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Abstract
Several myelin-associated factors that inhibit axon growth of mature neurons, including Nogo66,
myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp), can
associate with a common GPI-linked protein Nogo-66 receptor (NgR). Accumulating evidence
suggests that myelin inhibitors also signal through unknown NgR-independent mechanisms. Here
we show that MAG, a RGD tri-peptide containing protein, forms a complex with β1-integrin to
mediate axonal growth cone turning responses of several neuronal types. Mutations that alter the
RGD motif in MAG or inhibition of β1-integrin function, but not removal of NgRs, abolish these
MAG-dependent events. In contrast, OMgp-induced repulsion is not affected by inhibition of b1-
integrin function. We further show that MAG stimulates tyrosine phosphorylation of focal adhesion
kinase (FAK), which in turn is required for MAG-induced growth cone turning. These studies
identify β1-integrin as a specific mediator for MAG in growth cone turning responses, acting
through FAK activation.

Background
Myelin-associated glycoprotein (MAG), a component of
myelin in the central and peripheral nervous system, pro-
motes neurite outgrowth during the embryonic develop-
ment, but inhibits axonal regeneration in the adult
nervous system [1-9]. Following damage to the adult CNS,
disruption of the myelin sheath leads to the release in
abundance of a soluble fragment containing the MAG
extracellular domain, which possesses potent inhibitory
activity for neurite outgrowth [10]. A receptor complex
consisting of NgR, p75/TROY and Lingo-1 has been

shown to mediate the inhibitory activities of three major
myelin-associated inhibitors: MAG, Nogo66 (an extracel-
lular domain of NogoA) and OMgp [11-19]. While certain
classes of neurons from p75 knockout mice exhibit
reduced responses to myelin inhibitors, several types of
neurons lacking NgRs are still inhibited by these factors
[20-23]. In particular, a recent study using NgR germ-line
knockout mice and short-hairpin RNA (shRNA) interfer-
ence suggests that NgR is only partially involved in the
acute growth cone collapse induced by MAG and OMgp,
but may not be required for the long-term growth inhibi-
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tory actions of these two factor [22]. Thus, it is likely that
an additional signaling mechanism is critical for transduc-
ing the signaling of MAG and possibly other myelin-asso-
ciated inhibitors.

Integrins, consisting of α and β chains, are heterodimeric
receptors for components of the extracellular matrix and
for specific ligands [24]. Extensive studies have shown
that integrins are important for cytoskeleton dynamics,
cell adhesion and migration [25]. Emerging evidence also
suggests that integrins regulate neurite extension, axonal
guidance and neuronal migration through direct or indi-
rect mechanisms [26]. Many downstream signaling of
guidance cues and integrins converges onto common
pathways that regulate cytoskeleton rearrangement, thus
integrins and guidance cues could also modulate effects of
each other [27-30]. In addition, exogenous laminin as a
substrate impedes MAG and myelin inhibitory activity on
neurite initiation and outgrowth [31,32]. These results
suggest the existence of competitive crosstalk between
integrin ligands and inhibitory factors associated with
myelin and glia scar.

Here we demonstrated that β1-integrin acts as a receptor
for MAG to mediate growth cone responses independent
of NgRs in mammalian neurons. Our study identifies a
novel signaling mechanism for MAG and may have signif-
icant implications for therapeutic modulation of MAG
functions in the adult nervous system.

Results
MAG interacts with β1-integrin
Human and rodent MAG (also called Siglec-4) contain the
RGD tri-peptide (Fig. 1A), a characteristic binding motif
recognized by integrin receptors containing β1 or β3 sub-
units [33,34]. Crystal structure analysis and modeling
[35,36] suggest that the RGD motif in MAG (located
within the F-strand, Fig. 1A) is not hidden from the pro-
tein surface as previously thought [37,38]. To determine
whether β1-integrin interacts with MAG, we treated cul-
tured primary hippocampal neurons with recombinant
MAG consisting of the MAG extracellular domain fused to
human Fc, a fusion protein previously shown to potently
regulate neurite outgrowth when present uniformly and
induce growth cone turning responses when applied
locally [2,12,13,39-41]. MAG and β1-integrin were co-
immunoprecipitated with antibodies directed against
either β1-integrin or human Fc fragment (Fig. 1B, C), sug-
gesting that these two proteins interact with each other. In
contrast, native human Fc fragment and β1-integrin were
not co-immunoprecipitated under the same condition
(Fig. 1C). To further examine whether MAG directly inter-
acts with β1-integrin, we purified recombinant protein of
GST fused to the extracellular domain of β1-integrin. Pull-
down experiments showed that GST-β1-integrin directly

binds MAG-Fc, but not the native Fc fragment, in a cell
free environment (Fig. 1D).

