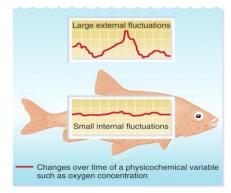
http://www.ukclimbing.com/news/ite m.php?id=49981_

Physiology

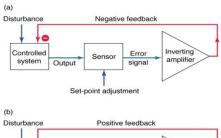
- · Define: The study of how living organisms function
- Structure & function are important to understand function
- Why study: Curiosity. Better understand how humans function under normal conditions. Thus, modifications of pathological states back to a 'normal' state might be possible.


- Many of the physiological process are described by chemical and physical properties
- It is important to integrate these concepts with biology.

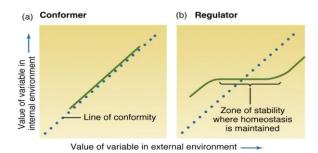
• The physiology of an animal is well suited to the environment in which it has evolved.

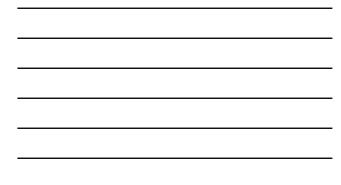
This is explained by the process of ADAPTATIONgradual change over many generations.

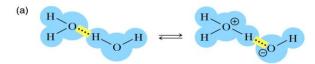
- Acclimatization is a change of an individual over its lifetime of biochemical or anatomical alterations
- Acclimation is like acclimatization but induced by experimentation.


- Homeostasis- The tendency of an organism to regulate and maintain relative internal stability.
- Claude Bernard coined this term 1800's

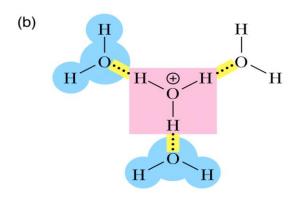
This mostly works by a feed back control.


Such as by a negative feedback.


Examples - Temp, pH, salinity within the body



Chapter 2


- · Read over it for your own benefit
- Know August Krogh principle.
- that there is an animal optimally suited to yield an answer of a physiological problem to be addressed

Chapter 3

- Understanding of molecules and their function for physiological processes.
- Water- it is polar can be used to interact with other ions. It lets Na+Cl- dissolve in body fluids. This is needed for rapid transport of ions.

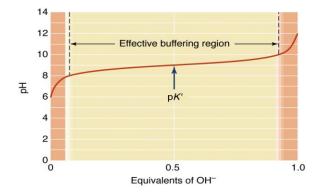
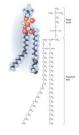
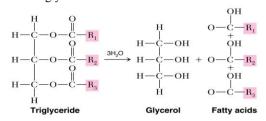

- Acid: any substance that can donate a proton.
- Base: any substance that combines with a proton.

Table 3-2 The pH scale

	$_{\rm pH}$	$[H^+] (mol \cdot L^{-1})$	$[\mathrm{OH^-}]\;(\mathrm{mol}\cdot\mathrm{L^{-1}})$	Examples
	0	10^{0}	10^{-14}	
	1	10^{-1}	10^{-13}	Human gastric fluids
↑ Increasing acidity	2	10^{-2}	10^{-12}	0
	3	10^{-3}	10^{-11}	Household vinegar
	4	10^{-4}	10^{-10}	0
	5	10^{-5}	10^{-9}	Interior of lysosomes
	6	10^{-6}	10^{-8}	Cytoplasm of muscle
Neutral	7	10-7	10-7	Pure water at 25°C
	8	10^{-8}	10^{-6}	Seawater
	9	10^{-9}	10^{-5}	
↓ Increasing alkalinity	10	10^{-10}	10^{-4}	Alkaline lakes
•	11	10-11	10^{-3}	Household ammonia
	12	10^{-12}	10^{-2}	Saturated lime solution
	13	10^{-13}	10^{-1}	
	14	10^{-14}	100	



FATS:


1. Lipids

- 2. Phospholipids for membranes
- 3. Waxes- water proof the surface of insects

Biological Molecules

LIPIDS Fats - triglyceride

2. Phospholipids for membranes

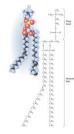
Saturated- each carbon has a single bond and is staurated with 'H'

Unsaturated- some carbons have a double bond and thus are not saturated with 'H'.

	Unsat	Sat
1. Melting Pt.:	Decreased	increased
2. Metab:	-	easily converted to sterols
		(ie, Cholesterol).

Need for cholesterol for steroid based hormone production.

