
Genomic imprinting in mammals was discovered in the
early 1980s as a result of two types of mouse experi-
ment. Nuclear transplantation was used to make
embryos that had only one of the two sets of parental
chromosomes (uniparental embryos) and other sophis-
ticated genetic techniques were used to make embryos
that inherited specific chromosomes from one parent
only (uniparental disomy). In both cases, the surprising
finding was that mammalian genes could function dif-
ferently depending on whether they came from the
mother or the father1–6. The early 1990s then saw the
discovery of the first imprinted genes, which were
indeed expressed differently on maternal and paternal
chromosomes7–9, and the realization that imprinting
had a substantial effect on human genetic disease10,11. It
was also found that DNA methylation was a key molec-
ular mechanism of imprinting; methylation marks the
imprinted genes differently in egg and sperm, and
inheritance of these epigenetic marks leads to differen-
tial gene expression12–17.

Substantial progress has been made in our under-
standing of imprinting in the past few years: important
phenotypic effects of imprinted genes have been discov-
ered, particularly in the control of fetal growth and
behaviour after birth; a number of cis-acting sequences
are being defined that are important for the control of
imprinted gene expression; the evolutionary under-

standing of imprinting and its likely biological purposes
is increasing18,19; and the study of imprinting is provid-
ing general insights into the importance of epigenetic
mechanisms in development.

Here we review these recent developments. We
begin with a brief summary of imprinted genes, then
look at what is known about establishment and main-
tenance of imprints, and the important role of the
germ line. We review the various ‘reading mechanisms’
that convert the imprint into differential gene expres-
sion. We discuss the evolution of imprinting, and its
main phenotypic effects, in healthy and diseased states.
Finally, we consider the effect of imprinting on impor-
tant general issues in epigenetics, such as cloning and
genome reprogramming.

Imprinted genes
Using several approaches (BOX 1), around 45 imprinted
genes have so far been identified in the mouse (see the
Harwell imprinting web site for up-to-date statistics on
imprinted gene numbers and characteristics). Some of
these genes have been tested in other mammals and for
many (but not all), the imprinting status is conserved in
humans, in some other EUTHERIAN mammals and in a
marsupial20–22 (but only a few genes have been tested).
What are the genetic and epigenetic features that char-
acterize imprinted genes?
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genes, so these features cannot be used in a systematic
search for new imprinted genes.

The great majority of imprinted genes examined
so far show differences in DNA methylation between
the parental alleles (FIG. 2), but the differentially
methylated regions (DMRs) can have different prop-
erties. For example, the differential DNA methylation
in some DMRs is introduced in parental germ cells
and maintained in all developmental stages and 
tissues25–28. Others show considerable changes in
methylation during development and acquire tissue-
specific methylation patterns29, which can be associ-
ated with tissue-specific imprinted expression. Some
DMRs are methylated in the inactive gene copy,
whereas others are methylated in the active one.
Imprinted genes can also differ with respect to bulk
chromatin structure, as well as with respect to more
specific modifications, such as histone acetylation30–36

(R. Feil and R. Gregory, personal communication).
Two other epigenetic features have been discovered

that might reflect the larger-scale organization of
imprinted genes into clusters or domains. First, it has
been shown that the DNA in imprinted regions repli-
cates asynchronously in the S phase of the cell cycle;
for most imprinted regions, the paternal copy repli-
cates earlier than the maternal one37,38. Because mater-
nally and paternally expressed genes are interspersed
in some regions, this is not likely to be a gene-specific
property and its molecular basis is not understood.
Second, different frequencies of meiotic recombina-
tion are found in or near to imprinted clusters, with
an elevated recombination rate during male meio-
sis39,40. How these regional epigenetic features are
linked with methylation and chromatin structure is
not known.

The precise nature of the primary imprint and its
fate during development is still a mystery, but it is likely
that all the above epigenetic modifications are relevant
to imprinting. However, at present there is no direct evi-
dence that histone or other chromatin modifications
have roles in imprinting that are independent of DNA
methylation. Indeed, the importance of DNA methyla-
tion, at least in the maintenance of imprints, has been
clearly established genetically17. For the most part, we
therefore equate ‘imprints’ with ‘methylation imprints’
or ‘differential methylation’ to simplify the discussion.
Imprinted expression is then a result of the ‘reading’ of
the imprint in somatic tissues.

The life cycle of imprints
Genomic imprints change in characteristic ways dur-
ing the life cycle of the organism (FIG. 3). Imprints are
‘established’ during the development of germ cells
into sperm or eggs. After fertilization, they are ‘main-
tained’ as chromosomes duplicate and segregate in the
developing organism. In the germ cells of the new
organism, imprints are ‘erased’ at an early stage. This
is followed by establishment again at a later stage of
germ-cell development, thus completing the imprint-
ing cycle. In somatic cells, imprints are maintained
and are modified during development. For example,

One remarkable and characteristic feature of
imprinted genes is that they are rarely found on their
own: around 80% are physically linked in clusters with
other imprinted genes (FIG. 1). The clustered organiza-
tion of imprinted genes is thought to reflect coordinated
regulation of the genes in a chromosomal domain. By
analogy to X-chromosome inactivation in which an X-
inactivation centre controls the inactivation of the entire
chromosome, imprinting centres or imprinting control
elements (ICs) have been discovered in some clusters.
These ICs are needed for the regional control of
imprinting or imprinted expression.

