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action potential of the unmyelinated nerve is metabolically expensive.
Using the energetic cost per unit length for the biophysically modeled
action potential of the squid giant axon, we analyze this cost and
identify one possible optimization. The energetic cost arising from an
action potential is divided into three separate components: /) the
depolarization of the rising phase; 2) the hyperpolarization of the
falling phase; and 3) the largest component, the overlapping of
positive and negative currents, which has no electrical effect. Using
both the Hodgkin—Huxley (HH) model and an improved version of the
HH model (HHSFL), we investigate the variation of these three
components as a function of easily evolvable parameters, axon diam-
eter and ion channel densities. Assuming conduction velocity is well
designed for each organism, the energy component associated with the
rising phase attains a minimum near the biological values of the
diameter and channel densities. This optimization is explained by the
membrane capacitance per unit length. The functional capacitance is
the sum of the intrinsic membrane capacitance and the gating capac-
itance associated with the sodium channel, and this capacitance
minimizes at nearly the same values of diameter and channel density.
Because capacitance is temperature independent and because this
result is independent of the assumed velocity, the result generalizes to
unmyelinated mammalian axons. That is, channel density is arguably
an evolved property that goes hand-in-hand with the evolutionary
stability of the sodium channel.

INTRODUCTION

In the nervous system, the action potential is used for
long-distance information transmission. Delivery of such in-
formation in a timely fashion requires an action potential of
sufficient velocity. On the other hand, sufficient velocity has its
costs. In what follows, we assume that across species and
across the life span of the organism the velocity of any axon is
appropriate to its role in information processing.

In the neuropil of neocortex, where axons must be unmyeli-
nated if each one is to make several thousand sequential or
neighboring synapses, the metabolic costs are surprisingly
large. Attwell and Laughlin (2001) estimated that 75% of the
adenosine triphosphate (ATP) consumed by neurons in the rat
brain is used for communication and computation. Of this, half
is used by the unmyelinated axons.

This metabolic perspective contrasts with and, as we will
see, ultimately complements Hodgkin’s conjectured constraint
on action potential velocity. Both Hodgkin (1975) and Adrian
(1975) proposed that the gating charge movement that inevi-
tably accompanies rapid activation of a voltage-dependent

channel leads to an optimal density of fast Na™ channels. This
optimization occurs because the movement of charge specifi-
cally restricted to the transmembrane voltage field contributes,
albeit transiently, to membrane capacitance. Because increas-
ing capacitance slows action potential propagation, Hodgkin
proposed that the Na* channel density has evolved to maxi-
mize velocity. Unfortunately, biophysical parameter sweeps do
not support this conjecture (Sangrey et al. 2004). In a simple
Hodgkin—-Huxley model reparameterized to fit the action po-
tential velocity with high precision, the conjecture misses by
twofold. When a more sophisticated model, i.e., one that takes
into account that as many as six equivalent charges move
across the membrane but are only sequentially available, the
conjecture fails with more than a fourfold error.

Here we combine the gating-charge-as-capacitance idea with
a conjecture that metabolic energy costs are an important
constraint in terms of evolved function. The result is a much
improved theory in terms of better matching with experimental
measurements. Our simulations show that the metabolic energy
associated with the velocity of the action potential attains a
minimum near the biological values of ionic conductance
density and axon diameter. This result appears to have little to
no dependency on the temperature, axon model, or velocity
considered, and thus strongly supports the energy-optimization
conjecture.

The question of how physical and biological constraints
have influenced the evolution of the nervous system has been
an important question over the last decade. Biological sources
of noise are often presumed to have a significant effect on
information rates in neurons and presumed to influence the
evolved coding strategies (Koch et al. 2004; Manwani and
Koch 1999; Steinmetz et al. 2001). However, there are strong
indications from the architecture of the brain that metabolic
energy constraints have also played a major role (Laughlin and
Sejnowki 2003; Sarpeshkar 1998). Levy and Baxter (1996)
showed that the mean action potential frequency, which max-
imizes the information to energy ratio in certain coding
schemes, is much smaller than the one that maximizes the
information rate alone, and it is considerably closer to the mean
frequencies actually observed. The maximization of energy
efficiency also appears to obtain in the myelinated frog axon
(Goldberg et al. 2003) and the salamander retina (Balasubra-
manian and Berry 2002). Furthermore, Levy and Baxter (2002)
showed that quantal synaptic failures can also play a role in
energy efficiency. Thus it is becoming clear that neural func-
tioning, including neural codes, cannot be fully understood
without an appreciation of the role of energy constraints.
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TABLE 1. Values of the fixed model parameters

Parameter HH HHSFL
E, (resting potential) —65 mV —65 mV
Ey, (Na™ equilibrium potential) 50 mV 50 mV
Ey (K* equilibrium potential) =77 mV =77 mV
m exponent in Na™ channel model 3 3
n exponent in K™ channel model 4 6
R, (axoplasmic resistivity) 354 Q-cm 354 Q-cm
R, (extracellular resistivity) 0Q-cm 0Q-cm
C, (intrinsic membrane capacitance) 0.88 wF/cm? 0.88 wF/cm?

Abbreviations refer to the axon models (see text). HH, Hodgkin—Huxley;
HHSFL, Sangrey—Friesen—Levy.

METHODS

We used the NEURON and NMODL programming languages
(Hines and Carnevale 1997) to develop computational models of the
squid giant axon and wrote auxiliary codes in C to do parameter
sweeps and minimizations; for these auxiliary codes, we incorporated
routines from Numerical Recipes in C (Press et al. 1992). Our
simulated axon was 10 cm long and divided into 1,000 isopotential
segments, each of length 100 wm. The default axon diameter was 476
m, although this was varied in our parameter sweeps. For numerical
integrations, we used a second-order Crank—Nicholson method with a
1 ws time step. Tests with smaller axon segments and time steps
significantly increased the computation time without noticeably
changing the results.

For our main analysis, we used a reparameterized version of Hodgkin
and Huxley’s (HH) model of the squid giant axon. We also checked our
major findings with the classic HH model. Details of these models are
given below. Our models contained a voltage-independent leak conduc-
tance, which we divided into separate sodium and potassium leak con-
ductances. They also contained voltage-activated sodium and potassium
channels, along with a variable membrane capacitance that depended on
the sodium channel gating current. The values of the biophysical param-
eters in the models are listed in Tables 1 and 2.

