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Manganese is an essential element for maintaining life.
Overexposure to the metal, however, can be toxic to
organisms. Given the significant function of manganese in
insects, agriculture, and human disease, as well as in the
healthy ecology of the planet, the biological activities of
manganese in insects needs consideration. Because of the role
of manganese as a cofactor for essential enzymes present in
different organelles, both over and underexposure to
manganese has a multifaceted effect on organisms. At the
physiological level, the effects of insect exposure to the metal
on enzymatic activities and consequent alteration of insect
behaviors are best explained through the metal’s role in
modulating the dopaminergic system. Despite numerous
examples that alterations in manganese homeostasis have
profound effects on insects, the cellular mechanisms that
ensure homeostasis of this essential metal remain presently
unknown, calling for further research in this area.
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Background

"T'his literature review covers the physiological role of
manganese in insects, at the cellular and tissue level, as
well as the metal’s impact on the whole animal, which can
result in behavioral changes and affect ecological inter-
actions. Insects have often been used as a model to study
the effects of manganese overexposure, but only few
studies have determined physiological consequences of
manganese deficiency.

Manganese (Mn) can exist in a variety of oxidation states
as Mn**, Mn**, and Mn”* [1°°]. Most experimental stud-
ies have examined the effects of Mn as MnSO4 or MnCl,
which are readily dissociated in water to Mn**. The
presence of MnSO4 in agriculture sprays and soil
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enrichment has increased the exposure of many species
to this metal. Mn is essential for photosynthesis in plants
(as part of the metal cluster supporting water oxidation in
photosystem II, [2]) and promotes plant growth and
health. A protein analysis in Arabidopsis revealed that
398 enzymes are predicted to contain Mn in a metal
binding site, 20% of which have been verified experimen-
tally to use Mn as a cofactor [3], explaining its use for
agricultural crops. Application of MnSQOy affects not only
the insect populations directly feeding on plants, but also
the soil runoff into water sources, including downstream
and river-marine deltas. Relatively high levels of MnSO,
are used to increase agricultural production, and these
levels amplify throughout the ecosystem (e.g. blueber-
ries, [4]). The effluents of mining and coal excavation also
introduces Mn to the environment, serving as another
source for exposure to insects. The environment and food
web can amplify Mn concentration indirectly in insects in
various ways as following: through exposure of pollen,
thus affecting honey produced by bees; water sources,
often containing developing mosquito larvae or other
water borne insects; the bacteria and fungi in the soil
that are fed on by termites; as well as other animal food
sources used by carnivorous insects.
Dependence of biochemical reactions on Mn?
* ions
As in plants, Mn is essential to insects and other animals
since it serves as a cofactor for numerous important
cellular enzymes and organelle function (‘I'able 1). This
includes three mitochondrial enzymes: superoxide dis-
mutase (SOD2Z; also referred to as manganese superoxide
dismutase or MnSOD), arginase, and glutamine synthase
5°°]; it also is a cofactor for glycosyltransferases in the
Golgi [5°°]. The DNA sequences encoding for MnSODs
are conserved between animal species [6], suggesting that
Mn serves as a cofactor for these enzymes throughout the
animal kingdom [7]. MnSOD function has been studied
in several insects, including the desert beetle Micordera
punctipennis [8°], the Asiatic rice borer Chilo suppressalis
(Walker) (Lepidoptera: Crambidae [9°°], the fruit fly
Drosophila melanogaster [10°], and the insect cell line Sf-
9 [11]. Since it is known that MnSOD is important to
reduce oxidative stress, a lack of Mn decreases the ability
of insects to withstand bacterial and viral infections [11].
Another important enzyme which requires Mn is the
NAD-linked "malic" enzyme in skeletal muscle, studied
in the tse-tse fly Glossina morsitans [12]. 1t is also impor-
tant to note that temperature and pesticides may alter the
expression of Mn-associated enzymes. Methyl paraoxo-
nase activity was shown to increase in the tufted apple
bud moth Platyota idaeusalis after exposure to Mn and in
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2 Molecular physiology