We next examined the requirement of the RGD motif in
MAG for its association with β1-integrin. Biochemical
analysis showed that the association between MAG and
β1-integrin was attenuated by the disintegrin echistatin, a
viper-venom-derived RGD peptide that specifically
inhibitsβ1 and β3 containing integrins [42], and by Ha2/
5, a specific β1-integrin function blocking antibody
[43](Fig. 1E). We also constructed a mutant form of MAG
(Fig. 1A), in which the RGD motif was mutated to KGE
(MAG-KGE) and is not recognized by integrins [44].
Under the same experimental condition, purified MAG-
KGE was unable to interact with β1-integrin whereas puri-
fied MAG-RGD (wild-type) could (Fig. 1C). Taken
together, these results demonstrated that the association
between MAG and β1-integrin is direct and occurs via a
classical mode of integrin-ligand interaction[33,34].

β1-integrin function is required for MAG-induced growth 
cone response
To examine the functional role of β1-integrin in transduc-
ing MAG signaling in neurons, we performed growth cone
turning assays using rat hippocampal neurons [41,45]
[See Materials and methods]. Consistent with earlier find-
ings of repulsive growth cone responses of spinal neurons
to MAG gradients [2,12,13,39-41], axonal growth cones
of postnatal day 5 (P5) hippocampal neurons also exhib-
ited repulsive responses in a microscopic gradient of
recombinant MAG (150 μg/ml in the pipette; Fig. 2A).
However, the growth cones showed no bias in the direc-
tion of axonal extension with heat-inactivated MAG-Fc
(MAG-HI) or native Fc fragment (Fig. 2D). The repulsive
responses were completely abolished in the presence of
100 nM echistatin or 1.0 μg/ml Ha2/5 (Fig. 2B, D), but
not by the control IgM (Fig. 2D). Significant repulsive
responses remained in the presence of a specific β3-
integrin function-blocking antibody [see Additional file
1], suggesting the specific involvement of β1-integrin in
mediating MAG induced growth cone response. Indeed,
neurons transfected with specific shRNAs against β1-
integrin [see Additional file 1], but not control shRNA,
abolished growth cone responses to the MAG gradient
[see Additional file 1]. Additionally, we generated two
MAG mutants lacking an intact RGD motif: MAG-KGE or
MAG-RAD. Gradients of mutant MAG proteins failed to
induce significant growth cone response of these neurons
(Fig. 2C &2D). Taken together, these results demonstrated
that β1-integrin function is required for MAG-induced
axonal growth cone repulsive response of postnatal hip-
pocampal neurons.

To further characterize whether β1-integrin plays a per-
missive or an instructive role in MAG signaling, hippoc-
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Association between MAG and β1-integrin in primary hippocampal neuronsFigure 1
Association between MAG and β1-integrin in primary hippocampal neurons. A. Sequence alignment of the RGD 
motif in the F-strand of MAG (Siglec-4) and SnD1 (Siglec-1) from different species. B-E. Association between MAG and β1-
integrin. Primary hippocampal cultures were treated with wild-type MAG-Fc (RGD), mutant MAG-Fc (KGE), or native Fc frag-
ment, in the presence or absence of echistatin (100 nM) or Ha2/5 (0.5 or 2.0 μg/ml). Cell lysates were immunoprecipitated 
with antibodies raised against β1-integrin and subjected to immunobloting for human Fc fragment, or vice versa (B, C, E). In 
GST pull-down experiments (D), purified GST-β1-integrin (extracellular domain) or GST control was incubated with MAG-Fc 
or native Fc fragment, and GST pull-down was subjected to western blot analysis and immunobloting for the Fc fragment.
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ampal neurons were uniformly activated by MAG in the
bath (150 ng/ml) and exposed to a gradient of Ha2/5 (0.5
mg/ml in the pipette) to generate a reverse gradient of β1-
integrin activation within the growth cone (Fig. 3A). Inter-
estingly, neuronal growth cones exhibited significant
attractive responses under this condition (Fig. 3A, C). In
contrast, a control gradient of saline in the presence of
uniform MAG (Fig. 3B), or a gradient of Ha2/5 in the
absence of MAG, produced no significant growth cone
turning responses (Fig. 3C). These results further demon-
strated an essential role of β1-integrin in MAG-induced
growth cone responses of hippocampal neurons. In
another set of experiments, hippocampal neurons were
subjected to the MAG gradient in the presence of bath
application of a peptide consisting of five amino acid
YIGSR, which has been previously shown to bind and acti-
vate β1-integrin, to saturate the β1-integrin signaling [46].
The repulsion to MAG was abolished by this uniform
application of YIGSR, but not by a control peptide IKVAV
(Fig. 3D). Thus, β1-integrin signaling appears to play an
instructive rather than a permissive role in MAG-induced
growth cone responses.