No common features are recognizable when com-
paring the protein sequences encoded by imprinted
genes, although there are functional relationships
between some proteins with roles in fetal growth and
development. Furthermore, two general features of the
DNA sequence environment of imprinted genes have
been noted. First, they are unusually rich in CPG

ISLANDS23: around 88% of mouse imprinted genes have
CpG islands, compared with the average figure of 47%.
Second, clustered, direct repeats are common near to or
within the CpG islands. The repeats might or might
not belong to one of the known repeat families and
they have been proposed to be involved in conferring
or maintaining differential methylation24. Neither the
repeats nor the CpG islands are unique to imprinted

Box 1 | Finding imprinted genes

Imprinted genes have been identified in various ways: by chance (usually knockouts
that then showed parent-specific expression); based on position (next to other
imprinted genes or in a chromosome region associated with an imprinting phenotype);
or by using two types of systematic screen. In both screens, embryos are used that have
a duplication of one of the parental chromosomes or genomes, together with embryos
that have the opposite parental chromosome duplicated. This results in gene
expression or methylation in one type of embryo but not the other if the gene is
imprinted. The first screen is based on subtraction of cDNAs between such uniparental
embryos115. The second is based on methylation differences. One approach using
restriction landmark genome scanning (by two-dimensional electrophoresis of DNA)
has estimated that there are roughly 100 imprinted genes in the mouse genome116.
Another methylation screen uses representational difference analysis117(RDA). The
estimate of 100 imprinted genes in the genome is likely to be an underestimate but, in
any event, imprinted genes constitute a minority of all the genes in the genome.
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known. The evidence so far indicates that all methyla-
tion imprints probably become erased at this
stage41,42,44,45. This is important because it implies that
imprints inherited from a parent with the same sex as
the developing embryo are erased and are unlikely to
persist unchanged.

There is preliminary evidence that methylation
imprints are still present and may be functionally
intact before the erasure stage46. After erasure, func-
tional evidence from nuclear transplantation experi-
ments with both male and female germ-cell nuclei
indicates that imprints  have indeed been substantially
altered47,48; expression of imprinted genes in these
reconstituted embryos reflects their lack of methyla-
tion (for example, H19 is expressed and Igf2 is not
expressed). In some instances, this has led to interest-

methylation may spread from an IC into the promot-
er. The imprints are eventually read, resulting in par-
ent-specific gene expression.

Erasure. The germ line has the role of resetting
imprints such that in mature gametes they reflect the
sex of that germ line. For most imprints, current evi-
dence indicates that there might be two stages for this
resetting process — the first one is erasure. This is fol-
lowed later by establishment. During erasure, there is
marked and apparently genome-wide demethylation in
germ cells, which is completed by embryonic day 12–13
(E12–13) in both sexes41,42 (FIG. 4). Indeed, germ cells
cultured from these stages (EG cells) have a dominant
demethylating activity when fused with somatic cells43;
whether this demethylation is active or passive is not
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Figure 1 | Imprinting clusters in human and mouse genomes. Human chromosomes a | 11p15.5 and b | 15q11–-q13 and
orthologous clusters on a | mouse chromosome distal 7 and b | central 7. The relative location and transcriptional orientation 
of genes are indicated by arrows. The imprinting status is shown in red (maternally expressed), blue (paternally expressed),
black (biallelic expression) and green (imprinted expression not known or not yet precisely defined). Question marks (?) 
indicate that the orthologues of the mouse or human genes, respectively, are not known. The drawings are not to scale. The
Beckwith–Wiedemann (BWS) cluster (a) comprises about 1 Mb, and the Prader–Willi syndrome/Angelman syndrome (PWS/AS)
cluster (b) roughly 2 Mb. Imprinting centres (IC) are marked by circles coloured according to the parental origin of the imprint.
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Establishment. After erasure, de novo methylation begins
in both germ lines at late fetal stages, and continues after
birth41,50 (FIGS 3,4). Oocytes are in meiotic arrest and
methylation occurs during their growth47, whereas dur-
ing spermatogenesis, methylation occurs before meio-
sis44,45. Nuclear transplantation experiments indicate that
this DNA methylation coincides roughly with the acqui-
sition of functional imprints both for autosomal genes
and for X chromosome imprinting, at least in
oocytes47,51. It is not yet clear which enzymes are respon-
sible for de novo methylation in germ cells (BOX 2).
Dnmt1 (DNA methyltransferase 1) and its germ-cell-
specific isoforms are candidates52, but it is also possible
that Dnmt3a or Dnmt3b, which are required for de novo
methylation in postimplantation embryos53, carry out
this function in germ cells. It is also unclear how Dnmts
specifically target DMRs in either female or male germ
cells. DMRs in imprinted genes might be specifically tar-
geted for de novo methylation in one of the germ lines. It
is equally possible that there is general de novo methyla-
tion in both germ lines and that DMRs are specifically
protected from methylation in one germ line but not in
the other. In either case, this would require factors that
recognize DMRs and that are germline-specific. The
existence of such factors is supported by the observation
that deficiency of Dnmt1 causes loss of imprints post-
zygotically, and the imprints cannot be restored by
Dnmt1, Dnmt3a or Dnmt3b54.

