Left Adrenal Gland Table 9-7 Metabolic and developmental hormones | Hormone | Tissue of origin | Structure | Target tissue | Primary action | Regulation | |-------------------------------------|------------------------|-----------|--------------------------|--|---| | Glucagon | Pancreas (alpha cells) | Peptide | Liver, adipose
tissue | Stimulates glycogenolysis
and release of glucose from
liver; promotes lipolysis | Low serum glucose
increases secretion;
somatostatin inhibits
release | | Glucocorticoids
(e.g., cortisol) | Adrenal cortex | Steroid | Liver, adipose
tissue | Stimulate mobilization of
amino acids from muscle
and gluconeogenesis in liver
to raise blood glucose;
increase transfer of fatty
acids from adipose tissue
to liver; exhibit anti-
inflammatory action | Physiological stress
increases secretion;
biological clock via
CRH and ACTH
controls diurnal
changes in secretion | | Growth hormone (GH) | Anterior pituitary | Peptide | All tissues | Stimulates RNA synthesis,
protein synthesis, and tissue
growth; increases transport
of glucose and amino acids
into cells; increase lipolysis
and antibody formation | Reduced plasma glucose
and increased plasma
amino acid levels
stimulate release via
GRH; somatostatin
inhibits release | Table 9-7 Metabolic and developmental hormones | Hormone | Tissue of origin | Structure | Target tissue | Primary action | Regulation | |-----------------------------------|---------------------------------------|------------------------|---|--|--| | Insulin | Pancreas (beta cells) | Peptide | All tissues
except most
neuronal tissue | Increases glucose and
amino acid uptake by cells | High plasma glucose
and amino acid levels
and presence of
glucagon increase
secretion;
somatostatin
inhibits secretion | | Norepinephrine
and epinephrine | Adrenal medulla
(chromaffin cells) | Catecholamine | Most tissues | Increase cardiac activity;
induce vasoconstriction;
increase glycolysis,
hyperglycemia, and lipolysis | Sympathetic stimulation
via splanchnic nerves
increases secretion | | Thyroxine | Thyroid | Tyrosine
derivative | Most cells, but
especially those
of muscle, heart,
liver, and kidney | Increases metabolic rate,
thermogenesis, growth, and
development; promotes
amphibian metamorphosis | TSH induces release | Increased oxygen consumption and heat production Table 9-8 Mammalian hormones involved in regulating water and electrolyte balance | Hormone | Tissue of origin | Structure | Target tissue | Primary action | Regulation | |--|--------------------------------------|-------------|------------------------------|---|--| | Antidiuretic hormone
(ADH, vasopressin) | Posterior pituitary | Nonapeptide | Kidneys | Increases water reabsorption | Increased plasma osmotic pressure or decreased blood volume stimulates release | | Atrial natriuretic peptide (ANP) | Heart (atrium) | Peptide | Kidneys | Reduces Na ⁺ and water
reabsorption | Increased venous pressure stimulates release | | Calcitonin | Thyroid
(parafollicular
cells) | Peptide | Bones, kidneys | Decreases release of Ca^{2+}
from bone; increases renal
Ca^{2+} and PO_4^{3-} excretion | Increased plasma Ca ²⁺ stimulates secretion | | Mineralocorticoids
(e.g., aldosterone) | Adrenal cortex | Steroid | Distal kidney
tubules | Promotes reabsorption of Na ⁺ from urinary filtrate | Angiotensin II stimulates secretion | | Parathyroid hormone
(PTH) | Parathyroid gland | Peptide | Bones, kidneys,
intestine | Increases release of Ca ²⁺ from bone; with calcitriol increases intestinal Ca ²⁺ absorption; decreases renal Ca ²⁺ excretion | Decreased plasma Ca ²⁺
