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Introduction
Self-Modeling regressions form a class of models [1,2] for 

functional data observed for many individuals. We observe data, where 
the subject specific functions fi(x) (sometimes referred to as traces) have 
the form where g is a base function and θi is a subject specific parameter 
which specifies a transformation connecting g and the functions fi. A 
variety of choices is available for this transformation class which unites 
the subject specific functions fi to g. One of the first examples in the 
literature, which we will address here, is the shape invariant model, 
referred to as SIM (1), where θi=(ai,bi,ci,di) are called self-modeling 
coefficients and

fi(x)=aig(cix + di) + bi

The self-modeling coefficients result in fi being an affine 
transformation of g in the x and y axes. Other types of transformations 
have been shown which use a Bayesian warping function method 
[3]. Altman and Villarreal [4] have developed the SIM where interest 
centers on variation in the self-modeling coefficients, using nonlinear 
mixed effects [5] and p-splines to model the θi parameters. More recent 
work involved inferential comparisons on θi in the SIM setting [6]. In 
this work, our primary objectives are the following:

1. To consider mixtures of shape invariant models (MSIMs) 
where there is more than one underlying shape function g. Unknown to 
the investigator, suppose the subject specific functions may be grouped 
so that one group is defined by shape invariant transformations 
of an underlying g1, another group is defined by shape invariant 
transformation of an underlying g2, and so on. A motivating example 
follows below.

2. To utilize Bayesian Adaptive Regression Splines (BARS) [7-
9] to estimate the underlying shape functions gk for k=1,…,K. BARS 
has been shown to provide parsimonious fits (e.g. fewer knots) of 
complicated functions. Several computational challenges arise in these 
endeavors which are described in Implementation.

In our motivating example, data are obtained from a recording 
of synaptic transmission at a neuromuscular junction (NMJ) from a 
crayfish (Figure 1a). The motor nerve is repeatedly stimulated and the 
synaptic response is monitored as described previously in work by two 
of the authors [10]. With low frequency stimulation of this low output 
NMJ, occasionally an evoked response is observed. In the sample 
shown, 61 events occurred in 1000 stimulations. After some data 

cleaning [11] our data of interest is the 61 functions describing voltage 
over a dense series of time points.

These functions vary in terms of their heights, widths, and peak 
locations, but in fact do all have similar shapes as shown by the aligned 
curves which result from fitting a SIM model to all the functions (Figure 
1b). The details of this fit, which simply assumed known knots for a 
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Abstract
A shape invariant model for functions f1,…,fn specifies that each individual function fi can be related to a common 

shape function g through the relation fi(x)=aig(cix + di) + bi. We consider a flexible mixture model that allows multiple 
shape functions g1,…,gK, where each fi is a shape invariant transformation of one of those gk. We derive an MCMC 
algorithm for fitting the model using Bayesian Adaptive Regression Splines (BARS), propose a strategy to improve its 
mixing properties and utilize existing model selection criteria in semiparametric mixtures to select the number of distinct 
shape functions. We discuss some of the computational difficulties that arise. The method is illustrated using synaptic 
transmission data, where the groups of functions may indicate different active zones in a synapse.
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Figure 1: A set of 61 evoked excitatory post-synaptic potentials (EPSPs) 
Data in the left pane (a) describe the evoked voltage responses observed at 
the crayfish neuromuscular junction from 1000 stimulation trials. While the 
functions vary in height, width, and peak locations, all the functions have 
a similar underlying shape. The right pane (b) shows aligned firings with 
the estimated underlying shape g in red. These are the same data from (a) 
aligned to each other.
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spline fit to g, are described in previous work [10]. This fit accounts for 
over 96% of the variation in the dataset.

Biologically, the variation between the functions is assumed to 
occur because of aspects related to the physiology and structure of the 
synapses at the NMJ. The electrical signal in the neuron is translated 
into a vesicle fusing with the presynaptic membrane at active zones 
to release neurotransmitters. The postsynaptic receptors on the 
muscle detect the transmitter which results in a depolarization of the 
muscle fiber. There are various possibilities for the variation in quantal 
responses. Some of those possibilities involve the location where 
neurotransmitter is released and such variation would result in two or 
more groups of functions appearing in the data. Thus, finding groups of 
functions in the data may indicate multiple sites active in the synapse.