It is known that MAG exhibits differential effects on neu-
rons at different developmental stages and, in particular,
promotes neurite outgrowth of embryonic neurons
[1,3,6,47]. We therefore tested whether β1-integrin also
mediates growth cone responses of embryonic neurons to
MAG. Interestingly, axonal growth cones of E17 rat hip-
pocampal neurons exhibited significant attractive
responses in the same MAG gradient, consistent with the
growth promoting role of MAG on young neurons (Fig.
4A). Such MAG-induced response was also abolished in
the presence of Ha2/5 (1.0 μg/ml; Fig. 4A). Neuronal
responses to MAG are modulated by cAMP/PKA signaling
[41,48]. Indeed, MAG-induced attractive responses of E17
neurons was converted to repulsive responses in the
present of a PKA inhibitor Rp-cAMPS (20 μM), while
MAG-induced repulsive responses of P5 hippocampal
neurons was converted to attractive responses in the pres-
ence of a PKA activator Sp-cAMPS (20 μM; [see Additional
file 2]). Importantly, all these MAG-induced growth cone

responses were abolished in the presence of Ha2/5 [see
Additional file 2]. Thus, β1-integrin mediates MAG-
induced growth cone responses of hippocampal neurons
at different developmental stages and under different cel-
lular status.

To determine whether the function of MAG-integrin inter-
actions are limited to hippocampal neurons, we examined
growth cone responses of postnatal rat cerebellar granule
cells [45]. Axonal growth cones of these neurons exhibited
significant repulsive responses in the MAG gradient (150
μg/ml in the pipette; Fig. 4B). Importantly, MAG-induced
repulsion of these neurons was also abolished in the pres-
ence of Ha2/5 (1.0 μg/ml; Fig. 4B). These results show
that β1-integrin function is required for MAG-induced
growth cone responses in different types of mammalian
CNS neurons.

β1-integrin function is not required for OMgp-induced 
growth cone turning
Three major myelin-associated inhibitory factors, Nogo-
66, MAG and OMgp, are known to bind to the common
NgR protein and may utilize the same signal transduction
pathway to regulate axonal behaviours [11-14]. Therefore,
we next sought to determine whether β1-integrin also
mediates growth cone responses to other myelin-associ-
ated inhibitors. Axonal growth cones of rat P5 hippocam-
pal neurons exhibited significant repulsive turning
responses to a gradient of recombinant OMgp (5 μg/ml in
the pipette), but not to Nogo-66 (data not shown) or to
heat-inactivated OMgp (Fig. 5A, C). In contrast to our
observations for MAG, axonal growth cones still exhibited
significant repulsive response to OMgp in the presence of
either echistatin or Ha2/5 (Fig. 5B, C). Thus, β1-integrin
appears to specifically mediate axonal growth cone
responses induced by MAG, but not by OMgp.

β1-integrin mediates MAG-induced growth cone turning 
independent of NgR
To address whether β1-integrin provides an independent
pathway to mediate MAG signaling or acts as a co-receptor
along with NgR/p75/TROY/Lingo-1, we examined growth

