that that particular site fires.

Fig. 5. Modeling the square root of the 2 Hz charge data with a
mixture of normal distribution. Statistical modeling suggests that
there are two modes, one centered around 5.1 and the other at about
10.9 with conditional probabilities of firing being 43%, and 57%,
respectively.
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suggest that there are three components in the 3 Hz
data with means at 5.3, 8.6, and 16.2 with conditional
probabilities of firing being 36%, 44%, and 20%, respec-
tively. The overall release probabilities are 10.58%,
13.15%, and 6.10%.

In conclusion, the data support the hypothesis that
more sites are recruited as the stimulation frequency is
increased, and that the probability of release is in-
creased as the stimulation frequency is increased.

Evaluating the fit of the normal mixture model

Of course, the mixture model assumes that the un-
derlying components (as opposed to the entire distribu-
tion) are normally distributed, an assumption which
may be controversial. To address this issue, we looked
at the cumulative distribution functions predicted by
the chosen models and plotted those against the em-

pirical cumulative distribution functions for each data-
set. As shown in Figure 7, the fitted models fit suffi-
ciently well that it is difficult to even observe the fitted
models against the empirical CDFs. This suggests that,

TABLE IV. Modeling of the 3 Hz charge data

# Components BIC Prob. of firing Mean Variance

1 �863.558 1.000 8.984 19.270
2 �803.384 0.429 5.507 0.968

0.571 11.596 17.112
3 �796.541 0.355 5.260 0.592

0.441 8.633 5.493
0.205 16.197 5.021

4 �800.859 0.471 5.395 0.836
0.121 7.954 0.223
0.179 10.348 1.179
0.229 15.847 5.754

# Components is the number of normal distributions mixed to form the model.
Mean (Variance) is the mean (variance) of each of the normal distributions. BIC
is the Bayesian information criteria. Prob. of firing is the probability, given that
one site fires, that that particular site fires.

Fig. 6. Modeling the square root of the 3 Hz charge data with a
mixture of normal distribution. Statistical modeling suggests that
there are three modes with means at 5.3, 8.6, and 16.2 with condi-
tional probabilities of firing being 36%, 44%, and 20%, respectively.

Fig. 7. Goodness of fit plots for the mixture distributions chosen by
BIC. The three plots correspond to the 1 Hz (A), 2 Hz (B), and 3 Hz (C)
datasets. The x-axis of each plot is the square root of the area. The
y-axis provides the cumulative distribution function for each of two
distributions—the empirical distribution (the observed proportion of
data less than each Sqr(area) value) and the mixture distribution
chosen for BIC. Thus, for the 1 Hz and 2 Hz datasets, the two-
component model CDF is plotted, while for the 3 Hz dataset the
three-component model CDF is plotted. The empirical CDF is a dotted
line, while the mixture CDF is shown as a dashed line. Both lines are
almost completely superimposed on each other for all three plots.
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while perhaps some other model may provide an even
better fit, the mixture of normal distributions does fit
the data well. There may be some concern at this point
that since a square root transformation was used to fit
the model, the model may not be adequate on the
original (no square root) scale. However, the method
used in this study is analogous to a Box-Cox style
transformation in regression. If one wishes, the results
may be transformed back to the original scale using
standard statistical results on transformations of con-
tinuous distributions. This was done in Figure 8 with
the optimal fits for each of the three datasets. That is,
we transformed back the two-component models for the
1 Hz and 2 Hz datasets, and the three-component
model for the 3 Hz dataset. The datasets are shown on
the original scale with the transformed densities. As
can be seen, all three distributions have a qualitatively
good fit to the original data.

DISCUSSION

In this study we provide evidence that the classical
technique (del Castillo and Katz, 1954) of directly
counting the occurrences of quantal events may pro-
vide unstable estimates of the parameters n and p (see
Tables I–IV). The method of direct counting overlooks
the possibility that there are quantified groupings of
subsets, each making up a fraction of the total percent-
age of quantized postsynaptic currents. This instability
may be partially alleviated by looking at the current
traces for extra information about n and p in the data.
In particular, we focused on current trace areas and
used mixture modeling to determine n and p. Of course,
other measures of the current trace are possible, such
as peak amplitudes or decay rates, but these alterna-
tive measures did not provide the same clarity in
grouping the data as the areas did. The area data alone

strongly suggest that there at least two distinct sites
firing for all stimulation frequencies, that a third site
may be recruited as the stimulation is increased from 1
Hz to 3 Hz, and that the firing frequency p increases as
the stimulation frequency increases.