Classic and reparameterized Hodgkin—Huxley
channel models

One of our axon models included the voltage-gated Na* and K*
channel models proposed by Hodgkin and Huxley (1952) and the
other used modified versions of the channels proposed recently by
Sangrey, Friesen, and Levy (2004). We refer to these as the HH and
HHSFL models, respectively. The reader may consult Hodgkin and
Huxley, Sangrey et al., or a modern neuroscience textbook for details.

The equations given by Hodgkin and Huxley, which they obtained
by fitting their action potential data in a way that, in a broad sense,
agreed with their voltage-clamp data, are as follows.

e Active sodium conductance

gna = &’ (mSfem’) )
e Sodium channel state variable equations

Lo = (B (s 2a)
dh .
E =, — (o, + BA(®) (ms™) (2b)

e Sodium channel activation and deactivation rates

—(V, +40)

[ef(v,,,+4())/l(] _ 1]

a,(V,)=¢ X 0.1 X (ms™") 3a)

Bu(V,) = X 4 x e MmO (mg™") (3b)

P. CROTTY, T. SANGREY, AND W. B LEVY

e Sodium channel inactivation and deinactivation rates

a,(V,) = ¢ X 0.07 X ¢ Vo920 (g1 (4a)
b .
Bu(V,) = & X ([T B0 7y (ms ™) “b)

where b,, = 1 ms~" and b,, = 30 mV (these parameters are varied
in the HHSFL model discussed in the following text).

e Temperature coefficient (which implies Q,, = 3)
d) = 3(T*6.3)/]0 (5)
Active Na™ current

Ing= gNam3h(‘/rrl — Ex) (mA/sz) )
e Potassium channel state variable equation
dn
dt

e Potassium channel activation and deactivation rates

a, = (e, + Bn(r) (ms™") (7)

= (V,, +55)

a,(V,) = ¢ X 0.01 X [ s ] (ms™") (8a)
B.(V,) = ¢ X 0.125 X ¢ VntO80 (g1 (8b)

e Active K™ current
Ix= g’kn4<Vm — Ey) (rnA/sz) )

Leak current

L= gV, — E) = gix(V,, — Ex) + gVl — Exo)  (mA/cm®)  (10)
e The Hodgkin—Huxley differential equation

d d¥, av, ~
4R d =C,(1) 4 + gna’h(V,, — Ex) + gxn*(V, — Ex)

+ eV, —E) (1)

We emphasize again that the channel rate coefficient Egs. 3a, 3b, 4a,
4b, 8a, and 8b are based on the 1952 experimental action potential and
voltage-clamp measurements of Hodgkin and Huxley. Since that time,
better experimental techniques, including those for measuring gating
currents, have become available (e.g., Forster and Greeff 1990), and
additional experiments have been published. It has become clear that
the Hodgkin—Huxley model does not make use of two observed
phenomena: the delay in the activation of the K™ channel (the
Cole-Moore shift) and the dependency of Na™ inactivation on Na™
activation rather than voltage. See Sangrey et al. (2004) for a sum-
mary of the shortcomings of the Hodgkin—Huxley model and refer-
ences.

Sangrey et al. made modifications to the Hodgkin—Huxley channel
model that improve the fit of the simulated action potential to the
experimental data. In the HHSFL model, the exponent on 7 in Eq. 9
is increased from 4 to 6. This has the effect of increasing the
potassium channel activation delay time. The sodium channel inacti-
vation kinetics given in Eg. 4b are also changed: the parameter b, is

TABLE 2.  Default values of the model parameters that were
varied in sweeps

Parameter HH HHSFL
g, (leak conductance) 0.3 mS/cm” 0.3 mS/cm?
Zna (maximum active Na™ conductance) 120 mS/cm? 130 mS/cm?
2k (maximum active K™ conductance) 36 mS/cm? 36 mS/cm?
C™™ (maximum gating capacitance) 0.13 wF/cm? 0.13 wF/cm?
d (axon diameter) 476 pm 476 pm

The conductances and gating capacitance were always increased or de-
creased together by the same factor; the axonal diameter was varied indepen-
dently.
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increased from 1 to 1.8 ms ™' and b, is increased from 30 to 49 mV.
The effect of this is to increase the inactivation rate by a factor of
almost two at the peak of the action potential while suppressing it at
the action potential foot; the action potential therefore rises farther and
more quickly. The combined result of the changes is that the HHSFL
action potential, shown in Fig. 1 (dashed curve), is a much improved
fit to the experimental data during the rising phase and also for the first
part of the falling phase. The other HHSFL model equations are the
same as in the HH model. The results from our simulations of the
HHSFL model suggest that the most accurate aspect of the HH model
is the sodium activation, which Sangrey et al. did not change. The
activation kinetics and associated gating currents are also primarily
what determine our major results with respect to the energy of the
action potential wavefront.

Gating capacitance

Hodgkin correctly ascertained that because the kinetics of the
voltage-activated sodium and potassium ion channels are voltage
dependent, charged components of the channels interact with electric
fields. In the HH and HHSFL models, the gating particles carry this
charge. The movements of the charges associated with a channel
produce a small transient capacitance.

This current, known as the “gating” current, must be included on
the right-hand side of Eq. 11 because it contributes to the total current
determining the behavior of V,,. (The gating current can have terms
proportional to dV, /dt, and therefore it can act like a capacitance.)
The effective capacitance is then the sum of the intrinsic capacitance
and the time-varying gating capacitance

Cull) = Co + C1) (12)

The total capacitance used in the Hodgkin and Huxley model is 1.0
wF/cm?. The intrinsic capacitance C, was measured to 0.9 uF/cm?
(Gentet et al. 2000). The gating capacitance C, has a maximum value
of about 0.15 wF/cm? and can vanish at its minimum (Fernandez et al.
1982). All of these experimental capacitance values have uncertainties
of at least a few tens of nanofarads per square centimeter.
Following Adrian (1975) and Sangrey et al. (2004), we set the
simulation values of Cy to 0.88 wF/cm” and CJ*™* to 0.13 uF/cm?,
both of which are within the experimental limits. We also assumed