DMRs are generally CpG rich and often fulfil the
criteria for CpG islands (see below). However, autoso-
mal CpG islands do not become methylated de novo.
So it is likely that imprinted DMRs are genetically or
epigenetically modified so that de novo methylation
can occur. Genetic modification has been previously
postulated to be due to stretches of unique direct
repeats that often flank DMRs24. More recent work has
shown that the repeats are not necessarily unique to
DMRs but that clusters of known repeat families, such

ing new insights about the role of methylation
imprints (for example, Cdkn1c requires a maternal
methylation imprint to be expressed; see below). In
addition to methylation imprints, differential replica-
tion of DNA is also apparently erased in both germ
lines; in the female germ line this coincides with
demethylation, but in the male germline it occurs
substantially later, after birth49.

Box 2 | DNA methylation and demethylation

DNA methylation in mammals occurs in the
dinucleotide CpG. Methyl groups can 
be introduced into unmethylated DNA by the
de novo methylation enzymes Dnmt3a and
Dnmt3b (and perhaps others). When DNA is
replicated, the methyl group on the template
strand is recognized and a new one is
introduced on the opposite (daughter) strand
by the enzyme Dnmt1, which can be associated
with the replication machinery. In the presence
of Dnmt1, hemi-methylated DNA becomes
fully methylated and so DNA methylation
patterns tend to be maintained (maintenance
methylation). Demethylation can occur in the
absence of Dnmt1 with continued rounds of
DNA replication (passive demethylation), as
well as actively (without DNA replication).
The nature of demethylases is unknown.
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Figure 2 | Characteristics of imprinted genes. The figure
shows a schematic pair of imprinted alleles. Hallmarks of
imprinted genes such as CpG islands and repeats (arrows)
are indicated. The enlarged region below the chromosomes
highlights the allele-specific epigenetic changes, such as
nucleosomal condensation through deacetylation, and
methylation (allele 1) and opening of the chromatin by
acetylation and demethylation (allele 2). The transcriptional
competence of allele 2 is indicated by the binding of a
transcription complex.
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the parental germ cells, these patterns are simply
maintained after fertilization by Dnmt1. The prob-
lem is that there is genome-wide demethylation after
fertilization and a wave of de novo methylation after
implantation58, both of which have to be resisted by
DMRs (FIG. 4).

How is demethylation resisted by DMRs? First,
demethylation occurs both by active and by passive
mechanisms (BOX 2). Whereas the paternal genome is
largely demethylated by an active mechanism only
hours after fertilization when the parental genomes
are still separate in the pronuclei59,60, the maternal
genome is largely demethylated passively by failure to
maintain methylation during DNA replication61,62.
The maternal genome presumably needs a protection
mechanism against active demethylation at fertiliza-
tion; because demethylation might be triggered by
chromatin remodelling of the sperm genome, the
maternal genome might be protected by its nucleoso-
mal chromatin structure. Thus it would be interest-
ing to know whether paternally methylated DMRs
adopt a specialized chromatin structure in the sperm
that does not undergo substantial remodelling after
fertilization. Passive demethylation is thought to
come about by exclusion of Dnmt1 from the nucleus
during cleavage divisions63. So it remains a mystery
how methylation in DMRs is maintained during
cleavage and which enzymes might be involved. The
different requirements that the parental genomes
have for their protection from demethylation might
explain why there seem to be more maternal
germline methylation imprints than paternal ones
(W.R. and J.W., unpublished).

Resistance to de novo methylation after implanta-
tion might be conferred by the specialized chromatin
features of unmethylated alleles, or their earlier repli-
cation during S phase. Indeed, CpG islands on the
inactive X chromosome become methylated de novo
owing to the action of Dnmt3a/Dnmt3b after
implantation, when the inactive chromosome
becomes late-replicating64.

Reading mechanisms
Once the imprints are introduced in the parental
germlines, maintained in the early embryo and fully
matured during differentiation, they need to be read.
Reading means the conversion of methylation or chro-
matin imprints into differential gene expression.
Differential gene expression is thought to be largely at
the level of transcription, although there might be the
possibility of post-transcriptional mechanisms as well65.