In searching for different sites, we wish to find groups of 
functions within the 61 functions shown in Figure 1a. This is our 
motivation for fitting a mixture of shape invariant functions, where 
the different underlying shape functions may indicate different active 
zones. Previous work in this area has uncovered groupings based on 
functionals of the traces, for example by fitting a normal mixture model 
on the peak amplitudes [12]. Of course, individual functionals only 
utilize a small amount of the information available in the entire voltage 
function. It would also be possible to fit a single shape function g and 
then fit a mixture model over the parameters (a,b,c,d), which we do not 
pursue here.

A brief outline of this paper is as follows. In Singularities in the 
BARS updating we introduce MSIMs. We describe our computational 
techniques, including necessary adjustments to the BARS algorithm, 
in Implementation. In we then describe methods for evaluating the 
results (this is nontrivial due to identifiability issues present in SIMs 
in general), increasing MCMC mixing and selecting the number of 
components in the mixture. In Results we discuss the results of the 
simulations and the analysis of the data in Figure 1a. Finally, in we 
provide a discussion of the results.

Mixtures of Shape Invariant Models
Prior and likelihood structure

Suppose we observe I individuals and for each individual we 
observe data pairs (xij,yij) for i =1,…,I and j=1,…,Ji. We also assume 
there exist underlying shape functions g1,…,gK such that the ith 
individual follows shape gk with probability pk, where p=(p1,…,pK) is a 
vector of probabilities. Let zi be a group indicator where zi=k indicates 
that the ith individual follows the kth function and that θi=(ai,bi,ci,di) 
are the self-modeling coefficients for the ith individual. Finally σ2 is the 
error variance. Where possible, we place conditionally conjugate priors 
on the parameters to ensure an easier MCMC implementation. In what 
follows g refers to the collection of g1,…,gK and θ refers to the collection 
of θ1,…, θI , and N(μ,σ2)(x) refers to a normal density with mean μ and 
variance σ2 evaluated at x, with similar notation for other densities. The 
general prior and likelihood structure is below. We will describe the 
priors on the θi and gk separately.
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Our inferential goals are to estimate the underlying shape functions, 
g1,…,gK, the self-modeling coefficients (ai,bi,ci,di)=θi for each individual 
function fi, the posterior probabilities of each individual function 
belonging to each group, and common error variance σ2.

Priors on shape functions, gk

We utilize BARS to estimate each of the gk functions. Each gk has a 
B-spline basis expansion
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kRb b +… form a B-spline basis with knots 1,..., kRξ ξ and 
spline coefficient vector β. BARS utilizes a reversible jump MCMC 
(commonly referred to as RJMCMC) algorithm which samples over the 
knots in a B-spline used to estimate the function of interest. Without 
loss of generality, assume the function of interest (for us one of the gk 
functions) is supported over the unit interval (0,1). A B-spline basis 
is formed using a vector of knots. The prior on this vector assumes 
the number of knots follows a distribution and that the individual 
knots are uniformly distributed throughout (0,1). BARS proceeds by 
iteratively adding, removing, and relocating knots. These changes in 
the knot structure are accepted or rejected according to BIC (BIC uses 
the maximum likelihood estimates of the spline coefficients). As BIC is 
used, this is very close asymptotically to using a unit-information prior 
[13] on the spline coefficients β. This structure is what is intended by 
the notation BARS(gk) used above.

Priors on the self-modeling coefficients

Finally, for estimating the self-modeling coefficients θi = (ai,bi,ci,di), 
we place a vague bivariate normal prior on ai and bi (these parameters 
act as regression coefficients). In general, there is no conditionally 
conjugate prior for ci and di. For functions with a single dominant peak, 
a transformation of ci and di to a location-scale family is useful.

Suppose for example the underlying shape function g has a peak 
at 

*xg . The individual function fi would have that peak at the x where 
*

i i xc x d+ = g  which is *( ) / .i ix x d c= −g Note that changes in either ci 
or di result in changes to the peak location of fi. As proper alignment 
of the peak is very important to achieving a high likelihood, this 
induces a correlation in the posterior distribution of ci and di. We 
have found better results (in terms of the mixing properties of the 
MCMC chain) by transforming to ci (which controls the "spread" of 
the curve) and *( ) / ,i i im x d c= −g which represents the location of the 
peak. Thus, instead of  fi(x) = aig(cix + di) + bi, we use the transformation
( ) * ) )( (i i i i if x a c x m x b= − + +gg . For a more thorough description 

of curve registration techniques and other, potentially helpful 
transformations for improving MCMC mixing, we refer the reader to 
the original paper by Ramsay and Li [14] and Gilks and Roberts [15], 
respectively.