β1-integrin function is essential for MAG-induced axonal growth cone repulsion of hippocampal neuronsFigure 2 (see previous page)
β1-integrin function is essential for MAG-induced axonal growth cone repulsion of hippocampal neurons. A-C, 
Growth cone turning in a gradient of MAG (150 μg/ml in the pipette). Sample images show the axons of P5 rat hippocampal 
neurons in the gradient for 30' on the left and axonal growth cones at the onset (0') and at the end (30') of the turning assay at 
a higher magnification. Scale bar: 20 μm. Right traces show sample trajectories of axons during the turning assay from 15 ran-
domly selected neurons. Scale bar: 5 μm. D. Summary of growth cone turning angles under different conditions. Similar as in 
(A-C), growth cones were subjected a gradient of MAG-Fc, heat-inactivated (HI) MAG, wild-type (RGD) and mutant forms 
(KGE, RAD) of MAG-Fc, or native human Fc fragment. Pharmacological reagents were preincubated for 30 min and present 
throughout the turning assay with the following concentrations: echistatin (100 nM); Ha2/5 (1 μg/ml); Control IgM (1 μg/ml). 
Data represent mean ± s.e.m. Numbers associated with bars indicate the number of growth cones analyzed under each condi-
tion. "*" indicates significant difference (p < 0.01, ANOVA).
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β1-integrin plays an instructive role in MAG-induced growth cone turningFigure 3
β1-integrin plays an instructive role in MAG-induced growth cone turning. A-C. Growth cone turning in the pres-
ence of uniform activation by MAG. Shown are sample images of growth cone turning of P5 rat hippocampal neuron axons in a 
gradient of Ha2/5 (0.5 mg/ml in the pipette, A) or saline (B) with uniform presence of MAG (150 ng/ml) in the bath. Scale bar: 
20 μm. Also shown is the summary of growth cone turning angles under different conditions, C). Values represent mean ± 
s.e.m. Numbers associated with the bar graph indicate the number of growth cones analyzed. "*" indicates significant difference 
(p < 0.01, ANOVA). D. MAG-induced growth cone turning in the present of uniform activation of β1-integrin. Same as in (C), 
except that neurons were subjected to a MAG gradient (150 μg/ml in the pipette) with uniform presence of the β1-intergin 
activating peptide YIGSR (10 μg/ml), or the control peptide LKVAV (10 μg/ml), respectively.
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cone responses following the removal of GPI-linked pro-
teins, including all NgRs, from the neuronal cell surface
[13,14]. Primary hippocampal neurons were pre-treated
with PI-PLC (1 unit/ml) for 30 min and then growth
cones were examined in the MAG gradient with the con-
tinuous presence of PI-PLC. Under these conditions,
axonal growth cones of P5 rat hippocampal neurons still
exhibited significant repulsive turning responses to MAG
(Fig. 6A). Biochemical analysis confirmed that the PI-PLC
treatment was effective in removing NgR from these pri-
mary neurons [see Additional file 3], but the binding of
MAG to β1-integrin was not affected [see Additional file
3]. These results are consistent with a number of previous
findings that MAG retains its ability to induce RhoA acti-
vation [20] and inhibit neurite outgrowth[23] in postna-
tal cerebellar granule cells following the PI-PLC treatment,
while mutant forms of MAG-Fc lacking an intact RGD
domain (AGD or DGD) lose their inhibitory activities on
axonal extension of cultured cerebellar granule cells [49].

To directly assess the specific role of NgR in MAG-induced
growth cone responses, we examined neurons from NgR
null mice [21]. Mouse hippocampal neurons lacking NgR
still exhibited significant repulsive responses to the MAG
gradient (Fig. 6B), suggesting that NgR is dispensible for
MAG-induced growth cone repulsion. More importantly,
MAG-induced repulsion of neurons lacking NgR was also
abolished by Ha2/5 (Fig. 6B). In addition, we were unable

to detect interactions between β1-integrin and any mem-
ber of the known NgR signaling complex, including NgR,
p75, TROY and Lingo-1, either in the presence or absence
of MAG [see Additional file 4]. Taken together, these find-
ings are consistent with the notion that β1-integrin medi-
ates MAG-induced growth cone responses independent of
the known NgR receptor complex.

FAK mediates MAG-induced growth cone turning 
downstream of β1-integrin
How does β1-integrin signaling transduce MAG-induced
growth cone responses? Focal adhesion kinase (FAK) is a
major mediator of integrin-dependent signaling in many
contexts, including cell migration and axon guidance
[26,50,51]. Interestingly, treatment of hippocampal neu-
rons with MAG (2 μg/ml) induced tyrosine phosphoryla-
tion of FAK in a time-dependent manner (Fig. 7A). Such
MAG-induced tyrosine phosphorylation of FAK was abol-
ished in the presence of echistatin (100 nM) or Ha2/5 (2.0
μg/ml; Fig. 7B). In addition, mutant MAG-KGE failed to
trigger tyrosine phosphorylation of FAK (Fig. 7C) while
removing GPI-linked proteins following the PI-PLC treat-
ment did not affect MAG-induced phosphorylation of
FAK in these neurons [see Additional file 5]. Thus, MAG
induces tyrosine phosphorylation of FAK in an integrin-
dependent manner.