50 T T T -
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FIG. 1. Comparison of action potential models. Compared with the pub-

lished 1952 action potential, the Sangrey—Friesen-Levy reparameterized
Hodgkin—Huxley (HHSFL) action potential is the best fit for the initial rise on
through to the peak and until the beginning of hyperpolarization, whereas the
classic Hodgkin—Huxley (HH) action potential is too small in amplitude and
too slow. In the late phase, the HHSFL model loses its advantage, but the
differences are so small that they are irrelevant to the analysis here. All
simulations and data are at 18.5°C using the published values for the conduc-
tances as listed in Table 2. Inset: when plotted over a longer (20 ms) time
interval, the asymptotic return of the HHSFL action potential to rest is evident.
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that the gating capacitance is linearly proportional to the number of
closed sodium channels
8na

CJIm()] = (gT) X [1 = m()] X 0.13uF/cm® 13)

Na
where g2 is 120 mS/cm? for the HH model and 130 mS/cm? for the
HHSFL model. Because the conductance ratio on the right-hand side
of Eq. 13 is fixed, increasing the density of sodium channels increases
the gating capacitance proportionately.

If C, is interpreted as a true time-dependent capacitance, then the
gating current also has a current component equal to dC,/dt X V,,
which should be added to the right-hand side of Eq. /1. We examined
the effects of including this additional gating current component, and
it is much smaller in magnitude than the C, X dV,, /dt component. In
terms of its effects on the ionic current fluxes, the data are changed by
no more than about 5%. This change is to the overall normalization of
the energy curve; its shape and the location of the minimum are
unaltered. This effect is also considerably smaller than the effects of
other experimental uncertainties on the ionic fluxes such as the overall
gating capacitance (see RESULTS). Moreover, the gating capacitance is
a phenomenological effect rather than a true additional capacitance
and its exact behavior as a function of time is not well measured,
which mitigates against using an overly detailed model of C,(¢) in our
simulations. Accordingly, the results reported here do not include the
dC,/dr X V,, component of the gating current.

m

The membrane capacitance per unit axial length is given by

C,(1) = C,(1) X md 4

where d is the axon diameter.

An alternate action potential, using Boltzmann kinetics at 5—-8°C
and modeling a space-clamped action potential (Clay 2005), fails to
reproduce the traveling action potential at the relevant temperatures
(unpublished observations).

Temperature

Most of our simulations were at 18.5°C, the same temperature at
which Hodgkin and Huxley obtained their data for fitting the squid
giant axon action potential. For both models we measured the action
potential velocity as a function of temperature (Fig. 2) and, in
addition, there were detailed parametrically varying simulations of the
HHSFL axon performed at 12.5°C.

The temperature dependency of the HH and HHSFL models is
contained in the ¢ factor (Eg. 5), which multiplies the rate
parameters and implies a Q,, value of 3 for all the rates. This factor
was proposed by Hodgkin and Huxley as part of their empirical fit.
Although we also included it, we note that this is not entirely
rigorous: the usage of ¢ presupposes that the rates it multiplies are
Boltzmann-like functions of energy, which «,, (Eq. 3a), B, (Eq.
4b), and «,, (Eq. 8a) clearly are not.

Action potential stimulation and velocity

We evoked an action potential by simulating a current injection into
one end of the model axon. Generally, injections of about 10 A for
100 us were sufficient, although for some values of the biophysical
parameters larger injections were necessary. After a brief initial phase,
the properties of the resulting action potentials do not depend on the
details of their production.

Simulated action potential velocities were determined from the
times at which a particular polarization of the wavefront passed two
different points along the model axon. We chose these points to be 5
and 8 cm from the simulated current injection site, by which time all
the action potentials investigated had long since stabilized in shape
and velocity.
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FIG. 2. Action potential velocities as functions of temperature. HHSFL
model gives the best approximation to the experimental Loligo action potential
velocities from 10 to 28°C. Below 8°C, the HH action potential model is a
better fit. As in Rosenthal and Bezanilla (2002), all velocities are divided by
the square roots of the respective axon diameters to normalize for different
diameter values. Experimental data points (crosses) are an average of velocity
measurements for 3 Loligo species taken by Rosenthal and Bezanilla (2002).

Quantifying the energetic cost of current fluxes

Attwell and Laughlin (2001) estimated that roughly 75% of the
total ATP consumed by the gray matter of rodent brain is used for
communication and computation. In their Fig. 3A, they show their
estimates of how this 75% is divided. The largest share of this ATP is
associated with action potentials.

At 37°C the minimum free energy extracted from the ATP to
adenosine diphosphate (ADP) that powers the Na™/K™ pump in heart
is 50 kJ/mol (Jansen et al. 2003), and we used this value for the cost
of ionic pumping in the squid axon at 18.5°C. Although the free
energy has a different value at this temperature, it changes only the
overall normalizations of the energy calculations below, but not the
existence and locations of the energy minima; thus it does not alter the
major conclusions of this study. Differences in pH can also affect the
available free energy from ATP hydrolysis, but this, too, will change
only the overall energy normalization.

During each cycle of the ionic pump, which consumes a single ATP
molecule, three sodium ions are expelled from the neuron whereas
two potassium ions are brought in. However, given that an axon
always returns to its resting potential, over all time the integrated Na™
and K membrane fluxes are nearly equal so long as other fluxes are

P. CROTTY, T. SANGREY, AND W. B LEVY

much less. Because this assumption is consistent with Attwell and
Laughlin’s conclusion that most energy use goes to communication
and computation, we thus assume that the third, i.e., extra Na™ being
pumped is used to power other membrane transport phenomena that
are metabolically unavoidable. For example, the Na™ gradient will be
used to pump Ca?", glucose, acidic amino acids, and anions. Espe-
cially important are CO, and H,O in the form of HCO;, whose
buildup must be avoided but is the inevitable consequence of metab-
olism whenever ATP is consumed and regenerated through glucose or
lactate. (Such a housekeeping role for the Na*/K™ pump has been
pursued, even considered primary, by others, e.g., Stein 2002.) Thus
given the 3:2:1 ratio of Na™/K*/ATP, it is our presumption that the
number of ATP molecules required to restore the concentration
gradients after an action potential is half of the total number of sodium
ions that permeate the membrane during the action potential or,
equivalently, half of the potassium ions that leave. The number of ions
can, in turn, be calculated by integrating the ionic currents over an
appropriate time interval. We chose this interval to be the 10 ms after
the beginning of the action potential. As shown in the inset in Fig. 3,
virtually all of the active ionic currents take place during the first 1 or
2 ms, and so the length of the integral is somewhat immaterial as long
as it includes this initial period. We understand that not everyone
agrees with the fate of the third Na™ that is pumped per ATP (e.g.,
Attwell and Laughlin 2001). Fortunately, alternative formulations do
not change the optimization results here. That is, one can rescale the
energy consumed by a constant consistent with one’s personal theory
of the fate of the third Na™.