To see the benefit of this transformation by example, let g be a 
triangular "tent function" where g(x)=0 outside (0.2,0.6), g(x) increases 
linearly from 0 to 1 over (0.2,0.4) and decreases linearly from 1 to 0 
over (0.4,0.6). We generated data using f(x)=g(0.5x−0.25) for x=(0, 
0.01,0.02,…,2) and N(0,1) error. The peak of g occurs at 0.4 and the 
corresponding peak of f occurs at m=1.3. Keeping everything fixed at 
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The central theme here is that in the self-modeling paradigm you are 
really estimating relative shifts and scalings among the functions.

Unfortunately, in the mixture setup this is not feasible, as there 
are multiple shape functions. Since we do not know a priori which 
functions, f1,…,fI belong to which group (e.g. which are self-modeling 
versions of g1, which are self-modeling versions of g2, etc.) we cannot 
select functions to use as "anchors" in each group. Thus the simplest 
option seems to be to leave a nonidentified model. Altman and 
Villarreal [4] also use an unconstrained formulation without difficulty, 
though from a frequentist standpoint.

Note, however, that our central inferential goals are the assignment 
of functions to groups, the estimation of the individual functions, 
and the underlying shape of the g1,…,gK functions. The first two are 
identifiable, and g1,…,gK are identifiable up to self modeling versions. 
As with any mixture model, there is a secondary identifiability problem 
in that the component labels may be switched, but component label 
switching [14] has not been an issue in the analyses we performed. 
Although not addressed in this work, there is a third identifiability 
problem in mixture models arising from having an unnecessarily large 
number of mixtures when a smaller number of mixtures is actually 
sufficient.

Implementation

We implemented the model in Section 2 using an MCMC scheme. 
Some parameters are of course easier to update than others. 

Sampling scheme

Updating σ2 and p: Both σ2 and p have straight forward conjugate 
priors conditional on the rest of the parameters.
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Shape functions g1,…, gk: Conditional on the remaining variables, 
each gk is conditionally independent, with each gk being updated 
separately using only those data functions with zi=k.

Each gk is defined by its corresponding knot set ξk and spline 
coefficients βk. In the original BARS algorithm [7], updating was done 
entirely on ξ using BIC with the maximum likelihood estimate of β. 
While we update ξ using the BARS updating, we actually draw ξ,β|rest 
via ξ|rest and β|ξ, rest. Our reason for drawing β values is that, unlike 
the original work [7], we have additional parameters (specifically zi and 
θi) that are easier to simulate if β is fixed.

Updating Zi: Updating each Zi also requires moving functions 
between groups, as there are subject specific parameters θi for each 
variable. In the MCMC scheme one must take into account that (a,b,c,d) 
have different interpretations depending on which group the function 
belongs to (e.g. the outcome of Zi). If g1 and g2 have different peaks, for 
example, then a perfect fit for g1 would require a much different value 
of a than a perfect fit for g2.

Ideally, we would like to avoid this problem and integrate the self-
modeling coefficients out to find

2 2
1 1( | ,..., , , ) ( | ,..., , , , ) ( )i K i K i i iPr Z k p Pr Z k p dσ σ θ π θ θ= = =∫g g g g

Unfortunately, it is not computationally efficient to find this 

the true value except c and d, Figure 2a shows the loglikelihood over 
(c,d). As can be seen, there is a distinct correlation between c and d 
which limits the mixing of the MCMC chain. In contrast, Figure 2b 
shows the loglikelihood as a function of c and m, which provides a 
much better structure for MCMC.