Table 3-3	The energy content of the three major categories of foodstuffs
	major categories of foodstuffs

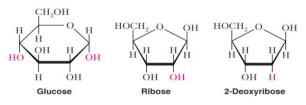

Substrate	Energy content (kcal \cdot g $^{-1}$)
Carbohydrates	4.0
Proteins	4.5
Fats	9.5

FATS:

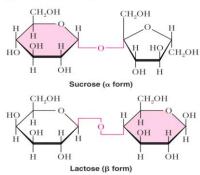
1. Lipids

2. Phospholipids for membranes

3. Waxes- water proof the surface of insects



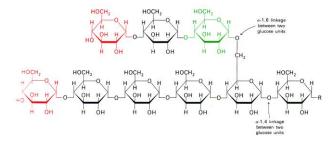
Fats are good as a energy store. 1. Little water needed. 2. Stored in adipose tissue. 3. High "H & C" with little "O" so one gets a good energy yield. (1 gram of fat=2 grams of carbohydrates)


Carbohydrates

- I. Monosaccharides
- II. Disaccharides

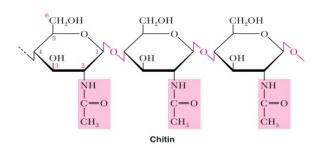
- I. Monosaccharides -Six carbon-- hexoses -five carbon-- pentoses
- (a) Monosaccharide sugars

(b) Disaccharide sugars


The disaccharides are units of monosaccharides

A. Polymers – Plants—starch

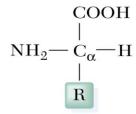
-- Animals- glycogen


Little water needed for storage. So good energy for plants and animals.

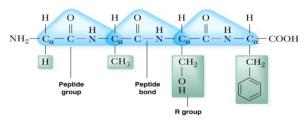
- B. Cellulose
- C. Chitin (exoskeleton in insects/crustaceans)

Туре	Defective enzyme	Organ affected	Glycogen in the affected organ	Clinical features
I VON GIERKE'S DISEASE	Glucose 6-phosphatase	Liver and kidney	Increased amount; normal structure.	Massive enlargement of the liver. Failure to thrive. Severe hypoglycemia, ke- tosis, hyperuricemia, hy- perlipemia.
II POMPE'S DISEASE	a-1,4-Glucosidase (lysosomal)	All organs	Massive increase in amount; normal structure.	Cardiorespiratory failure causes death, usually be- fore age 2.
UII CORI'S DISEASE	Amylo-1,6-glucosidase (debranching enzyme)	Muscle and liver	Increased amount: short outer branches.	Like Type I, but milder course.
IV ANDERSEN'S DISEASE	Branching enzyme $(\alpha - 1, 4 \longrightarrow \alpha - 1, 6)$	Liver and spleen	Normal amount; very long outer branches.	Progressive cirrhosis of the liver. Liver failure causes death usually be- fore age 2.
V McARDLE'S DISEASE	Phosphorylase	Muscle	Moderately increased amount: normal structure.	Limited ability to perform strenuous exercise because of painful muscle cramps. Otherwise patient is nor- mal and well developed.
VI HERS' DISEASE	Phosphorylase	Liver	Increased amount.	Like Type I, but milder course.
VII	Phosphofructokinase	Muscle	Increased amount: normal structure.	Like Type V.
VIII	Phosphorylase kinase	Liver	Increased amount: normal structure.	Mild liver enlargement. Mild hypoglycemia.

Note: Types I through VII are inherited as autosomal recessives. Type VIII is sex-linked.

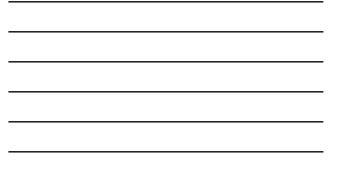


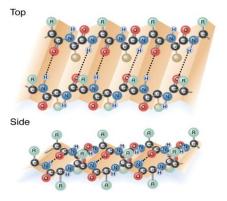
Proteins


- A lot in cells. $\frac{1}{2}$ of the dry mass.
- Various structures.