A general feature of the reading mechanisms of
imprinted genes is that they seem to be complex. The
complexity is likely to arise from the fact that many
imprinted genes are clustered, and that clustering involves
interactions between neighbouring genes and their con-
trol sequences. The clustering and interactions between
neighbouring genes might be explained by extension of
the conflict theory to mechanistic interactions between
genes that oppose each other’s function66. So far, imprint-
ed genes have been shown to be regulated by epigenetic

as LINE-1 ELEMENTS, can also be found next to DMRs55.
Intriguingly, in various organisms there are epigenetic-
targeting systems including methylation, that lead to
heterochromatization and inactivation of tandemly
repeated gene arrays56. Local heterochromatization
could therefore lead to methylation of nearby CpG-
rich DMRs.

CpG-rich DMRs could also be modified epigeneti-
cally so that they can become methylated. A hallmark of
imprinting clusters is their different timing of DNA
replication in S phase; recent work indicates that this
property might be already acquired in the germ cells
and, at least in oocytes, might precede acquisition of the
methylation imprint 49; it is thus possible that different
timing of replication results in different accessibility of
DNA to the de novo or maintenance methylation
machinery. Indeed, regulation of methyltransferases can
be cell-cycle specific57.

It is also possible that some imprints are established
not in the germline, but rather by immediate demethy-
lation or de novo methylation, after fertilization, of only
one of the alleles. Parent-specific demethylation or de
novo methylation immediately after fertilization has
indeed been documented (see below).

Maintenance. It might be imagined that maintenance
of methylation imprints after fertilization is trivial
and that, once DMRs are differentially methylated in
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Figure 3 | Life cycle of methylation imprints. Erasure, establishment and maintenance 
of methylation imprints at imprinting centres during germ cell and embryonic development.
Imprinting control elements 1 (IC1) and IC2 are shown as examples (see chromosome 11p15.5
in FIG. 1). Grey indicates modification and white indicates no modification at the corresponding
alleles. Parental chromosomes are marked according to their sex in blue (male) or red (female).
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Kcnq1ot1, respectively)70–72. Both of these antisense
RNAs originate in introns of the sense genes and are co-
linear with DNA. The Air gene overlaps the promoter of
the sense gene70, but this is not the case for Kcnq1ot1
(REF. 55). The promoter regions of the antisense tran-
scripts are CpG-rich and are methylated on the inactive
maternal allele; for Air and Kcnq1ot1, these CpG islands
or sequences near them carry the primary germline
imprint25,55. Deletions of both of these DMRs leads to
loss of expression of the antisense transcripts and loss of
imprinting of the sense genes73,74 (Igf2r or KCNQ1). It is
not known whether expression of the antisense tran-
script itself interferes with transcription of the sense
gene. The antisense transcript could lead to alterations
of chromatin structure and DNA methylation, to pro-
moter exclusion or work by RNA-directed mechanisms,
such as RNA interference. Alternatively, it is possible
that the antisense transcripts have no role by them-
selves, but simply reflect the activity of other regulatory
elements such as silencers or boundaries (see below).
Indeed, deletion of the KCNQ1OT1 DMR leads to loss
of imprinted repression not only of KCNQ1, but also of
CDKN1C, which does not overlap with the antisense
transcript74. It is important to note that this deletion was
made in somatic cells, so that any effects of germline
transmission could not be assessed. Finally, in a marsu-
pial, the opossum, the Igf2r gene is imprinted without
having a differentially methylated antisense promoter or
an antisense transcript22. This may also indicate that
imprinting mechanisms can evolve rapidly and that the
primitive (or primordial) imprinting mechanism of
Igf2r worked differently from the one now seen in the
mouse (W.R. and J.W., unpublished).

Boundaries. The observation that endoderm-specific
enhancers can be shared between the paternally
expressed Igf2 and the maternally expressed H19 (a non-
coding RNA) genes suggested the possibility that chro-
matin boundaries might be involved (FIG. 5c). The region
upstream of H19 carries the paternal germline methyla-
tion imprint; when this was deleted, the maternal Igf2
gene was expressed, albeit not at its full level in all tis-
sues67. This led to the model that the H19 DMR is a chro-
matin boundary that is ‘closed’ when unmethylated, and
‘open’ when methylated. A specific chromatin structure
with several DNaseI hypersensitive sites exists on the
unmethylated maternal allele33,34, and the previously
characterized repressor factor CTCF (CCCTC-binding
factor), which is important for the function of a chick
globin boundary element, binds to this maternal allele
but not to the paternal methylated one75–78. This region
has a boundary function in transfection assays and dele-
tion of CTCF-binding motifs abolishes this function75–78.
It is not known how CTCF and perhaps other factors
prevent the H19 endoderm enhancers from activating
the Igf2 promoters. However, it is remarkable that the
maternal Igf2 promoters are nevertheless DNaseI hyper-
sensitive79, indicating factor binding despite transcrip-
tional silence. Enhancers for lineages other than endo-
derm have so far not been discovered, although there are
candidates for muscle-specific enhancers80,81.

modifications of promoter sequences, of SILENCERS, of
BOUNDARY ELEMENTS, and possibly of overlapping antisense
transcripts. So imprinted genes use the normal arsenal of
transcriptional control mechanisms, but some of these
are controlled by differential epigenetic modifications on
parental chromosomes.