Of course, this transformation is limited to g with a single peak, 
which is not always true. Thus, this transformation will not produce 
an improvement in general, or other transformations may be useful in 
other contexts. For our synaptic transmission data, we have found this 
transformation to be quite useful. Thus, for data with a dominant peak:

( ) [ ][ ]2 , ,( ,, )( ) ( )( ) (0, ) ), , , 1 (a b ai i i i b ci i ic ia b c m a bN Gamma c U mµ a βπ  = ∑ =

Identifiability

Identifiability is a pervasive issue in self-modeling regressions 
[2,4]. Suppose for example we have a particular underlying shape 
function g(x) and a set of coefficients (a,b,c,d). One could achieve the 
same f by taking g`(x)=2g(x) and taking a`=a/2. Generally, one can 
take any self-modeling transformation of g and then adjust (a,b,c,d) 
appropriately to produce the same f. In the original Lawton paper (1), 
this problem was addressed by forcing g to have particular properties 
(such as a maximum of 1 and minimum of 0). However, in the Bayesian 
formulation such constraints would require any estimation method to 
be significantly altered. BARS, which we utilize here, is not obviously 
adjustable to handle constraints on the function.

An alternative method of forcing identifiability is to pick an 
individual function fi and force its corresponding (a,b,c,d) to be (1,0,1,0). 
This method is utilized in previous work [10]. This forces the scaling on 
g to follow the chosen function but allows BARS to run unconstrained. 
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Figure 2: Loglikelihood structures of shift-scale and location-scale self-
modeling coefficients. The left pane (a) shows the structure for the (c,d) self-
modeling coefficients, compared to the right pane(b) which shows the (c,m) 
location-scale transformation. For a function with a single dominant peak, 
thelocation-scale transformation has a much lower correlation between c 
and m and thus the correspondingMCMC algorithm has superior mixing 
properties.

http://dx.doi.org/10.472/2155-6180.1000208


Citation: Szczesniak RD, Viele K, Cooper RL (2014) Mixtures of Self-Modelling Regressions. J Biomet Biostat 5: 208. doi:10.4172/2155-6180.1000208

J Biomet Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Page 4 of 8

Volume 5 • Issue 4 • 1000208

integral nor is it efficient to approximate it (for example finding the 
MLE of θi would require numerical maximization). Thus in our sampler 
we utilize θik (different θi for each k). To draw a new Zi, note

2
2

1 2

( ( , )( )
( | ,..., , , , )

( ( , )( )
k ik ij ijj

i K K
ik ij ijj

p N f x
Pr Z k p

p N f x

σ
σ θ

σ
= =

∏
∑ ∏ww=1

y
g g

y

where

( ) ( )ik ij ik ik ik ij ik ikf x a c x d b= + +g

Updating the self-modeling coefficients: Finally, the self-modeling 
coefficients (a,b) (recall in the sampler we have separate self-modeling 
coefficients θik for each i and k) are updated straightforwardly, as they 
are regression parameters with conjugate priors. The (c,m) coefficients 
are updated using a Metropolis-Hastings random walk scheme.

Singularities in the BARS updating

In the original BARS implementation, proposed knot sets which 
resulted in singular design matrices (loosely, too many knots in an area 
with too few data points), were discarded [16,17]; these proposals may 
be viewed simply as a data dependent prior. In the self-modeling setup, 
there is an additional complication. In one iteration we may achieve a 
nonsingular design matrix, but as the self-modeling coefficients θi are 
adjusted, this moves mi defined in Section 2.1.2 and may result in a 
singularity in the design matrix. We additionally reject these moves out 
of hand in the sampler. At present, these rejections in the sampler are 
not a frequent occurrence, but seems an unavoidable problem as long 
as BIC is used in the BARS steps.

Starting values

To initialize the chain, all fi functions were first aligned to the 
largest function (the trace with the largest difference between the 
maximum and minimum values) using a Procrustes registration [14]. 
We then computed the mean square error (MSE) between each aligned 
trace and the largest trace. Focusing on a two-component mixture, the 
half of the traces with the smallest MSE values were placed in one group 
while the half of the traces with the largest MSE values were placed in 
the second group. Essentially, this means the half of the traces closest 
in shape (not necessarily scale) to the largest trace were placed together 
in a group. This initialized the Zi values. To initialize g1 and g2 in the 
two component mixture model, we fit a spline to the traces in each 
group (we simply assume 9 equally spaced knots initially, which is 
then adjusted by the sampler). The initial spline coefficients are then 
computed by aligning each individual trace to its corresponding 

iZg
and finally the error variance is computed by taking the MSE of the 
entire fit.