Table 1

The action of Mn on various enzymes and metabolic processes

Insect

Enzyme/compound

Action of Mn

Citation

Aphids (Myzus persicae)

Catalase

Glucose-6-phosphate dehydrogenase
Superoxide dismutase

Peroxidase malondialdehyde (biomarker

Increased activity
Increased activity
Increased activity
Increased activity

(4]

of oxidative stress)

Digestive enzymes:
a-amylase

Trypsin
Chymotrypsin
Elastase

Bumble-bee (Bombus spp.)

Drosophila melanogaster

Metallopeptidase
GTP cyclohydrolase

CMP-sialic acid synthetase

Fructose 1,6-diphosphatase

Beta4-galactosyltransferase
Manganese-dependent

Decreased activity

Inhibited activity
Inhibited activity
Inhibited activity
Inhibited activity

Inhibited activity in body wall muscle [15]

Sugar donor enzyme for sialylation

House fly (Musca domestica)
German cockroach
& tobacco budworm

Methyl paraoxonase

Mosquito (Aedes aegypti) Ribonuclease
Silkworm (Bombyx mori)

Synthetases | and Il

Catalase for cinnabarinic acid
Cyclic GMP phosphodiesterase

Adenylate cyclase
Pupal fat body

Termite (Neotermes koshunensis)
Tufted apple bud moth (Platynota idaeusalis)

B-glucosidase

Methyl paraoxonase

Glycerophosphodiesterase

Farnesyl pyrophosphate

Increased activity [16]
Increased activity [17]
Inhibited activity [18]
Increased activity [19]
Increased activity [20]
No effects [13]
Increase activity [21]
Increased activity [22]
Increased activity [23]
Increased activity [24]
Increased activity [25]
Increased activity [26]
Increased activity [13]

building resistance to the pesticide azinphosmethyl [13].
Using current approaches to analyze total mRNA expres-
sion (RNA-Seq) for whole animals of small size or even
single cells within defined tissues with single cell RNA-
Seq, one could assess the effects on gene expression with
depletion or over exposure of Mn in order to have a more
complete understanding in the protein connectome by
such transcriptomic evidence.

Effects of Mn at the cellular level

Mn must be transported into the cell. The Malvolio (Mvl)
gene encodes a proton-coupled metal ion transporter in
the SLC11 family which transports Fe** and Mn** into
cells [27]. Mutations in this gene in Drosophila melanoga-
ster affects taste sensation [28°]. Taste in Drosophila is
dependent on the dopaminergic system within the CNS
[29°], so it is of interest to know how Mn may affect the
dopaminergic neurons. Additionally, altered neuronal
Mol expression in bees affects social behavior [30°°]. It
is worth mentioning that a high-affinity Mn transport

system has been hypothesized in Drosophila [5°°],

although the specific transporter involved has not been
identified.

Ceramide phosphoethanolamine, which is an integral part
of Drosophila cell membranes, is likely inactivated in
conditions with low manganese [5°°]. Additionally, since
MnSOD helps reduce the amount of free radicals, low
levels of Mn is thought to cause damage to cells due to
increased oxidative stress; however, excessively high
levels of Mn are known to also increase oxidative stress
[31]. These examples help illustrate that Mn deficiency as
well as excess Mn levels are damaging to various cellular
activities of insects. However, in twenty-three species
belonging to two different fly families (7ephritidae and
Drosophilidae), no differences in Mn accumulation were
observed between the families, suggesting that strong
homeostatic mechanisms for metal control are present in
insects [32]. The nature of such regulation for Mn at the
cellular or systemic level remains unknown.
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Effects of Mn on behavior