Promoter methylation. A fairly common way to achieve
transcriptional silencing of one allele is by promoter
methylation (FIG. 5a). Here, the promoter region, which
is often CpG rich, is heavily methylated on one allele.
Note that the primary germline imprint region (the
region in which epigenetic differences occur between
egg and sperm) is often distinct from the promoter, but
is necessary for promoter methylation during develop-
ment67. In the cases tested, DNASEI HYPERSENSITIVE SITES are
absent from a paternally methylated promoter30,31 and a
maternally methylated promoter32. The details of how
methylated promoters are transcriptionally repressed
are not known yet, but it is clear that several methyl-
CpG-binding proteins (MBDs), as well as the mainte-
nance methyltransferase itself (Dnmt1), form a com-
plex with histone deacetylases. This presumably leads to
a closed chromatin conformation in which transcrip-
tion factors cannot gain access to the promoter68.
Indeed, differences in specific patterns of histone acety-
lation consistent with this model have been observed
between alleles of imprinted genes (R. Feil and R.
Gregory, personal communication).

Antisense transcripts. A considerable proportion of
imprinted genes are associated with antisense tran-
scripts (at present 15%; FIG. 5b). Surprisingly, all anti-
sense transcripts discovered so far in imprinted genes
are themselves imprinted and are paternally expressed
(with the exception of Tsix, the antisense transcript to
Xist69), regardless of whether they occur in sense genes
that are paternally or maternally expressed (W.R. and
J.W., unpublished). Most antisense transcripts are non-
coding and may have regulatory functions. Among the
best studied are those overlapping the maternally
expressed Igf2r and Kcnq1 genes (called Air and
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Figure 4 | Methylation reprogramming in the germ line and embryo. The figure shows 
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arrangement is intriguingly similar to that of Igf2 and
H19, including a paternally methylated DMR upstream
of Gtl2 and a paternally methylated DMR in Dlk82–84. It
is puzzling how such a markedly similar arrangement
could have evolved in different genes.

Silencers. Several imprinted genes have DMRs that are
methylated on the active allele. This has led to the pro-
posal that these sequences contain silencers that are
inactivated by methylation, perhaps by excluding
repressor factors25,29,41,79 (FIG. 5d). This model has now
been corroborated in the case of DMR1 in Igf2. Igf2 is
paternally expressed in various fetal tissues and DMR1
functions as a maternal silencer in a subset of those tis-
sues. DMR1 is paternally methylated in mesodermal
tissues (heart, kidney and lung), in which Igf2 is
expressed. In a DMR1 knockout, the maternal allele of
Igf2 is derepressed in these tissues85. In addition, Igf2
continues to be expressed postnatally in the same tis-
sues, when it is normally silenced soon after birth85.
These experiments reveal that DMR1 is a mesodermal
silencer; in vitro transfection experiments confirm this
and show that the silencer is methylation sensitive (H.
Cedar, personal communication).

Another tissue-specific silencer has been detected
between Igf2 and H19 in a conserved region that
shows DNaseI-hypersensitive sites but no differential
methylation. Deletion of this sequence from a yeast
artificial chromosome (YAC) transgene results in
expression of the maternal Igf2 allele specifically in
skeletal muscle and tongue86. So it is possible that for
specific sets of enhancers (acting in different tissues)
there are specific silencers that might or might not be
epigenetically controlled. Indeed, the H19 DMR also
contains a silencer (in addition to the boundary) that
is endoderm-specific87.

The findings on antisense transcripts, boundaries
and silencers reinforce the idea that various elements,
some of which are under epigenetic control, interact to
regulate expression of imprinted genes in clusters.

ICs and epigenetic spreading in clusters
The existence of ICs was first proposed from the molec-
ular- genetic analysis of imprinting disorders, and from
knockouts in the mouse88–91. In the imprinted region on
human chromosome 15 (FIG. 1), small deletions were
found in patients with Prader–Willi syndrome (PWS)
in the promoter region of SNURF–SNRPN, and, a few
kilobases upstream of this, deletions were found in
patients with Angelman syndrome (AS). PWS requires
paternal transmission of the deletion, whereas AS
requires maternal transmission. The intriguing feature
of these deletions is that they lead to altered expression
and altered methylation patterns of many of the
imprinted genes in the region, even if the genes are sep-
arated from the deletions by several megabases88. This is
defined as ‘EPIGENOTYPE spreading’. In the PWS deletions,
when paternally transmitted, otherwise paternally
expressed genes are silenced and methylated. In the AS
deletions with maternal transmission, genes that are
otherwise repressed are now demethylated and