We further examined specific tyrosine residues of FAK that
are phosphorylated upon MAG stimulation in hippocam-
pal neurons. As shown with site-specific phospho-tyro-
sine FAK antibodies, MAG induced a significant increase
in the phosphorylation of FAK at tyrosine residues 397
and 861 (Fig. 7D). Similar β1-integrin-dependent phos-
phorylation of FAK these tyrosine residues were also
found in embryonic cortical neurons treated with MAG
(data not shown).

To determine the functional role of FAK and its tyrosine
phosphorylation in MAG-induced growth cone turning,
we transfected P5 rat hippocampal neurons with shRNA
constructs to knockdown the expression of endogenous
FAK [see Additional file 5]. Expression of shRNA-FAK, but
not control shRNA, abolished MAG-induced repulsion
(Fig. 7G). We also transfected neurons with expression
constructs for either wild-type FAK (WT-FAK) or a mutant
FAK (FAK-Y397/861F) that cannot be phosphorylated on
tyrosine residues 397 and 861. Expression of mutant FAK-
Y397/861F, but not WT-FAK, also abolished MAG-
induced repulsion (Fig. 7E–G). Together, these findings
demonstrated that MAG-induced phosphorylation of FAK
is essential for growth cone turning responses to MAG.

Discussion
We provided biochemical and functional evidence that
β1-integrin acts as a direct receptor to mediate MAG-

β1-integrin mediates MAG-induced turning responses of embryonic hippocampal neurons and postnatal cerebellar neuronsFigure 4
β1-integrin mediates MAG-induced turning 
responses of embryonic hippocampal neurons and 
postnatal cerebellar neurons. Shown is the summary of 
turning angles for axonal growth cones of rat E17 hippocam-
pal neurons and P5 cerebellar neurons (CB) in a gradient of 
MAG (150 μg/ml in the pipette), with or without the pres-
ence of Ha2/5 (1.0 μg/ml). Values represent mean ± s.e.m. 
Numbers associated with the bar graph indicate the number 
of growth cones analyzed. "*" indicates significant difference 
(p < 0.01, ANOVA).
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OMgp-induced growth cone repulsion does not require β1-integrin functionFigure 5
OMgp-induced growth cone repulsion does not require β1-integrin function. A. Growth cone turning of rat hippoc-
ampal neurons in a gradient of OMgp. Sample images show an axon of a P5 hippocampal neuron in an OMgp gradient (5 μg/ml 
in the pipette) at the onset (0') and at the end (30') of the turning assay. Scale bar: 20 μm. Right traces show sample trajectories 
of axons during the turning assay from 15 randomly selected neurons. Scale bar: 5 μm. B. Growth cone turning in a gradient of 
OMgp in the presence of a blocking antibody to β1-integrin. Similar as in (A), except for the presence of Ha2/5 (1.0 μg/ml). C. 
Summary of growth cone turning angles under different conditions. Echistatin (100 nM) or Ha2/5 (1 μg/ml) was preincubated 
for 30 min and present throughout the turning assay. Values represent mean ± s.e.m. Numbers associated with the bar graph 
indicate the number of growth cones analyzed. "*" indicates significant difference from the heat-inactivated (HI) OMgp (p < 
0.01, ANOVA).
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induced growth cone responses of mammalian CNS neu-
rons from both embryonic and postnatal stages. We fur-
ther showed that β1-integrin signaling mediates MAG
effects through FAK phosphorylation and is independent
of NgR. Taken together, these results demonstarted a com-
mon role of β1-integrin in mediating MAG signaling for
diverse functions in different neuronal types.

Previous studies led to the finding that Nogo66, OMgp
and MAG, three major inhibitors associated with myelin,
all bind to NgR and appear to signal at axonal growth
cones through a common receptor complex containing
NgR, p75/TROY and Lingo-1 [11-19]. Two additional
human homologs of NgR (NgR2 and NgR3) are found to
be expressed in CNS neurons [52,53]. While neither binds
to Nogo66 [54], NgR2 appears to bind to MAG [55]. Accu-
mulating evidence suggests that inhibitors associated with
myelin may signal independent of NgRs [20-22]. Our
growth cone turning results using NgR null neurons and
PI-PLC treatment are in agreement with these findings
(Fig. 6). MAG has also been reported to inhibit neurite
outgrowth through sialoglycoproteins [49,56] and gan-
gliosides [23,57] in postnatal DRG neurons and cerebellar

granule neurons. Our results with the RAD mutant that
has an intact arginine residue to mediate the binding of
MAG to sialic acids [49] (Fig. 2) but failed to induce
growth cone responses suggest a specific requirement of
β1-integrin in MAG signaling. Whether sialic acids of
sialoglycoproteins and gangliosides serve as a co-receptor
together with β1-integrin to mediate MAG signaling
remains to be determined [58].