stimulates secretion | ## Modified in class Table 9-9 Important mammalian reproductive hormones | Hormone | Tissue of origin | Structure | Target tissue | Primary action | Regulation | |----------------------------------|---|-------------|------------------------------------|---|--| | Primary sex ho | rmones | | | | | | Estradiol-17 β (estrogens) | Ovarian follicle,
corpus luteum,
adrenal cortex | Steroid | Most tissues | Promotes development and
maintenance of female
characteristics and behavior,
oocyte maturation, and
uterine proliferation | Increased FSH and LH
levels stimulate secretion | | Progesterone | Corpus luteum,
adrenal cortex | Steroid | Uterus,
mammary
glands | Maintains uterine secretion;
stimulates mammary
duct formation | Increased LH and prolactin levels stimulate secretion | | Testosterone
(androgens) | Testes
(Leydig cells),
adrenal cortex | Steroid | Most tissues | Promotes development and
maintenance of male
characteristics and behavior
and spermatogenesis | Increased LH level stimulates secretion | | Other Hormon | es | | | | | | Oxytocin | Posterior pituitary | Nonapeptide | Uterus,
mammary
glands | Promotes smooth muscle contraction and milk ejection | Cervical distention and suckling
stimulate release; high
progesterone inhibits release | | Prolactin (PL) | Anterior pituitary | Peptide | Mammary glands
(alveolar cells) | Increases synthesis of milk
proteins and growth of
mammary glands; elicits
maternal behavior | Continuous secretion of PL-inhibiting hormone (PIH) normally blocks release; increased estrogen and decreased PIH secretion permit release | (a) $$H_3C$$ CH_3 CH_3 CH_3 CH_3 CH_3 ## Juvenile hormone β -Ecdysone Stage of development Table 9-10 Selected prostaglandins | Tissue of origin | Target tissue | Primary action | Regulation Introduced during coitus with semen | | |--------------------------------------|---|--|--|--| | Seminal vesicles,
uterus, ovaries | Uterus, ovaries,
fallopian tubes | Potentiates smooth muscle
contraction and possibly
luteolysis; may mediate LH
stimulation of estrogen and
progesterone synthesis | | | | Kidney | Blood vessels,
especially in kidneys | Regulates vasodilation or vasoconstriction | Increased angiotensin II and epinephrine stimulate secretion; inactivated in lungs and liver | | | Neuronal tissue | Adrenergic terminals | Blocks norepinephrine-
sensitive adenylate cyclase | Neuronal activity increases release | | Table 9-11 Insect developmental hormones | Hormone | Tissue of origin | Structure | Target tissue | Primary action | Regulation | |----------------------------------|--|---------------------------------|--|--|---| | Bursicon | Neurosecretory cells
in brain and nerve
cord | Protein (MW \sim 40,000) | Epidermis | Promotes cuticle
development; induces
tanning of cuticle of
newly molted adults | Stimuli associated with
molting stimulate
secretion | | Ecdysone
(molting
hormone) | Prothoracic glands,
ovarian follicle | Steroid | Epidermis, fat
body, imaginal
disks | Increases synthesis of RNA,
protein, mitochondria, and
endoplasmic reticulum;
promotes secretion
of new cuticle | PTTH stimulates secretion | | Eclosion hormone | Neurosecretory cells in brain | Peptide | Nervous system | Induces emergence of adult from puparium | Endogenous "clock" | | Juvenile hormone
(JH) | Corpus allatum | Fatty acid
derivative | Epidermis,
ovarian
follicles, sex
accessory
glands, fat body | In larva, promotes synthesis
of larval structures and
inhibits metamorphosis;
in adult, stimulates
synthesis of yolk protein;
activates ovarian follicles
and sex accessory glands | Inhibitory and
stimulatory factors
from the brain
control secretion | | Prothoracicotropin (PTTH) | Neurosecretory cells
in brain | Small protein (MW ~ 5000) | Prothoracie gland | Stimulates ecdysone release | Various environmental
and internal cues
(e.g., photoperiod,
temperature, crowding,
abdominal stretch)
stimulate release; JH
inhibits release in
some species |