In the previous section, we suggested that the
Kcnq1ot1 DMR could also have boundary functions at
least for Cdkn1c, in addition to being a promoter region
for the antisense transcript, and this could be true of
other DMRs as well. A new imprinted gene cluster on
mouse chromosome 12 and human chromosome 14
has been isolated recently that consists of the paternally
expressed Dlk gene flanked by a maternally expressed
gene, Gtl2, which is a non-coding RNA82–84. This
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It is still unknown whether epigenotype spreading
occurs in the germ line or postzygotically (or perhaps
both) (FIG. 6). But more mysterious still is how methy-
lation spreading works mechanistically. It could be
imagined that non-transcribed promoters become
methylated, or that promoters that are overlapped by
antisense transcripts become methylated. Alternatively,
methylation spreading may be independent of tran-
scription. It is possible that DMRs in a cluster adopt
specific spatial arrangements that bring them in close
contact with each other. They could thus protect each
other from becoming methylated, or conversely attract
methylation to their points of contact. Indeed, a spe-
cial nuclear arrangement (possibly involving matrix-
attachment sites) has been described for the maternal
copy of the PWS/AS cluster97.

Evolution — conflicts and arms races
Imprinting has been found in eutherian mammals, mar-
supials and flowering plants. However, in MONOTREMES;

and all other vertebrates and invertebrates, analysis of
uniparental embryos or of genes imprinted in other
organisms indicates that imprinting might not be pre-
sent. But some of these assays are crude and certainly not
comprehensive. More subtle effects of imprinting in
other organisms cannot therefore be ruled out.

This phylogenetic distribution of imprinting, togeth-
er with the observation that a sizeable proportion of
imprinted genes affect fetal growth in a potentially
antagonistic manner (paternally expressed genes
enhance fetal growth and maternally expressed ones
suppress fetal growth) led to the proposal that genetic
conflict over maternal resources was the driving force in
the evolution of imprinting18. Paternally expressed
genes are therefore selected to extract more resources

expressed. The same is true in a mouse knockout model
of the PWS deletion91. A model has been proposed
whereby deletion of these ICs makes the switching of
the regional epigenotype in the germ line impossible88

(FIG. 6). Thus, in the paternal germ line, it is suggested
that the incoming deleted chromosome from the grand-
mother cannot be demethylated, and remains in a
‘maternal’ epigenotype despite passing through a male
germ line. However, no direct proof of this model has
been obtained. In fact, recent evidence has shown that a
deleted chromosome switched its epigenotype (from
unmethylated to methylated) after fertilization, indicat-
ing that an IC might be important for maintenance of
the epigenotype92. Methylation analysis of the germ cells
from parents of patients with PWS and AS, and of the
appropriate mouse models, is urgently needed to resolve
this important issue.

There is functional evidence for ICs in other clus-
ters as well. Deletion of the maternal DMR upstream
of H19 leads to expression of the maternal Igf2 and
Ins2 genes, and to methylation of DMR1 and DMR2
in Igf2 (REFS 67,90,93); and deletion of the DMR in
KCNQ1OT1 alters imprinting of KCNQ1 and
CDKN1C74 (see above). It is remarkable that for the
imprinting cluster on distal mouse chromosome 7/
human chromosome 11p15.5, there seem to be two
ICs71,72,94,95(H19 DMR, Kcnq1ot1 DMR, FIG. 1) that are
largely independent from each other. However, the
possibility cannot be excluded that there are other
mechanisms that coordinate the two ICs, perhaps
involving cluster-wide epigenetic modifications, such
as altered replication timing of DNA. Indeed, some
patients with Beckwith–Wiedemann syndrome
(BWS) have imprinting alterations in both subdo-
mains of the cluster96.
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Phenotypic consequences
A substantial proportion of imprinted genes are
implicated in the control of fetal growth by transgenic
studies, by their location in chromosome regions that
(in uniparental disomies) affect growth, or because
the gene product indicates a role in growth or cell
proliferation(Harwell imprinting web site). Paternally
expressed genes generally enhance fetal growth and
maternally expressed genes suppress fetal growth.
Although the numbers are still small, this pattern is
consistent with the conflict theory18. Regardless of
imprinting, only one system of genes has been discov-
ered so far that has an important role in growth of the
fetus as a whole. This is the insulin and insulin-like
growth factor system together with its receptors, bind-
ing proteins and associated signal-transduction path-
ways101. So far, three members of this system (Igf2,
Igf2r, Ins) are known to be imprinted. Imprinted
genes that affect growth by an unknown mechanism
could either encode new members of the Igf system
(Grb10 might well be involved in transducing an
Igf/Ins signal) or belong to an as yet unknown system
of growth control.