Assessing Implementation Results
Posterior inference

At the end of the MCMC run we have a set of M iterations. For each 
m=1,…,M, the mth iteration contains functions ( ) ( )

1 ,...,m m
Kg g  (expressed 

in a spline basis), mixing proportions p(m), an error standard deviation 
σ(m) and component assignments ( ) ( )

1 ,...,m m
Iz z for each individual 

function. Finally, for each i we have self-modeling coefficients ( ) .m
iθ  We 

assess the results in terms of the identifiable pieces of the sampler.

1. We directly have the mixing proportions p between the different 
functions gk. We also compute the estimated posterior probability 
each individual trace belongs to each group by finding the observed 

proportion of times ( )m
i k=z for each k. Thus, we acquire overall 

proportions of functions in each group and the estimated posterior 
probabilities each individual function belongs to each individual gk.

2. To assess the fit of the individual functions, we computed the 
estimated fi(t) by constructing for each iteration and each trace

( ) ( ) ( ) ( ) ( ) ( )ˆ ( ) ( )m m m m m m
i i z i i if t a c t d b= + +

( )

1

1 ˆ( ) ( )
M

m
i i

m
f t f t

M =

= ∑                       (2)

In the plots that are constructed from the simulation studies and 
EPSPs application in Section 5, we plot a selection of the ( )ˆ ( )m

if t

functions (iterations m = 100,200,…) and the overall average ( ).if t

To estimate each gk we must remember that each gk is allowed 
to drift in the sampler, and thus the resulting ( )m

kg  iterations must 
be aligned in shape before producing an estimate. Thus, we begin by 
taking the functions ( )m

kg across the iterations and aligning them to 
each other. This was done via a Procrustes registration as in previous 
work [10]. The base shape function of this alignment was used as the 
estimate for gk.

The amount of burn in necessary for Gibbs sampling in the 
MSIM setting depends on data-specific and method-specific factors. 
Wallstrom et al. [17] recommend up to 20,000 burn-in iterations for 
the BARS implementation with normally-distributed data. We found 
that additional iterations were necessary to achieve proper burn in for 
the self-modeling coefficients.

Improving acceptance rates

It is important that the sampling mechanism provide a sufficient 
amount of switching in order to explore the state space well. Typically, 
one would choose a reversible-jump mechanism to facilitate this 
switching, but in most RJMCMC scenarios it is easier to sample 
from the posterior distribution within each subgroup (i.e. mixture 
component). The aforementioned sampling mechanism in Section 3 
uses metropolis random walks within each subgroup, which may lead 
to lower acceptance rates, thereby lowering the degree of switching 
between groups.

To facilitate switching between groups, we propose using the 
approximating posterior distributions of the self-modeling coefficients 
in θi from our previous MCMC implementation in Section 3 to 
conduct a second MCMC. In this second MCMC, acceptance rates may 
be improved as follows. Let , 'i k ka → be the probability of the ith trace 
moving from the current state Mk to the candidate state Mk’. For ease 
of description, we will now omit notation for trace i. The acceptance 
probability for moving from the current state (k) to the candidate state 
(k’) is

' ' ' ' ' ' ' ' ' ' '
'

' ' ' ' ' '

( ) ( , , , | ) ( , , , , ) ( , , , ) ,
( ) ( , , , | ) ( , , , , ) ( , , , )

k k k k k k k k k k k k k k k k k
k k

k k k k k k k k k k k k k k k k k

M a b c d M a b c d M p f a b c d
M a b c d M a b c d M p f a b c d

π π πa
π π π→ = × ×

y|
y|     (3)

where in general notation for state m,π (Mm) is the prior 
probability that the trace has underlying shape function gm;  fm() 
refers to coefficients (am,bm,cm,dm) being evaluated at the multivariate 
normal distribution with respective mean vector pm and covariance 
matrix Σm obtained from the complete conditional distributions 
in the first MCMC implementation; pm is the empirical probability 
that the trace belonged with shape function gm() in the first MCMC; 
π(y|am,bm,cm,dm,Mm) is the likelihood for the trace under shape function 
gm. The π(am,bm,cm,dm|Mm) corresponds to coefficients (am,bm,cm,dm) 
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being evaluated using priors under Mm, which can be simplified 
as π(am,bm,cm,dm|Mm)= π(am,bm,cm,dm|Mm)π(cm|Mm)π(dm|Mm); prior 
π(dm|Mm) is an induced prior that we compute via transformations. 
The algorithm for computing the acceptance probabilities is outlined 
in Supplementary Information.