-Primary, secondary, tertiary, and quaternary

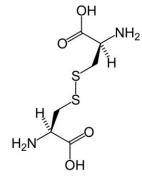
(a) General structure of alpha-amino acids


(b) Structure of a tetrapeptide



Alpha helix

Secondary Beta- sheet



Secondary types

- alpha helix: alpha-Keratins for hair and wool
- Beta sheets: (Harder) beta- Keratins for reptile scales and turtle shells

Tertiary

Quaternary- a couple of subunits coming together like Heme units.

ie., Hemoglobin

Molecular chaperones

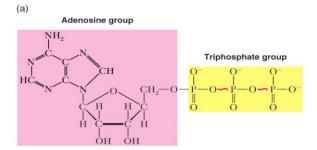
- Fold other proteins. Maintain their structure.
- To protect proteins from degradation and preserve the overall integrity of intracellular protein pool.
- Example HSP or stress proteins.

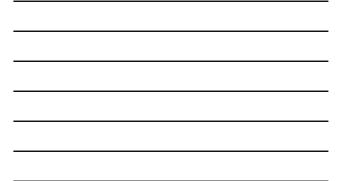
DNA & RNA

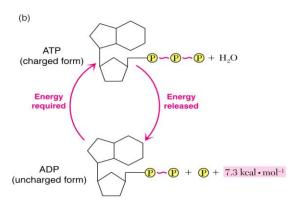
- DNA isolated in 1869 by Friedrich Miescher. White blood cells and fish sperm.
- DNA- genes
- RNA translating the coded DNA message.

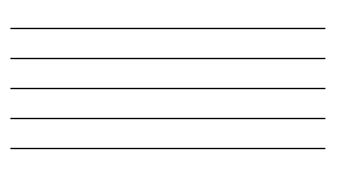
DNA with mRNA--- Transcription
mRNA to protein --- Translation
A-T and C-G in DNA
But A-U in RNA

Energy in Living cells


- Chemical Rxs taking place (types of tissues)
- Where within the cells? (organelles)

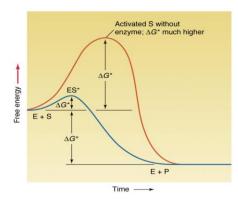

Animals are like chemical machines. Different forms of Energy- ie., thermal and mechanical.

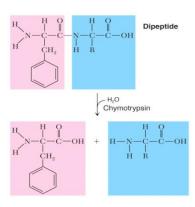

• A measure of a systems energy that it can provide.


 $\Delta G = \Delta H - T \Delta S$ Is Gibbs free Energy ΔH is heat; ΔS is Entropy

If ΔG is neg then the Rx is spontaneous. Also hold for biochemical Rxs.

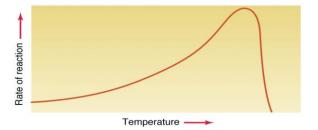
OH O │ ║ ₽─CH₂─CH─C∽₽ 1,3-Diphosphoglycerate


 $\Delta G^{\circ} = -11.8 \text{ kcal} \cdot \text{mol}^{-1}$


 $\Delta G^{\circ} = -7.3 \text{ kcal} \cdot \text{mol}^{-1}$

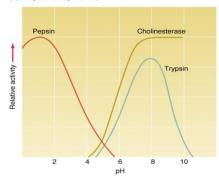
СН₅ОН н H ^h QН но ó∽® $^{\rm H}_{\rm H}$ óн Glucose 1-phosphate $\Delta G^{\circ} = -5.0 \text{ kcal} \cdot \text{mol}^{-1}$

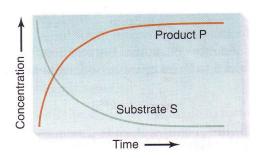
Activation energy, ΔG^* ΔG

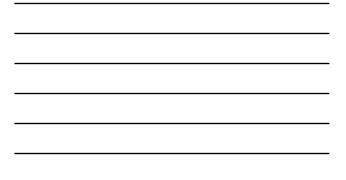


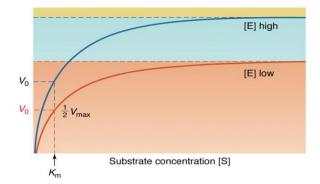
(a) Enzyme activity versus temperature

(b) Enzyme activity versus pH



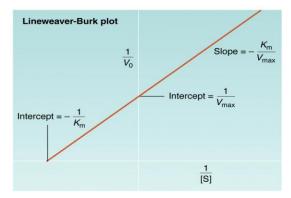

Table 3-6 Metal ions functioning as cofactors


Metal ion	Some enzymes requiring this cofactor
Ca ²⁺	Phosphodiesterase
	Protein kinase C
$Cu^{2+}(Cu^{+})$	Cytochrome oxidase
	Tyrosinase
Fe ²⁺ or Fe ³⁺	Catalase
	Cytochromes
	Ferredoxin
	Peroxidase
K ⁺	Pyruvate phosphokinase (also requires Mg ²⁺)
Mg^{2+}	Phosphohydrolases
	Phosphotransferases
Mn ²⁺	Arginase
	Phosphotransferases
Na ⁺	Plasma membrane ATPase (also requires K ⁺ and Mg ²⁺)
Zn^{2+}	Alcohol dehydrogenase
	Carbonic anhydrase
	Carboxypeptidase

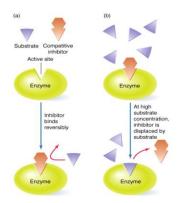

Source: Adapted from Nelson and Cox, 2000.