Integrin signaling has been shown to be critical for axon
guidance and cell migration, either as a direct receptor or
as a modulator of guidance signaling [26]. Laminins,
when presented as substrates for integrins, are known to
promote neurite outgrowth [59] and have been shown to
override inhibitory activities of MAG and myelin-associ-
ated factors [31,32]. It is possible that, in addition to the
growth promoting activity of laminin, competitions at the
receptor levels by laminins and MAG may also contribute
to the enhancement of neurite initiation and outgrowth
[60,61]. Our results also support the notion that integrin
signaling plays an instructive, rather than permissive role,
in MAG-induced growth cone turning (Fig. 3). Activation
of the integrin/FAK pathway is normally associated with
enhanced nerve growth/growth cone attraction [26,62].
Interestingly, β1-integrin signaling is required for both
MAG-induced repulsion and attraction of CNS neurons at
different developmental stages and under different cellu-
lar status (Fig. 4; [see Additional file 2]). A recent study
also showed that inhibition of neurite outgrowth by
fibrinogen requires β3-integrin function [63]. Taken
together, these findings suggest a bi-functional role of
integrin/FAK signaling in regulating the dynamics of
cytoskeletal proteins. Our results show that β1-integrin
serves as a specific receptor for MAG, but not for OMgp.
Consistent with the selective involvement of β1-integrin
in mediating MAG effects, human and rodent MAG con-
tain a RGD-tri-peptide motif characteristic of integrin
binding proteins [33,34], whereas OMgp and Nogo do
not. Interestingly, MAG homologs in fugu and Zebrafish,
species with the capacity for axonal regeneration, do not
contain an intact RGD motif (Fig. 1). The extent to which
different receptors mediate distinct effects of MAG in var-
ious species remains to be determined. Our results further
demonstrate that integrin/FAK signaling mediates MAG
effects independent of the NgR receptor complex. These
findings suggest that a diversity of signaling mechansims
is likely to be employed to limit axon regeneration in the
adult CNS. Given the general role of β1-integrin in medi-
ating diverse functions of MAG in the adult central nerv-
ous system, our findings may have implications for novel
strategies for therapeutic modulation of MAG functions in
the adult nervous system.

Our results show that β1-integrin serves as a specific recep-
tor for MAG, but not for OMgp. Consistent with the selec-

NgRs are dispensable for MAG-induced growth cone repul-sion of hippocampal neuronsFigure 6
NgRs are dispensable for MAG-induced growth cone 
repulsion of hippocampal neurons. A. MAG-induced 
growth cone turning after the PI-PLC treatment. Primary hip-
pocampal neurons were pre-treated with PI-PLC (1 unit/ml) 
for 30 min at 37°C and then growth cones were examined in 
a gradient of MAG. Shown is the summary of turning angles 
of axons with or without the PI-PLC treatment. B. MAG-
induced growth cone turning of hippocampal neurons from 
NgR knockout mice and WT littermates. Shown is the sum-
mary of turning angles for axonal growth cones of P5 mouse 
hippocampal neurons derived from wild-type or NgR knock-
out (NgR KO) mice in a gradient of MAG (150 μg/ml in the 
pipette) with or without Ha2/5 (1.0 μg/ml) in the bath. Values 
represent mean ± s.e.m. Numbers associated with the bar 
graph indicate the number of growth cones analyzed. "*" indi-
cates significant difference (p < 0.01, ANOVA).
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tive involvement of β1-integrin in mediating MAG effects,
human and rodent MAG contain a RGD-tri-peptide motif
characteristic of integrin binding proteins [33,34],
whereas OMgp and Nogo do not. Interestingly, MAG
homologs in fugu and Zebrafish, species with the capacity
for axonal regeneration, do not contain an intact RGD
motif (Fig. 1). The extent to which different receptors
mediate distinct effects of MAG in various species remains
to be determined. Our results further demonstrate that
integrin/FAK signaling mediates MAG effects independent
of the NgR receptor complex. These findings suggest that
a diversity of signaling mechansims is likely to be
employed to limit axon regeneration in the adult CNS.