Determining the number of mixtures

One outstanding issue still to be addressed is inferentially 
determining the number of groups present in the data. When making 
this determination, BIC is intuitively a reasonable choice; however, 
regularity conditions do not hold in the mixture model setting [18]. 
Furthermore, BIC is not reliable in the mixture model settings with 
smaller sample sizes. Pilla and Charnigo [19] proposed a flexible 
information criterion (FLIC) specific to selecting the number of 
components in semiparametric mixture models, which performs better 
than BIC in settings where the mixture components are not easily 
distinguishable and better than AIC when sample sizes are large. We 
adapted the FLIC implementation used previously for fitting a normal 
mixture model to a distribution of birth weight [20] as follows. For a 
mixture of self-modeling regressions with components k=1,…,K

( , )2 log 2(log ) ,B N
K KFLIC L N δ ν= − +                  (4)

where, LK is the log likelihood of the data evaluated at the posterior 
mean estimates for each function fi, i=1,…,I; N is the total number of 
observations defined in Equation (1). The number of free parameters 
in the model (ν) is the number of shape functions gk (note that we 
do not consider the number of parameters in the knot and spline 
coefficient vectors since we can use the posterior mean kg from the 
sampler, post drift alignment, as our estimate for gk), plus the number 
of undetermined mixing proportions (K−1 free parameters), the total 
number of self-modeling coefficients in the 4×1 vector θi for all I 
subjects, and the common variance parameter σ2. The bivariate ratio 
function B(N,δ) and penalty statistic δ have been defined previously 
[19]. For each MSIM considered, we can compute the fraction of 
between-component variability to within-component variability 
across the x values (or time points) and use these results to compute 
the average fraction of between-component variability to within-
component variability (see formula in Supplementary Information).

Results
The MCMC implementation and post processing described in 

Sections 3-4 were executed for simulation studies and the motivating 
EPSPs example using R [21].

Simulations
We simulated data to identify how well the algorithm discriminated 

two separate, but similar functions. In each sample dataset we used the 
following underlying shape functions:

{ }2
1( ) 0.2exp 20( 0.2)x x= − −g

{ } { }2 (0,1)( ) (exp 0.7 exp 12 )x x x I= − − −g

These functions are similar to some parametric models used in 
the biology literature for EPSPs, and are quite similar in shape. Figure 
3 shows the two underlying functions. The two functions are similar 
in shape, but they are clearly not identical. In other words, these two 
shape functions are clearly not self-modeling versions of each other. 
Although g1 is defined as a symmetric function, its alignment with g2 
makes it appear asymmetric over the range of x. The function g2 is not 
differentiable at x=0 (note self-modeling versions with a slight shift are 

quite similar, so this cusp could appear at a different x value in the 
estimate, see the discussion of identifiability in Section 2.2), which 
creates a point where multiple knots are desirable. This is a situation 
where adaptive knot splines are more effective than using known knots.

Each sample dataset consisted of 100 functions, 50 generated from 
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Figure 3: Shape functions used for simulations. These two functions are 
aligned versions of g1(x)=0.2exp{−20(x−0.2)2} and g2(x)=(exp{−0.7x}–
exp{−12x}) I(0,1).They are similar, but certainly NOT identical, in shape. 
Note also g2 is not differentiable at the initial rise, which creates a situation 
where multiple knots are desirable in that region. The simulations consisted 
of generating 40 datasets, each with 100 functions, 50 of which are self-
modeling versions of g1 with error and 50 of which are self-modeling 
versions of g2 with error. 
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Figure 4: A sample of 100 simulated functions. There are 50 self-modeling 
versions of each g1 and g2 mixed into the dataset shown in the left pane 
(a). The inferential problem is to separate the traces and simultaneously 
estimate the underlying shape functions. The right pane (b) shows the same 
dataset but colored according to the underlying groups (unknown in practice 
but here the red and blue functions are self-modeling versions of g1 and 
g2, respectively). The different groups are simulated so that they do not 
separate in groups based on height, width, or other functionals, but only 
by shape.
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self-modeling versions of g1 and 50 from self-modeling versions of g2. 
The self-modeling coefficients (a,b,c,d) were randomly chosen for each 
function in each simulation to provide a range of overlapping functions. 
The range of values from which a,b,c,d were selected consisted of 
(3.0,7.0), (−0.15,0.10), (0.15,0.90), and (−0.06,0.80), respectively. The 
x values for each function correspond to 121 equally-spaced points 
in the interval (0,1). Forty simulated datasets of 100 functions were 
generated, 20 of which had an error standard deviation of σ=0.15 
while the remaining 20 had an error standard deviation of σ=0.05. One 
sample dataset (for σ=0.05) is shown in Figure 4a. Figure 4b shows the 
same dataset color coded by the appropriate g function. It is certainly 
not obvious from the data alone which g is appropriate. The first- and 
second-stage MCMC algorithms from Equation (3) were run on each 
simulated dataset. The first-stage sampler was run for 80,000 iterations 
with the first 20,000 removed as burnin (this is perhaps excessive, but 
burn-in is long in this context and we were quite conservative). The 
second sampler was run for 30,000 iterations with the first 10,000 
iterations removed. For each simulated dataset we computed the 
assessable quantities described in Section 4 (g1 and g2 estimated up to 
shape invariance, the individual functions fi, the probabilities of correct 
classification and error variance σ2).