Other sources of energy usage and loss are much smaller. During
the HHSFL action potential, for example, the energy of Joule heating
arising from the axial current is <3% of the net sodium flux energy
and <1% of the total flux energy. We therefore neglect such effects.

Variation of parameters

Parameter variation was performed in a way that kept the resting
potential constant. With one exception, this amounted to scaling the
voltage-dependent channel densities and leak conductance densities
by a common factor. Thus we use one value, gy,, to represent all of
these densities. The gating capacitance was also varied by this factor
because it is proportional to the density of sodium channels. In the one
exception, we tested the effects of varying only the leak conductance
density. In this instance, only the single conductance g; and the leak
potential were changed, whereas all the other parameters were held
fixed. The axonal diameter was varied independently.

1.2 I e B I
11 i sodium mil
1= potassium il FIG. 3. Na' and K" currents during the action
YR potential are naturally divided into 3 components: /)
o9 LT e —  depolarizing net Na* current in the wavefront; 2) net
gé ---------------------------------------------------------- hyperpolarizing K" current just a little after peak
508~ ~]  depolarization; and 3) neutralized currents that account
<07 _|  for the overlapping and offsetting Na™ and K" fluxes.
£ HHSFL action potential is illustrated here. Total Na™
= 0.6 —  current at any time is the sum of the depolarizing and
E to t neutralized currents and similarly for the K current.
505~ ] Integral of each component (represented by the shaded
00.41— | areas in the figure) gives the associated flux, which is
= directly proportional to the energy used by the ionic
2 0.3 —  pump to restore the resting concentration. Inset: tem-
porally expanded plot, which begins at the foot of the
0.2 —| action potential (f,) and lasts for 10 ms (z; = , + 10
01k _|  ms). Almost all of the ionic charge flux takes place
’ I | during the first 1.5 ms.
0 0 0.5 1 1.5

time (ms)
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RESULTS
Action potential simulations

The action potential produced by the Sangrey—Friesen-Levy
reparameterization of the Hodgkin—Huxley squid giant axon
model (HHSFL) gave a better fit to Hodgkin and Huxley’s
experimental data than the original Hodgkin—Huxley (HH)
model did, as shown in Fig. 1. As discussed in METHODS, the
chief differences between the two models are the Na™ channel
inactivation kinetics, as determined by the parameters b,; and
b, (Eq. 4b), and the K™ channel delay, which, as suggested by
Hodgkin and Sangrey et al. increased by changing the number
of K" gating particles from four to six. The default model
parameters (i.e., the published values listed in Tables 1 and 2)
were used for all the simulations in this figure. The HHSFL
model reproduces the rising phase of the action potential
almost perfectly and it also reproduces the first half of the
falling phase. The velocity of the simulated action potential is
within about 1 m/s of the experimental value, notably closer
than the classic Hodgkin—Huxley model.

In Fig. 1, the experimental (HH) and the HHSFL action
potentials are aligned at the foot of each action potential. At the
foot, the behavior of the membrane potential depends only on
the passive characteristics of the axon and thus is model
independent. Beginning from —65 mV, the rising phases of the
experimental and HHSFL action potentials essentially coin-
cide: the experimental action potential rises to its peak of
+38.9 mV 0.592 ms after the foot, whereas the HHSFL action
potential has a peak of +38.7 mV, which occurs 0.594 ms after
the foot.

The two simulated action potentials then repolarize at dif-
ferent rates. The experimental action potential crosses —65 mV
at 1.3 ms after the peak, reaching its maximum hyperpolariza-
tion of —77 mV at 1.261 ms after the peak. By comparison, the
HHSFL action potential crosses below the —65-mV level 1.62
ms after its peak or some 320 us later than the experimental
action potential, then reaching its trough of —73.5 mV at 1.825
ms after the peak, which is 564 us later than the experimental
action potential trough.

The experimental and HHSFL action potentials also diverge
in their final phases after the troughs: the experimental one
experiences a small and slow second depolarization to —63.4
mV (i.e.,, 1.6 mV above rest) 6.158 ms after the peak and then
returns quickly to rest. The HHSFL potential does not exhibit
this kind of oscillation, but instead has a smooth and overly
slow, asymptotic recovery from the trough.

By comparison to the HHSFL model or to the experimental
data, the action potential produced by the HH model does not
rise as quickly and its peak is about 15 mV lower than the
experimental observation (Hodgkin and Huxley 1952). The
HH action potential is quite similar, however, to the HHSFL
action potential for the first few milliseconds after the peak;
once at its trough, it returns to rest sooner than the HHSFL
model and in this respect better reproduces the experimental
data.

Temperature effects

Recently, Rosenthal and Bezanilla (2000, 2002) measured
the velocities of action potentials as functions of temperature in
the giant axons of Loligo and Sepioidea squids. Figure 2

compares the action potential models to these data. The exper-
imental velocities are averaged over the three Loligo species
Rosenthal and Bezanilla studied, which at any given tempera-
ture and normalized for diameter, differ by at most about 0.1 on
the vertical scale.

The experimentally based curve is approximately linear with
respect to temperature and has a slope of 33.5m'?-s~'-°C™ !,
For a 476-um-diameter axon, the normalized velocities corre-
spond to physical velocities of 17.3 and 21.2 m/s at 12.5 and
18.5°C, respectively.

Importantly, the HHSFL action potential velocities are es-
sentially identical to the experimental velocities above 12°C
and they constitute the better fit above 10°C.