Earlier studies investigating stimulation frequency
dependence on quantal release in crayfish NMJ
(Wernig, 1972) showed the same general overall trend
as we report, which is that with increased stimulation
frequency the number of quanta increase. However, in
the Wernig study only direct counts of quantal events
were taken, with use of uniform binomial statistics to
estimate n and p. No attempts were made to investi-
gate quantal populations based on the characteristics
of the quantal current and, thus, what was determined
as one release site most likely underestimated the
number of active sites. In addition, the measurement
techniques used consisted of a glass focal electrode
filled with 2 M NaCl to measure synaptic current,
which may well have altered the release characteristics
of the nerve terminals, since it is well established that
hyperosmotic solutions promote transmitter release
(Quastel et al., 1971).

There is a vast amount of literature dedicated to
various quantal analysis procedures and the statistical
nature of synaptic transmission in a variety of systems
(see reviews: Faber et al., 1998; Somogyi, 1998; Martin,
1977; McLachlan, 1978; Redman, 1997; Voronin, 1993).
However, estimating n and p using the common ap-
proaches of maximum likelihood estimation (MLE) and
AIC methods (Cooper et al., 1995b; Smith et al., 1991;
Wojtowicz et al., 1991) do not take into account that
even if only failures and single evoked events occurred
there could still be multiple functional sites giving rise
to the single events. This is a major limitation of the
direct counting method when there are few multiple
releases, as in the current data. From direct structure–
function studies of varicosities, as those used in this
study, it has been demonstrated that there are 30–35
synapses contained within a single varicosity and each
synapse may have zero (a blank synapse), one (simple
synapse), or multiple dense bodies (complex synapses)
(Atwood and Cooper, 1995, 1996a,b; Cooper et al.,
1995a). A dense body on a synapse is commonly re-
ferred to as an active zone since vesicles are observed to
be localized around these presynaptic structures and
are assumed to be released from these locations (At-
wood et al., 1994; Cooper et al., 1996a; Govind et al.,
1994; Propst and Ko, 1987; Walrond and Reese, 1985).
However, referring to the dense bodies as active zones
maybe a misnomer since they are not all likely to be
active; instead, they have the potential to be active.
Within these nerve terminal varicosities, which can
contain 30–35 synapses, there may be in the range of
30–50 potential active zones based on the number of
dense bodies observed in hundreds of serial sections
(Cooper et al., 1995a, 1996b). It is known that a high

Fig. 8. Model fits for the untransformed data. These fits were
computed by taking the optimal fits for each of the three datasets in
Figures 4, 5, and 6, and then transforming the results back to the
original (no square root) scale.
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frequency of EMG activity (up to 60 Hz) occurs during
the opening of the chelae in an intact animal (Crider
and Cooper, 2000), and that this is likely due to a
barrage of activity of the single excitatory motor neu-
ron that innervates the opener muscle. It is practical to
assume that many sites can be recruited into action
during a high stimulation frequency; however, it is
experimentally impractical to discern discrete quantal
synaptic currents in such conditions. In addition, with
a large number of multiple events within single trials it
becomes impossible to directly count events to estimate
n and p. Even if the counts were obtainable there is a
problem in appropriately determining the best fit dis-
tributions to estimate n and p with a large number of
higher ordered multiple events that may vary over
time (Miyamoto, 1986). For these reasons, experimen-
tally one makes use a low stimulation rate to observe
discernable quantal events and by incrementally in-
creasing the stimulation rate, additional release sites
are able to be recruited and stochastically measured.
Based on the structural analysis of these types of syn-
apses, it is highly probable that some sites are re-
cruited first and other sites are recruited as the stim-
ulation frequency is increased. In fact, the structural
complexity of the synapses reveal that active zones
vary in their separation distances on individual syn-
apses, which may relate to interaction of calcium do-
mains resulting in some sites having a much higher
release probability (Cooper et al., 1995a, 1996a,b). The
analysis used in this study suggests that sites initially
activated, which produce a given subset of quantal
charges, increase in their occurrence, and that novel
sites can also be recruited upon increased stimulation
frequency. Studies in which vertebrate central termi-
nals have been investigated suggest that n is positively
correlated with the number of boutons (i.e., varicosi-
ties) activated (Korn et al., 1981). Most central syn-
apses of vertebrate neurons do not have the structural
simplicity of a few active zones (dense bodies) on a
synapse but instead consist of a grid of dense bodies
which likely will function as a unit (Vrensen, 1980).
This raises the issue of what n may refer to in such
cases. Is it an entire synapse or a single active zone
within the grid? To the same extent, the frog NMJ has
long dense bars in which multiple vesicles align them-
selves, and it is unknown if the entire dense bar acts as
a single site (Kriebel et al., 2000). In addition, Vautrin
et al. (2000) postulated that the postsynaptic responses
are indirect as a result of vesicle release but directly an
effect of neurotransmitter release from gangliosides on
the extracellular presynaptic surface. Others (Kriebel
et al., 2001) have recently postulated the existence of
temporary pores different than a vesicular fusion pore
to release transmitter.