Figure 5 shows the estimated g1 and g2 plotted against the group 
assignments (for plotting, each function was assigned to the group that 
functions spent the most time assigned to in the second MCMC run) 
for the simulated dataset from Figure 4. The diagonal panes in Figure 
5 show the functions (aligned) assigned to group 1 plotted against the 
fitted g1 and the functions assigned to group 2 (aligned) plotted against 

the fitted g2. The off-diagonal panes show each gk plotted against the 
functions which were NOT assigned to that group.

Overall, correct classification rates for the functions were quite 
high and had similar rates across the simulations for both the first and 
second MCMC runs. Of the 20 datasets generated with lower noise 
σ=0.05, all but 3 had all 100 functions classified correctly. For those 3 
datasets, 2 had 99 functions correctly classified and the other had 97 
functions correctly classified. For the 20 datasets with σ=0.15, there was 
more variability because of the increased noise but there were still high 
correct classification rates, ranging from a low of 77 classified correctly 
to a high of 94.

An improvement in switching was defined as moving from the 
current state to the candidate state more often during post-burnin 
iterations in the second MCMC, compared to movement in the first 
MCMC. For higher noise (σ=0.15) data, all functions had improved 
acceptance rates. In lower noise (σ=0.05) data, switching improved in 
all but 3 datasets. For those 3 datasets, there were 4, 7, and 25 functions 
that did not improve their acceptance rates in the second run.

We calculated FLIC from Equation [4] for each simulation using 
one-group and two-group results. All lower-noise simulations favored 
including two distinct shape functions g1 and g2 over a single shape g. 
Eighteen of the higher-noise datasets favored the two-group model 
while 2 of the datasets had FLIC results favoring the single group model.

Classifying firings from synaptic transmission data

Of the 61 firings, 31 were classified to group 1 over 50% of the time 
while the other 30 were classified to group 2 over 50% of the time (to 
make sure the algorithm simply didn't split the 61 functions in half 
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Figure 5: Results for simulated dataset. The four panels show the functions 
assigned to each group versus the fitted curves for g1 and g2. The diagonal 
panes (a) and (d) show the functions assigned to the corresponding g 
(e.g. the functions assigned to group 1 with g1 overlaid, and the functions 
assigned to group 2 with g2 overlaid). In contrast, the off-diagonal panes in 
(b) and (c) correspond to the functions overlaid with the "other" g (so the 
functions assigned to group 1 with g2 overlaid, and the functions assigned 
to group 2 with g1 overlaid).
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Figure 6: Application to synaptic transmission data (a) The synaptic 
transmission data from Figure 1a, color coded into the groups identified by 
the Mixture of Self-Modeling regressions algorithm (a function was classified 
in a group if more than 50 % of the MCMC iterations placed it in that group). 
These groups do not appear to separate by peak amplitude, latency, or 
other commonly used functionals. (b) The synaptic transmission data from 
Figure 1b, aligned and color coded for the groups identified by the Mixture 
of Self-Modeling regressions model. The distinction between the two groups 
appears to be in the rate of increase in the rise and the rate of decrease 
in the descent. Functions in group 1 (red) have a faster rise and slower 
descent, while functions in group 2 (blue) have a slower rise and faster 
descent.
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arbitrarily, we also fit subsets of the functions and found consistent 
assignments). Figure 6a is identical to Figure 1a except the functions 
are color coded into group 1 (red) and group 2 (blue). Acceptance 
probabilities were increased in the second MCMC run, but group 
membership changed for only 2 of the 61 firings from the first run to 
the second run.