At lower temperatures, particularly below about 8°C, the
HH action potential velocities are closer than the HHSFL
velocities to the experimental values. However, the lower
temperatures at which the HH model gives better fits are not
characteristic of the temperatures at which squid actually live,
which is between about 10 and 20°C (Rosenthal and Bezanilla
2000).

Current fluxes

Figure 3 shows the Na* and K™ currents per unit membrane
surface area as functions of time during an HHSFL action
potential. Both currents are plotted as positive for purposes of
comparison, although it should be remembered that they flow
in opposite directions. The time integral of each current gives
the total amount of Na* and K™ ionic charge (more exactly, for
Fig. 3, charge per unit area) crossing the membrane: this is
equal to the area under each curve on the plot. These integrals
are in turn directly proportional to the metabolic energy con-
sumed because, as discussed in METHODS, the Na™/K™ pump
must subsequently pump all of the ionic charge that crossed the
membrane during the AP back in or out to restore the resting
ionic concentration gradients.

An obvious feature of Fig. 3 is the substantial extent to
which the Na* and K™ currents “overlap.” During much of the
action potential, both currents are significant. Because Na™ and
K™ ions each carry one unit of charge, a portion of the larger
ionic current at a given time is balanced, or “neutralized,” by
the smaller one. Of the ions in the larger current, only those not
neutralized by ions of the smaller, oppositely directed current
flowing have any electrical effect. Thus it is solely this net or
excess ionic charge that influences the membrane potential,
and Fig. 3 is shaded to illustrate this.

The net Na™ flux, which is responsible for the rising phase
of the action potential, occurs first and is the dark gray region
marked “depolarizing” in Fig. 3. The area of the dark gray
region (i.e., its time integral) is the net, unbalanced sodium ion
charge crossing into the membrane during the rising of the
action potential; this area is directly proportional to the meta-
bolic energy cost this depolarizing sodium charge incurs.
Similarly, the net K™ flux, which is the black region marked
“hyperpolarizing” in the figures, is responsible for the falling
phase of the action potential.

The first peak of the HHSFL Na™ current in Fig. 3 occurs
100 us before the peak of the action potential at a magnitude
of 943 wA/cm? per unit axon surface area. The falling Na™
current, at a value of 35 [.LA/sz, reaches equality with the
rising potassium current 50 us after the voltage peak, after
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which it rises to a second peak of 417 wA/cm? at 150 us after
the action potential peak. From this second peak, the Na™
current then declines over a period of about half a millisecond,
approaching its rest value of 4 wA/cm?. The decline is fairly
steady, although there is a noticeable “hump” about halfway
that is probably a slight overestimate of total Na™ flux.

The period from the onset of the voltage-activated Na™
current (slightly after the onset of the action potential) to the
point of equality with the K* efflux is the period of the net
inward, depolarizing Na* flux. In the HHSFL action potential,
the total Na™ influx over this period has a value of 0.108
wC/cm?, which gives a flux per unit axon length of 16 nC/cm
or an energy cost of 4.2 nJ/cm. Very late in the action potential,
there is a very small secondary net Na™ flux, although this is
negligible compared with the other fluxes.

The K™ current has only a single peak, which occurs 225 us
after the action potential peak at a magnitude of 0.621 mA/cm?,
It has a roughly Gaussian shape (SD =~ 300 us), although the
curve, relative to a Gaussian, is slightly compressed on the
front side. The net K™ efflux begins at the equality of the Na™*
and K™ currents and essentially continues for the rest of the
action potential. The net K™ flux has a value of 0.107 p,C/cmz,
which is within 1% of the net Na™ flux. The slight difference
between the net fluxes is, we believe, explained by the fact that
our gating capacitance approximation does not perfectly sim-
ulate the gating current and its contributions to the net Na™ and
K™ fluxes, which in a fully accurate model would be equal.
These contributions are very small in all the models we
studied, however, and they do not significantly affect our
conclusions; the resulting optimization properties (see fol-
lowing text) will apply for both net components. The asso-
ciated energy cost of the net K flux is 4.1 nJ/cm. (Of course
the K™ and Na™ ions are pumped together; thus the costs of
the K™ and Na® fluxes are not to be added. See our
assumptions in the METHODs section regarding the Na™ and
K™ ratios and pumping.)

The currents in the HH action potential are qualitatively
similar to those in the HHSFL model, although the peak of the
K™ current is almost as high as that of the Na* current in the
older model, and significant quantitative error would follow in
later energy calculations if we were to make do with the
original 1952 model.

In terms of energy use, the most costly component in both
models is the neutralized current, shown for the HHSFL model
by the light gray shading in Fig. 3. In this region, the two
currents completely negate each other; that is, the ionic fluxes
have no influence on the action potential because there is no net
movement of charge. Nevertheless, the ions of both species
must be subsequently pumped back to restore their resting
concentrations; thus the neutralized component also incurs an
energy cost.

Of the two models, the HHSFL action potential has—both
relatively and absolutely—the smallest neutralized current
flux; the per length value is 32 nC/cm for each ion or, in energy
units, 8.4 nJ/cm. Thus of the total action potential energy cost
of 12.6 nJ/cm, fully two thirds is associated with charge
movements that do not have any electrical effect. For the HH
model, the percentage of metabolic costs resulting from these
neutralized fluxes is even greater and, we believe, is overesti-
mated.

P. CROTTY, T. SANGREY, AND W. B LEVY

Regardless of the model one prefers, it seems that the action
potential is poorly designed and is wasting precious energy.
However, as we shall speculate in the pISCUSSION, this cost may
be unavoidable and evolvable but has nothing to do with
velocity. Beyond such speculation, we can ask a more quanti-
tative question: Is there any perspective that leads to an explicit
efficiency in the action potential? To move in this direction, we
study two easily evolvable biological parameters: gy,, the
maximum active sodium conductance density, and d, the axon
diameter.