Given the general role of β1-integrin in mediating diverse
functions of MAG in the adult central nervous system, our
findings may have implications for novel strategies for
therapeutic modulation of MAG functions in the adult
nervous system.

Methods
Primary neuronal cultures
Hippocampal neurons were isolated from the hippoc-
ampi embryonic and postnatal rats, or wild-type and NgR
knockout mice [21] as previously described [64]. Simi-
larly, cerebellar neurons were isolated from P5 rat cerebel-
lum [45]. Dissociated neurons were cultured on poly-L-

MAG-induced tyrosine phosphorylation of FAK is required for growth cone repulsion to MAGFigure 7
MAG-induced tyrosine phosphorylation of FAK is required for growth cone repulsion to MAG. A-C. MAG 
induces phosphorylation of FAK. Shown in (A) is the time course of FAK phosphorylation after MAG stimulation (2 μg/ml) of 
rat hippocampal neurons. Cell lysates were immunoprecipitated with anti-FAK antibodies and immunoblotted with the pY-20 
antibody for phosphorylated tyrosine residues. Shown in (B) are experiments in the presence or absence of Ha2/5 (1.0 μg/ml) 
or echistatin (100 nM). Shown in (C) are experiments with the treatment of WT-MAG (RGD) or mutant MAG (KGE). D. 
MAG induces phosphorylation of FAK on residues Y397 and Y861. Cell lysates of hippocampal neurons after MAG stimulation 
were immunoprecipitated with anti-FAK antibodies and immunoblotted with tyrosine phosphorylation site-specific antibodies 
to FAK. E-G, Phosphorylation of FAK on residues Y397 and Y861 is required for MAG-induced growth cone repulsion. Hip-
pocampal neurons were transfected with expression constructs for GFP, WT-FAK-GFP (E), FAK-Y397/861F-GFP (F), GFP and 
control shRNA, GFP and shRNAs against FAK. Growth cones of GFP+ neurons were examined in a gradient of MAG (150 μg/
ml in the pipette). Sample images and traces were shown similarly as in Fig. 2 (A-C). Scale bar: 20 μm for microscopic images 
and 5 μm for traces. Shown in (G) is the summary of growth cone turning angles. Values represent mean ± s.e.m. Numbers 
associated with the bar graph indicate the number of growth cones analyzed. "*" indicates significant difference from the con-
trol (neurons transfected to express GFP alone; p < 0.01, ANOVA).
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lysine coated plates or coverslips without laminin as pre-
viously described [64]. For biochemical analysis, E18 neu-
rons were treated with AraC to eliminate dividing
astrocytes and used at 5 days after plating as previously
described [64]. For growth cone turning assay, neurons
were used between 2–3 days after plating. PI-PLC (1 or 2
units/ml)[14], Ha2/5 (1 μg/ml) or echistatin (100 nM)
[42] were added 30 mins prior to and were present during
the growth cone turning assay.

Expression constructs and neuronal transfection
Mutation of MAG-Fc was generated by site directed muta-
genesis and confirmed by DNA sequencing. Expression
plasmids of wild-type MAG (RGD) or mutant forms of
MAG (KGE, RAD) were transfected into 293 Ebna cells
and proteins were collected from the media and affinity
purified using protein A sepharose. MAG-Fc from R & D
systems was also used. The pUEG vector was used to co-
express GFP (under the control of the EF1α promoter)
and a specific shRNA (under the control of the human U6
promoter in the same vector)[65,66]. Several shRNAs
against different regions of β1-integrin or FAK, and con-
trol shRNA against DsRed [65] were generated. The fol-
lowing short-hairpin sequences were cloned into pUEG
vector using a PCR SHAGing strategy [67]: shRNA-control:
AGTTCCAGTACGGCTCCAA; shRNA-β1-integrin-3: TGC
CTACTTCTGCACGATG; shRNA-FAK1: GCACGTGGCCT-
GCTATGGA; shRNA-FAK2: GCCTTAACAATGCGTCAGT;
and shRNA-FAK3: TCCAGAAGACAGGCTACCG. To vali-
date the specificity and efficiency of shRNAs, pUEG vec-
tors with different shRNAs were transfected into 3T3 cells
and cell lysates were prepared for western blot analysis of
β1-integrin or FAK expression with specific antibodies,
respectively.