The mechanisms behind quantal fluctuation of syn-
aptic transmission can be due to postsynaptic and/or
presynaptic components. A possible postsynaptic mech-

anism is nonuniform activation of the postsynaptic re-
ceptor array due to point source release of transmitter
in relation to the geometry of the synapse (Bekkers,
1998; Olkin et al., 1981; Uteshev and Pennefather,
1997). In addition, the different sizes of synapses,
which in some cases are related to synaptic develop-
ment, account for a postsynaptic role. Saturation of the
postsynaptic receptors has also been postulated to limit
quantal size (Tang et al., 1994). The density and dis-
tribution of the various glutamate receptor subtypes
(i.e., NMDA and AMPA) can alter the receptivity of the
postsynaptic target (DiAntonio et al., 1999). When
transmission is rapid from the same sites, receptor
desensitization/resensitization may also contribute
(Sugino et al., 2000). Presynaptic mechanisms poten-
tially responsible for quantal fluctuation may well be
due to the size differences in vesicles as well as pack-
aging of their contents (Sulzer and Edwards, 2000;
Wilson, 1998). Recently, it has also been postulated
that quantal release may not be due to a single vesicle
but rather to an array of vesicles releasing all at once
(Kriebel et al., 2000).

Many of the proposed explanations for quantal fluc-
tuation can be tested in “simple synapses” of the cray-
fish NMJ since one can monitor unitary postsynaptic
currents. It is known that desensitization is not respon-
sible for quantal fluctuation, since very low probability
of release was induced, resulting in evoked events in-
terspersed among many failures. In addition, the peak
amplitudes do not show a flattened peak, which would
be indicative of saturation. Resensitization is rapid in
this preparation (Dudel et al., 1992). These glutama-
tergic ligand-gated receptors are a quisqualate type
with rapid sodium conductance (Shinozake and
Shibuya, 1974). There does not appear to be a wide
variation in size among clear core synaptic vesicles in
crayfish motor nerve terminals, but one needs to con-
sider stereological problems in assessing vesicle dimen-
sions (Feuerverger et al., 2000; Kim et al., 2000). Also,
the size is not informative to the extent of the packag-
ing content. With monitoring single vesicular induced
EPSCs from a spatially isolated varicosity using the
focal recording technique, one at least knows that the
variation is not due to electrotonic spread from distant
sites on the muscle, as is the problem with intracellular
monitoring of the postsynaptic cell. Since the synapses
are known to be of various sizes for these types of
varicosities on the opener muscle (Cooper et al., 1995a,
1996b), and since “active zones” can be located at var-
ious locations on the presynaptic face, it is plausible
that the geometrical differences account for the num-
ber of receptors activated. In addition, even though
only a single varicosity is being monitored, there is still
an issue of electrotonic spread within the subsynaptic
reticulum. Since synapses occur on all regions of the
varicosity and there is extensive substantial subsynap-
tic reticulum with massive enfoldings (Atwood and
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Cooper, 1996b; Cooper et al., 1995a), this postsynaptic
complexity may account for the diminution of currents
monitored by the stationary extracellular recording.
These pre- and postsynaptic geometric conditions then
allow synapses to reliably produce a given response
based on their relative location to the recording elec-
trode. This results in some synapses giving rise to
different shaped responses. Thus, it is expected to have
groupings in the charge of single EPSC subsets and
that new subsets may be recruited with higher fre-
quency stimulation as well as an increase in the sub-
sets already present. There are several reasons why
charge may be more representative than peak ampli-
tude or decay constants for release sites. If the postsyn-
aptic receptors are saturated, then a flattening of the
peak amplitude would occur. This is not a problem to
measure, but the decay constant, �, from a truncated
EPSC event would not be representative of all quantal
events. In addition, the absolute peak amplitude is
more subject to small changes during rapid events, and
would be subjective to fluctuating more than area (i.e.,
charge). Thus, peak amplitude is less likely to repre-
sent the EPSC events. Alternative quantal measures,
such as those put forth here, provide an avenue to
better determine the number of functional release sites
(n) and the probability of release (p).
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