Action potential energy costs

Spike velocity costs energy no matter how it is produced
(Sangrey and Levy 2004); however, some mechanisms for
producing it may be more economical than others. Here we
study reparameterizations of isovelocity action potentials at
18.5 and at 12.5°C as a function of diameter and channel
densities. To maintain the isovelocity constraint, we increase
one parameter and decrease the other to produce new action
potentials with the same velocity. Figure 4, a phase diagram,
shows an isovelocity curve in conductance-diameter parameter
space for the HHSFL model, where the velocity is within 0.01
m/s of the biological value (Hodgkin and Huxley 1952) of 21.2
m/s. Beginning at the /eft and moving to the right, the isove-
locity curve starts where action potentials are reliable and falls
from large-diameter values at low channel densities to a rela-
tively flat region beginning at about 300 mS/cm?, where the
diameter value is about 380 wm. At higher conductances that
are not shown in the figure, the diameter increases again to
offset the substantial gating capacitance. The isovelocity curve
for the HH model has similar features. In sum, such a phase
diagram illustrates the boundary between faster action poten-
tials (above the curve) versus slower action potentials (below
the curve).

Figure 5 shows three of these isovelocity HHSFL action
potentials. The larger-diameter and lower channel density ac-
tion potentials rise more slowly and the peak heights are
smaller. To compare energy costs of these different, but equal-
velocity, action potentials, we quantify the Na™ fluxes.

Both models produce a convex curve with a single minimum
for the energy cost associated with the action potential wave-
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FIG. 4. Isovelocity curve (21.2 m/s) of the HHSFL model at 18.5°C. This
phase diagram illustrates the trade-off between gy, and diameter that produces
a constant velocity of 21.2 m/s. Proportional variation of g and g, accompa-
nies variation in gy,. Points on the isovelocity curve, which must be numer-
ically computed, are all within 0.01 m/s (0.25%) of the experimental velocity
and are in 10 mS/cm?.
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FIG. 5. Three different HHSFL action potentials on the 21.2 m/s isoveloc-
ity curve of Fig. 4. Solid curve indicates the action potential at the optimum of
Fig. 6; a low-conductance (gy, = 93 mS/cm? dashed curve) and a high-
conductance (gy, = 350 mS/cm?, dash—dotted curve) action potential are also
shown. Both greater amplitude and faster rise seem necessary when axon
diameter is smaller.

front. For the HH and HHSFL models, these minima are near
the measured values of conductance and diameter. Table 3 lists
these minima and Fig. 6 shows the central result of this study.

The depolarization energies (solid symbols) and maximum
membrane capacitances (open symbols) minimize near the
biological values of ionic conductance and axon diameter and
are approximately linearly related. The depolarization energy
of the HHSFL model (Fig. 6, circles) has a minimum of 3.8
nJ/cm at gy, = 170 mS/cm?” and d = 407 wm, but the precision
of the minimum is tempered by the relative flatness of this
curve between gy, = 140 mS/cm?, d = 424 um and gy, = 220
mS/cm?, d = 389 um.

The explanation for this minimum is related to the capaci-
tance. The maximum HHSFL membrane capacitance per unit
length, calculated according to Egs. 13 and 14 (with m = 0,
which is its approximate value at action potential initiation), is
very similar in shape to the depolarization energy curve. It also
has a relatively flat minimum, with the lowest point at gy, =
180 mS/cm? and d = 403 um (although the variation from this
point to gy, = 200 mS/cm? is negligible). Because the depo-
larizing energy is directly proportional to the current going on
to the membrane capacitance, this result reflects the fact that
the depolarizing current during an action potential is used to
charge the membrane capacitors. The HH isovelocity curve
and its minimum are similar, although the diameters are larger
than those for the HHSFL action potential.

Figure 6 also shows the depolarization energy and mem-
brane capacitance curves for parametric variations of the 1952
Hodgkin—-Huxley model (boxes). (As in the HHSFL curves, the
low-conductance cutoff arises from the increasing difficulty of
generating action potentials in this region.) Once again, the two
curves have roughly the same shape, although they rise more
steeply at high conductances than in the HHSFL model. The
HH depolarization energy minimum of 5 nJ/cm occurs when
Zna = 160 mS/cm? and d = 550 wm; as a function of the same

TABLE 3. Depolarizing Na™/minima
Temperature N Metabolic
Model (Isovelocity) °C mS/cm? d, pm Cost, nJ/cm
HHSFL (2004) (21.2 m/s) 18.5 170 407 3.8
HHSFL (2004) (17.3 m/s) 12.5 160 410 3.8
HH (1952) (21.2 m/s) 18.5 160 550 5.0
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FIG. 6. Minimum of the Na* depolarizing flux occurs near the biological
conductance densities and near the minimum total capacitance. Minimization
itself is similar for the HH and HHSFL models but the flux values are
noticeably different, with the HH model producing a 30% overestimate of the
depolarizing flux costs. Total capacitance and wavefront energetic costs are
convex functions at isovelocity. Metabolic energy cost per unit length incurred
by the net Na* current (solid symbols, left axis) and the total membrane
capacitance per unit length (open symbols, right axis) are shown for the HH
model (boxes) and HHSFL model (circles) at 18.5°C. All quantities are
computed along the 21.2 m/s isovelocity curve for each model. Parametric
dependency of the isovelocity curve for the HHSFL model is shown in Fig. 4;
the isovelocity curve for the HH model has a similar shape. Similar minimi-
zations of conductance density and capacitance, occurring near biological
parameter values, are sensible because the membrane capacitance is what
determines the energy that goes into generating the wavefront. Low-conduc-
tance cutoff of the curves is a result of the difficulty of generating action
potentials in this region (it was possible to generate action potentials slightly
further into this range for the HHSFL model). Overall energy normalization is
derived as described in METHODS.

variables, the capacitance minimum occurs when gy, = 180
mS/cm” and d = 538 wum. The gy, for minimal capacitance is
the same as it is in the HHSFL axon, and the optimal gy, for
energy is only a few percent lower.