Rat primary hippocampal neurons were transfected with
the Amaxa transfection system following protocols from
the manufacturer. Briefly, hippocampal neurons were iso-
lated and 100 μl of nucleofector solution was added to
resuspend the cell pellet. Different expression constructs
(1–5 μg) for GFP, WT-FAK-GFP, FAK-Y397/861F-
GFP[68], WT-Rho-GFP, DN-Rho-GFP, or pUEG vectors
for shRNAs [65,66], were added to the cell suspension and
the cell-DNA mix was then transferred to cuvettes for elec-
troporation. The cells were cultured in DMEM with 10%
fetal bovine serum for 24 hrs before changing to the
serum-free neurobasal medium [64]. GFP+ neurons were
identified for the turning assay.

Biochemistry
Neurons at 5 days after plating were treated with 2 units/
ml PI-PLC, 100 nM Echistatin or 0.5–2.0 μg/ml Ha2/5,
and then stimulated with 2.0 μg/ml MAG or 0.5 μg/ml
OMgp for the indicated time periods. Cells were then
lysed in immunoprecipitation buffer (1% Triton X-100;

150 mM NaCl; 10 mM Tris, pH 7.4; 1 mM EDTA; 1 mM
EGTA; 1% Nonidet P-40; 0.2 mM Na3VO4; 1 μg/ml pro-
tease inhibitor cocktail; and 0.1 mM PMSF). Samples were
immunoprecipitated with polyclonal antibody against
FAK (Santa Cruz Biotechnology, Inc.), human Fc (Sigma)
or β1-integrin (Chemicon), and then subjected to western
blot analysis. The following antibodies were used: mono-
clonal antibody against tyrosine phosphorylated proteins
(pY20, Transduction Laboratories; 1:1000), rabbit poly-
clonal antibodies against β1-integrin (1:1000), FAK
(1:1000), FAK-pY397 (Biosource; 1:1000), FAK-pY861
(Biosource; 1:1000), or human Fc (1:1000). Blots were
stripped and reblotted with the same antibodies used for
their immunoprecipitation to ensure equal loading of the
immunoprecipitated proteins.

For GST pull-down experiments, the extracellular domain
(ECD) of β1-integrin was amplified from mouse brain
cDNA and cloned into the GST-fusion expression vector
(pGEX-4T-1; Amersham-Pharmacia Biotech) to express
GST-β1 (ECD) fusion protein. The fusion protein was
purified using glutathione beads according to the manu-
facturer's manual (Amersham-Pharmacia Biotech). Native
Fc fragment (2 μg/ml) or MAG-Fc (2 μg/ml) was then
added to the purified GST-β1 (ECD) overnight at 4°C. The
samples were further processed according to the standard
immunoprecipitation protocol as described.

For experiments testing potential interactions between β1-
integrin and the NgR receptor complex, HEK293 cells
were transfected with expression constructs for NgR, p75,
TROY, or Lingo-1, respectively, as previously described
[18]. Transfected cells were stimulated with MAG (5 μg/
ml) or medium and then were immunoprecipitated with
anti-β1-integrin antibodies and immunoblotted for
respective components of the NgR receptor complex.
Total cell lysates were also examined to show the expres-
sion of endogenous β1-integrin and proteins from trans-
fection.

Growth cone turning assay
Microscopic gradients of recombinant MAG (150 μg/ml
in the pipette; 1.8 μM) and OMgp (5 μg/ml in the pipette;
0.1 μM) were produced as previously described to induce
growth cone turning responses [40,41,45,69]. In some
experiments, MAG (150 ng/ml) was added to the bath
solution and microscopic gradients were produced with
saline or Ha2/5 (0.5 μg/μl) in the pipette. As another con-
trol, a gradient of Ha2/5 (0.5 μg/μl in the pipette) was
applied in the absence of MAG in the bath. Previous anal-
ysis [69,70] have shown that, under standard pulsing con-
ditions, the average concentration of the factor at the
growth cone at a distance of 100 μm from the pipette tip
is about 103 fold lower than that in the pipette and the
concentration gradient across the growth cone is about 5–
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10%. Axons were identified as the longest neurite in these
cultures at stage 2–3 of hippocampal neurons as previ-
ously described [71]. Growth cone assays were carried out
for 30 min at room temperature. The turning angle was
defined by the angle between the original direction of
neurite extension and a line connecting the position of the
center of the growth cone at the onset and the end of the
30 min period. To assure accurate measurement of turn-
ing angles, only neurons with axonal extension > 5 μm
over the 30 min period were included for analysis.
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