In social insects, environmental exposure to Mn has been
associated with alterations in social tasks, as worker
honeybees had higher concentrations of manganese in
their body as compared to bees with other tasks for the
colony [30°°]. Importantly, Mn supplementation in the
beehive altered the distribution of bees from defenders of
the hive to foragers [30°°]. Mn concentration within
honey is used as an indicator of Mn in the environment
[33,34]. Mn-treated flies also had a significant increase in
acetylcholinesterase (AChE) activity [35] and a simulta-
neous decrease in dopamine levels and tyrosine hydroxy-
lase activity [35]. In mammals, Mn was shown to accu-
mulate in a region of the brain where dopamine syntheses
is high [36,37]. Synchrotron X-ray fluorescence micros-
copy techniques in insects could be used to examine the
differential location of Mn within the body and within
specific tissues [38—40].

Physiological effects of Mn

Few studies have directly investigated the effects of Mn
on physiological functions of tissues and systems in
insects. Considering that Mn** can block Ca** flux in
skeletal muscle in cockroaches [41], it is not surprising
that muscle excitation and contraction are also affected
in skeletal, smooth, and cardiac muscle function in other
insects. This is demonstrated by studies indicating that
the hindgut of the cockroach stops contracting after
exposure to 2 mM Mn?* [42] and that the heartbeat
of Drosophila larvae drastically reduces when exposed to
2.5 mM and is eliminated at 15 mM MnCl, or MnSO,4
[43°°]. The effects of manganese on locomotion and
skeletal muscle function are a combination of effects,
likely involving Mn?* blocking voltage-gated Ca®* chan-
nels in the presynaptic nerve terminals [43°°]. Thus,
muscles will show reduced contraction. The body wall
muscle in larval Drosophila have graded the excitatory
junction potentials, which is related to graded contrac-
tions, and demonstrate a dose-dependent depression
with Mn [43°°]. Additionally, acute exposure of
2.5 MnSO, mM blocks nerve evoked synaptic transmis-
sion [43°°]. Depending on the ion channel subtypes and
density of channels in a neuron, a Mn block of Ca**
influx may even result in a depolarized state if a consti-
tutively active calcium-activated potassium channel
(K(ca)) 18 compromised. If this occurs, then a membrane
potential may not repolarize as quickly and result in
overexcitation of a neuron and synaptic responses if
there is still enough Ca?* influx for synaptic transmission
to take place [44]. This may explain the hyperexcitabil-
ity of crustacean sensory neurons when a nerve is bathed
in low Ca®* [45]. However, the action potential ampli-
tude of cockroach motor neurons recorded with an
intracellular electrode was compromised by 40 mM
Mn?*, which slightly enhanced the amplitude and pro-
longed the width of the action potential [46]. This
supports the notion that Mn** can reduce a K¢, current
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by blocking Ca** channels. The body wall muscle in
most insects has Ca®* channels on the plasmalemma of
the muscle to allow Ca®* influx for muscle contraction
when depolarized. The direct actions of Mn on muscle,
independent of neural innervation, can have conse-
quences due to voltage-gated Ca** channels on the
plasma membrane, essential to electrical depolarization
[43°°47]. However, the depolarization of the larval body
wall muscle fibers in a beetle (Xylotrupes dichotomus)
were maintained in the presence of 40 mM Mn**
[48], suggesting the Ca’* channels present were not
blocked by Mn, but instead manganese was able to
permeate through the channels. The role of Ca** asso-
ciation in promoting various transport processes are also
likely affected by Mn exposure. However, vitellogenin
uptake in a cockroach was shown not to be inhibited by
Mn [49].