There is no obvious pattern to the assignments in Figure 6a (e.g. 
group 1 traces are not generally higher, wider, etc.). When we construct 
the plot analogous to the aligned data in Figure 1b, we do see a pattern 
emerge. In Figure 6b, the central difference in the groups appears near 
the aligned peaks. Group 1 (in red) shows a quick increase, followed 
by a slower decrease after the peak. In contrast, group 2 (in blue) has 
a slower increase to the peak, but a quicker decrease from the peak. 
Figure 7 shows the individual estimates of g1 and g2 plotted against 
the functions assigned (here meaning greater than 0.5 posterior 
probability) to each group. Thus the diagonal panels in this figure 
correspond to good fits (e.g. the functions assigned to group 1 with 
g1 overlaid, and the functions assigned to group 2 with g2 overlaid); 
the off diagonal panels show the differences between the groups (e.g. 
the function assigned to group 1 with g2 overlaid, and the functions 
assigned to group 2 with g1 overlaid). We compared the model results 
from the FLIC for a single shape versus two shapes and found the 
model with two shapes was more favorable. Again, the two different 
shapes are apparent in the graph.

Discussion
Fitting an MSIM allows for multiple shapes to be present in a sample 

of functions. In substantive contexts like the synaptic transmission 
data, finding these groups has a direct impact on questions like the 
number of active zones in a synapse. The algorithm proposed in this 
paper behaves well in simulations and provides results for the synaptic 
transmission data consistent with biological expectations.

Recent work by Zhang and Telesca [22] focuses on clustering and 
general registration of functional data where the number of knots and 
their locations are specified a priori and common to all underlying 
shapes. They show this approach works well for clustering growth data 
and gene expression curves. Our application to EPSPs and simulation 
studies address settings where the underlying shape functions are 
quite similar but perhaps one or more of the shape functions are not 
differentiable over the entire interval of interest. In these settings, we 
have found it advantageous to use BARS, compared to using known 
knots, as adaptive methods can include multiple knots to estimate 
cusps or other sharp changes in curvature.

The degree of switching (i.e. changes in acceptance rates) generally 
increased from the first MCMC to the second MCMC but appeared to 
depend on overall noise in the data. These results are consistent with 
existing literature on tuning proposal distributions [23]. It is possible 
that other methods of "data-driven" tuning which incorporate overall 
variance in the MSIM may be necessary to further improve acceptance 
rates in the RJMCMC scheme [24].

Substantively, the finding of groups is expected, as such a finding 
can be directly linked to the underlying structural entities which are 
responsible for efficacy in chemical synaptic transmission in general 
[12,25,26]. However, if one fits a model with two groups, then two 
groups will appear in the results. While we were able to adapt an 
existing information criterion for this assessment [19] and obtain 
reasonable results, in the future it will be important to formally develop 
an inferential procedure for MSIMs. Fortunately for the synaptic 
transmission data, simpler mixture models have also detected two 
groups [12].

In univariate Gaussian mixture models, there are various model 
selection criteria that could be readily supplied [18,27] or one could 
use reversible-jump samplers to move between models with differing 
numbers of components in a manner similar to a previously-described 
approach [28]. In our context it is unclear how to implement a model 
selection criteria that requires the number of parameters in the model, 
as the spline formulation includes the number of knots as one of the 
unknown parameters. In this work, we substitute these unknown 
parameters with the K parameters corresponding to estimating kg
for k=1,…,K. Even simplistic criteria such as investigating the MSE 
between functions, or more precisely the use of χ2 or noncentral χ2 
distributions, is complicated by the differing scaling produced by the 
self-modeling coefficients for each function. It would be of interest in 
future work to formally incorporate spline complexity in the fit statistic 
evaluation.
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Figure 7: Group assignments and fitted firings The four panels show the 
functions assigned to each group versus the fitted curves for g1 and g2 
from the synaptic transmission data. The diagonal panes (a) and (d) show 
the functions assigned the corresponding g (e.g. the functions assigned 
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functions overlaid with the "other" g (so the functions assigned to group 1 
with g2 overlaid, and the functions assigned to group 2 with g1 overlaid). This 
illustrates the differences in structure between g1 and g2.
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