These optima are not only relatively independent of the
model (i.e., HH or HHSFL) used, but they are also independent
of the velocity used for the isovelocity curve and of the axon
temperature. The HHSFL depolarization wavefront energy
minima vary only by about 10 mS/cm? between the 15 and 25
m/s isovelocity curves, as do the capacitance minima (the small
range of variation and the relative flatness around the minima
make it difficult to identify the extent to which the variations in
the depolarization and capacitance minima are correlated). At
12.5°C on the 17.3 m/s isovelocity curve, the HHSFL depo-
larization energy and capacitance minima occur when gy, =
160 mS/cm? and d = 410 wm. Thus at this lower end of the
temperature range where squid generally live, the correspon-
dence with the measured channel density is better. In this
regard, the Hodgkin and Huxley (1952) value of 120 mS/cm?
is of unknown accuracy and is arguably less precise than the
Conti et al. (1975) value of 130 mS/cm?. Indeed, there are
suggestions that it could be even higher: Clay (2005) needed
180 mS/cm? to fit his sodium channel model to experimental
data, which is from a space-clamped axon at low temperatures
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(5-8°C) and is arguably more precise than space-clamped
action potential data during the rising phase at higher temper-
atures. In sum, these optimal values for gy, are within currently
postulated ranges.

In addition to gy,  the measured membrane and gating
capacitances are subject to error. Therefore we separately
varied the intrinsic membrane capacitance between 0.88 and
0.9 uF/cm? and the gating capacitance between 0.13 and 0.15
wF/cm?, which is roughly the range of experimental uncer-
tainty in their values. We found that changing the intrinsic
membrane capacitance had a relatively small effect. The gating
capacitance also had a small effect on the capacitance minima,
but a larger one on the energy minima, reducing the optimal
sodium conductance densities by 20—40 mS/cm? as it was
increased. That is, using 0.15 pwF/cm?, the value reported by
Fernandez et al. (1982), implies the most energy efficient
velocity when gy, is 130 mS/cm?®. Thus there is little justifi-
cation to go any further in our calculations until more precise
measurements of both the gating capacitance and the sodium
conductance density are produced.

The energy minima in Fig. 6 define a “wavefront-optimized”
action potential for these models. Moreover, and as would be
expected from Fig. 1, the wavefront-optimized action potential
looks much the same as the default HHSFL action potential.
The total energy cost of this optimized action potential is 13.4
nJ/cm, which is slightly higher than the default HHSFL model;
however, the depolarization energy is about 10% lower.

The y-axis in Fig. 6 is expanded to make the energy mini-
mizations more evident. Although the differences between the
minimum energies and nearby points on the isovelocity curves
are small with respect to the overall energy scale, we hypoth-
esize that they could have been a significant factor in the
evolution of the squid giant axon.

In contrast to the depolarization energy, we did not observe
local minima in either the neutralized or total Na™ flux ener-
gies, and this is true for both of the models studied. For
example, in the HHSFL model, these energies increase fairly
uniformly with channel density for the 21.2 m/s isovelocity
curve, with a slope of about 35 pJ - cm - mS™ ..

We also investigated the effects of varying only the leak
conductance g;, which as noted we divided into separate
voltage-independent sodium and potassium conductances. In-
creasing the leak conductance while maintaining the resting
potential decreases action potential velocity. The relationship,
up to about 17 times the experimental g, value of 0.3 mS/cm?,
is very nearly linear: increasing g, by 1 mS/cm? decreases the
action potential velocity by 1.16 m/s. By contrast, the ion
pumping energy associated with the leak channel increases
linearly with g;. Thus for reasons of both energetic cost and
velocity, the leak should be as small as possible, although
problems arise from the perspective of information transmis-
sion when it is <0.3 mS/cm?. Specifically, the time to return to
rest after an action potential lengthens significantly. Indeed,
with a leak conductance density value of 0.1 mS/cm?, the
action potential does not return to rest in the time of the
simulation. Thus further analysis of the role of g, is contingent
on a better understanding of the information-theoretic proper-
ties of the axon. As noted previously, this is a large area of
investigation requiring significant study in its own right.

P. CROTTY, T. SANGREY, AND W. B LEVY

DISCUSSION

There are two primary findings here. First, the metabolic
cost of the net initial Na* flux, or depolarization energy,
minimizes near the biological values of ionic conductance
density and axon diameter when the action potential is con-
strained to be at its experimentally observed value of 21.2 m/s.
When other velocity values are used for this isovelocity con-
straint, the optimal axon diameter changes, but the optimal
conductance densities do not. Thus so long as a constant
velocity is used, the optimization of the conductance densities
with respect to depolarization energy is independent of the
chosen velocity.

The second important finding is that the largest component
of the ion fluxes in the models studied is the neutralized flux,
which incurs a metabolic energy cost just like the other
components but has no effect on the membrane potential. The
neutralized flux, in contrast to the depolarizing flux, does not
show a minimum when the isovelocity constraint is imposed.
Although Attwell and Laughlin (2001) correctly recognized the
existence of overlapping currents, metabolic energy calcula-
tions that estimate the Na™* influx during an action potential
solely as the amount of charge placed on the membrane
capacitor (i.e., the depolarizing flux) will be neglecting the
majority of the metabolic cost. Even when the Na™ influx
estimated by depolarization energy is then multiplied by a
constant factor to account for the neutralized Na* and K*
currents, the correct functional relationship between the energy
components and the diameter and conductance densities is not
obtained.

Our division of the currents into the depolarizing, hyperpo-
larizing, and neutralized components, although artificial, is
useful because it is easy, from a simulation perspective, to
change the neutralized current without significantly affecting
the net Na™ and K™ currents. This can be done by varying the
K™ conductance delay time, with longer delays producing less
neutralized current (Sangrey et al. 2004 and unpublished sim-
ulations). In nature, the K* conductance delay appears to be an
evolvable property, with different types of K channels exhib-
iting a wide range of activation times (Coetzee et al. 1999).
Given the diversity of K™ channels, it is plausible that the K*
conductance delay, like conductance density and axon diame-
ter, is a parameter that evolution has optimized, although we
believe that it relates to, and is in part constrained by, infor-
mation transmission rates as well as energy. This is currently
being investigated in detail.

The first result shows that Hodgkin (1975) and Adrian
(1975) were on the right track in hypothesizing that the sodium
channel gating current, which manifests as an additional, time-
varying capacitance, plays an important role in optimizing the
properties of the axon. What they were incorrect about was the
quantity being optimized; specifically, they thought the veloc-
ity of the action potential, per se, was being optimized. The
more accurate calculations of Sangrey et al. (2004) showed that
this conjecture is unsatisfactory. The results described here
suggest that it is, instead, the metabolic energy cost of the
action potential velocity for which the conductance densities
are optimized. That is, the combination of the sodium conduc-
tance density and the axon diameter lead to a minimization of
the total membrane capacitance, and this total capacitance is
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the primary property determining both the energy cost of the
wavefront and the action potential velocity.