Fetal growth depends on the availability of nutri-
ents provided by the mother. An indirect way of regu-
lating fetal growth is therefore to restrict nutrient
transfer through altered placental growth or function.
Remarkably, most imprinted genes are expressed in
the placenta (Harwell imprinting web site).
Furthermore, placental growth is generally affected in
those transgenic studies that also showed an effect on
fetal growth. Two imprinted genes have so far been
discovered that might have a role specifically in placen-
tal development or growth. Mash2 regulates the devel-
opment of the SPONGIOTROPHOBLAST102, whereas an Igf2
transcript is expressed specifically in the LABYRINTHINE

TROPHOBLAST85. Altered growth and development of
these important tissues could conceivably lead to
effects on nutrient transfer to the fetus, but functional
studies are needed to clarify this. Effects of imprinting
might also be expected in immediate postnatal growth
(from birth to weaning) because resources (milk) con-
tinue to be provided by the mother18.

The first indication that postnatal behaviour might
be influenced by imprinted genes was obtained from
studies on mouse pups disomic for distal chromosome
2. Just after birth, the mice with paternal disomy
showed HYPERKINETIC behaviours whereas those with
maternal disomy were HYPOKINETIC6. Other evidence
that imprinted genes have a role in brain development
or function is provided by the surprisingly large num-
ber of neurological and psychiatric disorders in which
parent-of-origin effects are observed103. In PWS and
AS (classical imprinting diseases), as well as in autism,
bipolar affective disorder, epilepsy, schizophrenia,
Tourette syndrome and Turner syndrome, the occur-
rence or severity of symptoms depends on which par-
ent transmits the disease susceptibility. With the excep-
tion of PWS and AS, however, no specific imprinted
genes have yet been found that have a role in these dis-
eases. In AS, the only maternally expressed gene found

from the mother to benefit offspring fitness, whereas
maternally expressed genes tend to conserve resources,
to divide them among more offspring and to maximize
reproductive performance of the female18.

Accordingly, some imprinted genes could be in ‘arms
races’ with others and this might result in accelerated
rates of evolution of imprinted genes18. However, the rate
of evolution of proteins encoded by imprinted genes has
not been found to be elevated over that of ‘normal’
genes98. Instead, the imprinting patterns themselves seem
more variable. Although the imprinting status of a con-
siderable number of imprinted genes is conserved
between mouse and human, there are now several
notable exceptions where imprinting status is markedly
different. For example, the human IGF2R gene only
shows imprinted expression during early development,
or imprinted expression is polymorphic, whereas the
mouse gene shows stable imprinted expression in most
fetal tissues and developmental stages(Harwell imprint-
ing web site). Moreover, disruptions of imprinting of
various genes were observed in interspecific hybrids of
the deermouse Peromyscus maniculatus99. So, it may be
that regulation of imprinted genes rather than the
encoded proteins evolves rapidly, a phenomenon that
could also contribute to mammalian speciation mecha-
nisms99. Such changes might take place at the level of the
multiple regulatory sequences involved in reading
imprints (enhancers, silencers or boundary elements), as
well as at the level of epigenetic modification.

One possible evolutionary territory for imprinting
arms races is in the zygote. Here, the observed paternal-
specific active demethylation might make it difficult to
maintain a paternal germline methylation imprint. In
other words, the capacity of the oocyte to demethylate
paternal genomes might have evolved as a means to
counteract paternal growth-enhancing strategies(W.R.
and J.W., unpublished). It is interesting to note in this
regard that genome-wide demethylation does not occur
in the zebrafish100 (which does not have imprinting), but
is present in mammalian species with imprinting.

Box 3 | Outstanding questions 

• How and precisely when during germline develoment are old imprints removed and
new ones introduced? Which Dnmts, demethylating activities and chromatin factors
are involved?

• How does the spreading of epigenetic information in clusters work, and is this a
germline-specific phenomenon, a postzygotic phenomenon or both?

• How are imprints maintained when there is genome-wide active and passive
demethylation in the early embryo?

• How many fundamentally different arrangements of imprinted genes and imprinting
control elements are there in the genome?

• How conserved is imprinting between mammalian species?

• How precisely do imprinted genes affect extraembryonic and embryonic
development, and the nutritional exchange with the mother?

• Are there interactions of imprinted genes (particularly antagonistic ones) in known,
or in novel, physiological pathways?

• In addition to growth and behaviour, are there other developmental processes and
mechanisms in which imprinted genes have a decisive role, and how will these fit 
with evolutionary theories?

SPONGIOTROPHOBLAST

Junctional zone between the
labyrinth and the maternal side
of the placenta.

LABYRINTHINE TROPHOBLAST

Placental zone where fetal and
maternal exchange takes place.

HYPERKINETIC, HYPOKINETIC

Exceeding (hyper) or reduced
(hypo) movement of the body
or extremeties.
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death)113 that are typical of deregulation of imprinted
genes, perhaps indicating that somatic donor cells
might have had aberrant imprint patterns, or that
reprogramming might interfere with proper imprint
maintenance. Finally, the striking observation that
ageing might be reversible by cloning114 prompts the
speculation that an important component of the age-
ing process, as well as of diseases, could be the somatic
acquisition of epigenetic modifications.