Toxicity effects of Mn

Considering Mn has a role in maintaining an effective
immune response, low Mn levels can reduce the life span
by causing insects to be more vulnerable to bacterial, viral
and parasitic infections. If cellular processes are disturbed
in various tissues, it is reasonable to expect that there
would also be behavioral consequences from altered Mn
levels. Since primary sensory neurons, synaptic transmis-
sion at neuromuscular junction and cardiac function are
all dampened in response to high Mn levels, it is not
surprising that life span may be compromised. Various
studies have investigated the mortality rate after Mn
exposure in Drosophila. The fruit fly is a model organism
commonly utilized for pathological conditions related to
mammals [50-54]. One study exposed adult Drosophila to
10 mM MnCl, and examined locomotor behaviors as well
as survival and showed about 20% mortality after 5 days
and nearly 100% mortality after 20 days [55]. The increase
in mortality correlated with a rise in reactive oxygen
species and a decrease in locomotor behaviors [55]. In
another study, adult Drosophila exposed to 30 mM/Kg in
their diet for seven days resulted in a 20% mortality [56].
The effects of 5 mM MnCl, or MnSQOy, in food eaten by
adult Drosophila were similar to controls, but 15 mM and
30 mM significantly increased mortality. Eight days of
feeding 30 mM MnSO, resulted in 100% mortality;
feeding 30 mM MnCl, for the same duration was less
severe as some animals survived [43°°]. MnSO,4 or MnCl,
at 30 and 100 mM are toxic to 1st instar Drosophila larvae;
at 15 mM of either compound, there was still significant
mortality (15 mM MnSOy resulted in 50% of the larvae
pupating and eclosing as adults, [43°°]). A behavioral
analysis of larvae consuming Mn 30 mM MnSOy4 or
MnCl; for 24 hours resulted in significant decreases in
body wall and mouth hook contractions; 15 mM Mn had a

nee

milder but still significant effect [43

When comparing freshwater midges, C. javanus was
equally or more sensitive to environmental metals than
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Figure 1
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Overview of the effects of manganese on cells, tissue, and the whole animal. (a) Labile Mn?* may be transported and potentially regulated in
hemolymph by ferritin [64]. The proton-coupled metal ion transporter expressed by the Mv/ gene has been suggested to transport Mn2* into cells.
Increases in Mn?* can be beneficial in helping to maintain an increased immune response to bacteria and viruses. Mn?* concentration within cells
can result in some enzymes increasing in expression, while others decrease. In particular, MnSOD increases in expression. However, high levels
of intracellular Mn?* can trigger apoptosis and cell death. (b) Mn?* can block voltage-gated Ca?* channels on presynaptic nerve terminals as well
as on muscles (i.e. body wall and cardiac). (c) Dietary Mn®* promotes melanin production to protect from solar radiation and increases cuticle
hardness. High levels of dietary Mn?* lead to reduced locomotory function and decreased survival.

Chironomus javanus [57°]. The nymphs of a dragonfly
(Tramea cophysa) were less sensitive than two tropical
ostracod (Crustacea) species (Chlamydotheca sp. and Stran-
desia trispinosa) to various metal with Mn being the least
toxic of the four metals (i.e. Cd > Hg > Cu > Mn) studied
[58°].

Mn neurotoxicity

Mn as well as iron (Fe) and copper (Cu) are associated
with Parkinson’s disease [59°°]. Likewise, Mn, along with
Zinc (Zn), Cu, aluminum (Al) influence the severity of
Friedreich’s ataxia [60]. Drosophila may serve as a useful
model to study the effects of metals on movement dis-
orders, since Mn exposure damages dopaminergic neu-
rons in the central nervous system of Drosophila melano-
gaster [59°°]. Alterations in the dopaminergic neural
circuits affect locomotion in Drosophila melanogaster
[59°°,61]. It is not yet known if Mn is directly affecting
the dopamine receptors or exerting its effects through a
specific cellular process. Since larval heartrate is also
influenced by dopamine it is possible that Mn might
alter heart rate by blocking dopamine receptors [62] as
well as other cellular processes. The further exploration of
the effects in various insect models needs to continue in
order to facilitate understanding the effects of Mn poi-
soning in other animals [63].

A general overview in the impact of Mn at a cellular level
to the whole animal is schematically illustrated in
Figure 1.
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