The models studied here, as well as by Sangrey et al. and
Hodgkin and Adrian, are all of the squid giant axon. It is
reasonable to wonder whether such findings can be generalized
to the unmyelinated axons in mammalian neocortex, which
dominate energy consumption by the brain (Attwell and
Laughlin 2001). These axons operate at higher temperatures
than the squid giant axon, can have different potassium ion
channel types, are many times smaller, and have different
action potential velocities.

To date, there have been no published direct measurements
of the ion channel densities in unmyelinated neocortical axons,
which have diameters several hundred times smaller than that
of the squid giant axon and so are extremely difficult to voltage
clamp. Two other invertebrate unmyelinated axons that have
been investigated are the giant axons of Myxicola and crayfish.
The sodium conductance density in Myxicola axons has been
reported as about 46 mS/cm? (Bullock and Schauf 1978),
which is well below our predicted optimal Na™ conductance
density of 170 mS/cm?. However, other considerations make
the relevance of this result to our study questionable. Inacti-
vation in Myxicola Na™ channels appears to be much more
closely coupled with activation than it is in squid Na* chan-
nels, making the Hodgkin—Huxley assumption of independent
activation and inactivation processes (which also is part of our
simulations) inaccurate for this particular channel (Bell and
Cook 1979; Goldman 1975). We have also been unable to find
experimental measurements of propagating action potential
velocities in Myxicola giant axons. In crayfish giant axons, the
sodium channel density was inferred from gating current mea-
surements (Starkus et al. 1981). Under certain assumptions
about the conductance and gating charge per sodium channel
(Hille 2001), the estimated crayfish gy, is 1.2 to 1.7 times the
squid axon value, which is within the range of our optimum.
However, further experimental work on sodium conductance
densities clearly is necessary for our conjecture to be decisively
tested.

Because the total membrane capacitance is what determines
the depolarization energy, the effects of these factors on the
capacitance determine how generalizable our results are. For
the reasons discussed in the following text, we believe that
such a minimization is likely to occur in mammalian neocor-
tical axons as well, provided that sodium activation and inac-
tivation are not too strongly coupled (as in Myxicola).

The effects of increasing temperature are straightforward.
The intrinsic (i.e., nongating) membrane capacitance, to a first
approximation, is independent of temperature. The second-
order error arises from differences in the distance between the
polarized phosphate moieties of the inner and outer membrane
leaves, which change only slightly with temperature.

The gating capacitance is determined by the motions of the
S4 segments and the activation energy of the Na™ channel. As
it happens, molecular biology has confirmed that the S4 seg-
ments of the Na* channels are remarkably similar across
species; thus the activation properties of the squid Na™ channel
differ little from those of any other Na™ channel in axons that
transmit information. This is likely explained by the fact that
the S4 segment of the four subunits making up the membrane-
spanning portion of the Na™ channel protein have been highly
conserved by evolution with respect to net moiety charge and

1245

function. Moreover, as discussed in RESULTS, the capacitance
minimum appears to be relatively independent of temperature
in the 10-20°C range. Assuming that this is also true at higher
temperatures and that effects such as charge separation, charge
shielding, and potential focusing do not significantly alter the
capacitance, we expect that the gating capacitance per Na™
channel will be essentially the same in unmyelinated mamma-
lian axons as it is in the squid giant axon.

The velocity independence of the conductance density opti-
mization leads us to expect that, despite the different action
potential velocities and smaller diameters of the mammalian
neocortical axons, the sodium conductance densities will opti-
mize around the same value. In this respect, the value of about
170 mS/cm?® for g, may prove a universal constant for
unmyelinated, signaling axons.

The isovelocity constraint used to obtain this optimization is
itself a simplifying approach to an apparently intractable prob-
lem: What is the value of time? We originally tried to explicitly
optimize time, but too many complexities resulted, including
examples in which the value of time varied in a nonmonotonic
fashion. For example, in muscular coordination, delivering
information too soon can be just as much of a problem as
delivering it too late. We concluded that if any immediate
progress is to be made, assumptions should be adopted that
avoid, or at least postpone, the problem of valuing time. As a
result, we presume that evolution and development have pro-
duced the optimal axonal time delay in any given situation by
producing the appropriate action potential velocity. In the
event that the optimal time delay changes during development,
the growing organism can adapt by changing the axonal diam-
eter alone, not the sodium channel density.

Because of their large size, the neutralized currents, our
second important result, demand attention and can be seen as a
significant problem in their own right. The metabolic cost of
these currents would, for instance, have a very substantial
effect on the energy-optimal information rate as calculated by
Levy and Baxter (1996). Although substantial work will be
required to understand the relationship between the neutralized
currents, the ion channel properties that determine them, and
the information rates that result, our preliminary observations
lead us to conjecture that the velocity of the action potential
and the information rate can, to a large degree, be decoupled in
an evolutionary and developmental sense and can thus be
separately optimized. The large diversity of K" channels
across species and cell types suggests that these may constitute
the primary mechanism used by nature to determine informa-
tion rates: in very slowly repolarizing pain fibers, for example,
it has been argued that only a leak K* conductance is present,
whereas in the owl auditory system Kv3.1 channels are highly
expressed and seem to be responsible for the observed high-
frequency firing (Parameshwaran et al. 2001). The different
K™ channels will lead to variation in the Na™-K™ current
overlap and thus to differences in the costs of the neutralized
currents. Future work will attempt to quantify these costs and
discover any optimizations.

Finally, we offer a challenge to the molecular biophysicists.
Combining the generality of our results with the highly con-
served nature of the Na™ channel in axons (Goldin 2002;
Plummer and Meisler 1999) gives an explanation of the re-
markable generality of the Hodgkin—Huxley results. Even
without the results reported here, one could have presumed,
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particularly for the S4 region of the Na™ channels, which is the
presumptive expression of the gating channels, that there is a
molecular level optimization. The results here support the idea
that it is reasonable to seek a quantifiable optimization of the
charges on the S4 subunit played off against other aspects of
Na® channel function that relate to the action potential
velocity.
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