Perspectives
It is instructive to view mammalian genomic imprint-
ing from many viewpoints, including mechanisms,
phenotypic consequences and evolutionary signifi-
cance. In the next few years, exciting developments will
occur in all these areas, making this synthetic view ever
more productive and enjoyable. Particular advances
will come from the comparison of the sequences of
imprinted regions in different mammalian species,
including perhaps marsupials and monotremes, and
with other vertebrates that do not have imprinting.
This will provide important insights into the evolution
of arrangements and clusters of imprinted genes, and
will pinpoint conserved regions with possible regula-
tory roles. Their function can then be examined in
precisely timed, and tissue-specific, gene-targeting
experiments. The functions of regulatory sequences
will depend on complexes that involve the chromatin
factors and methyltransferases, and such complexes
can be analysed using proteomic approaches. Once all
the imprinted genes have been isolated, targeting
experiments will provide crucial insights, particularly
into interactions between their products in physiologi-
cal pathways. Many questions about the biology of
imprinting remain (BOX 3), but using the array of
approaches summarized above, some fascinating
answers will surely follow.

Update — added in proof
A recent mouse transgenic study118 reports that the
Angelman syndrome deletion region contains a
sequence that can protect the maternal Snrpn pro-
moter from becoming demethylated after fertiliza-
tion, and the paternal Snrpn promoter from becoming
de novo methylated in sperm and in the postimplanta-
tion embryo. This is the first report of a sequence that
can protect from de novo methylation as well as main-
tain a methylation imprint.

in the cluster so far, UBE3A, is probably solely respon-
sible for the disease symptoms, whereas in PWS, sever-
al otherwise paternally expressed genes (FIG. 1) are
deleted or silent. The individual contributions that
these deficiencies make to the disease are not yet clear.

Some more specific insights have been gained from
knockout experiments in the mouse. Knockouts of Grf1
(REF. 104) and Ube3a105 (the mouse homologue of the
human AS gene) have defects in contextual learning and
memory (among others). Peg1 and Peg3, by contrast,
have a role in maternal behaviour such that mothers
that lack these molecules neglect and do not feed their
offspring106,107. How these phenotypes could be inter-
preted in terms of the genetic conflict theory or other
theories is not clear. Because several imprinted genes
that affect behaviour also have a role in fetal growth,
these effects need to be genetically separated (for exam-
ple by conditional knockouts), particularly because
intra-uterine growth retardation can have long-term
effects on cognitive functions.

Epimutations, reprogramming and cloning
Just as mutations alter DNA, epimutations alter DNA
methylation or chromatin patterns. Epimutations in
imprinted genes can lead either to biallelic expression
(loss of imprinting) or to biallelic silencing. How fre-
quent these alterations are either in the germ line or
during somatic development is not known.
Epimutations that are not likely to have been caused by
underlying DNA mutations have been observed in sev-
eral disease situations, including Wilms tumour108,109

(H19 methylation), BWS71,72,89 (H19 methylation,
KvDMR1 demethylation), and PWS/AS110 (SNURF-
SNRPN methylation/demethylation).

BWS and PWS epimutations are likely to occur in
the germ line presumably by failing to erase the grand-
parental imprint (or by establishing the wrong
imprint), or in the early embryo. By contrast, aberrant
H19 methylation in Wilms tumour arises somatical-
ly108,109. The possibility that epimutations can arise
during development has been explored in embryonic
stem cells. Indeed, with prolonged culture of embry-
onic stem cells, a high frequency of epimutations arises
in H19, Igf2, Igf2r and U2af-rs1, which persist during
fetal development111 (and are associated with develop-
mental abnormalities).

Cloning of various mammalian organisms has
been achieved recently using donor nuclei from dif-
ferentiated cells112. Gene expression and, presumably,
epigenetic modifications need to be reprogrammed
when the somatic nuclei are introduced into the enu-
cleated oocyte. Whereas the introduced genome
might undergo passive or active demethylation,
methylation in imprinted DMRs again needs to be
protected from this reprogramming so that imprints
are maintained intact in the cloned organism. The fact
that cloning is still very inefficient and the large
majority of clones die during development might
indicate that the reprogramming process is inefficient.
In addition, cloned animals frequently show abnor-
malities (placental and fetal overgrowth, and perinatal

Links

DATABASE LINKS H19 | Igf2 | Cdkn1c | Dnmt1 | Dnmt3a |
Dnmt3b | Tsix | Xist | Igf2r | Kcnq1 | Air | Kcnq1ot1 |
CTCF | Dlk | Gtl2 | Prader–Willi syndrome |
SNURF–SNRPN | Angelmann syndrome | Ins2 |
Beckwith–Wiedemann syndrome | Ins | Grb10 | autism |
bipolar affective disorder | schizophrenia | Tourette
syndrome | Turner syndrome | UBE3A | Grf1 | Ube3a |
Peg1 | Peg3 | Wilms tumour  
FURTHER INFORMATION Harwell imprinting web site
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