• Rx A+B \longrightarrow C+D

Reactants to Products Substrate goes to a Product $S \xrightarrow{k} P$

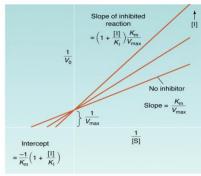

• Then the Michaelis-Menton equation for a single enzyme Vo of initial rate varies but can be used for determining other factors.

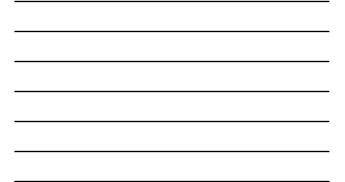
Key is when $Vo = \frac{1}{2} Vmax$

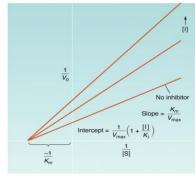

Then; $\underline{\text{Vmax}} = \underline{\text{Vmax}[S]}$ will be Km=[S] 2 Km + [S]

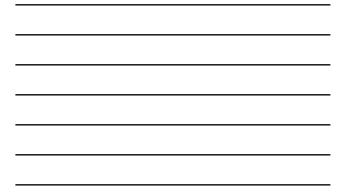
So Km can be determined by a plot. In this kind of plot many values are needed for the curve. A linear plot is easier and more accurate.

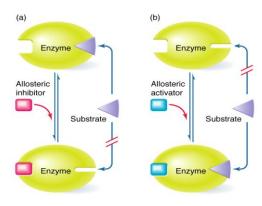
$$\frac{1}{Vo} = \frac{Km}{Vm[S]} + \frac{1}{Vmax}$$



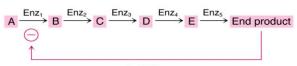





(a) Competitive inhibition



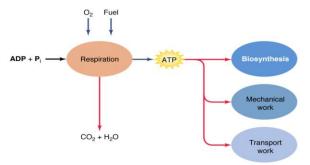
(b) Noncompetitive inhibition



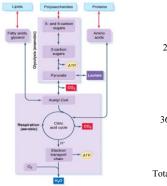
Metabolic Rx in the body must be regulated.

Not all or none Rxs for process like ATP (energy)

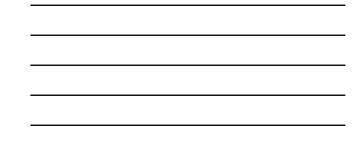
- Many Rx regulated by enzymes. They are proteins; they are made and broken down.
- These are amino acids so Temp, pH, and salts will have an effect on their function.
- Also the cell does not want to much excess protein around so make Enzymes as needed.

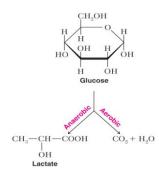


Inhibition

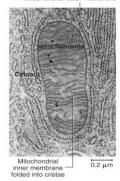

Ex: The neurotransmitter/hormone: Norepinephrine can inhibit tyrosine hydroxylase which is an enzyme that makes Norepi.

Energy within the cells used to drive the tissue- to organ- to system.




2 ATP

36 ATP (?)


Total 38 ATP (?)

$C_6H_{12}O_6 + 6 \ O_2 = 6 \ CO_2 + 6 \ H_2O \ \ with \ O_2 \ metabolism$

Mitochondrial outer membrane

Inner membrane ETC and most ATP is produced

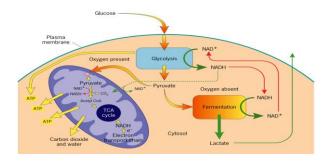
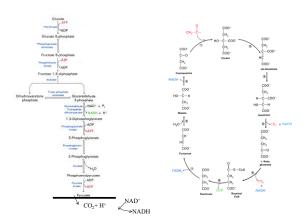
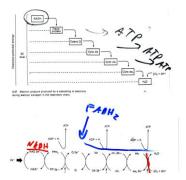
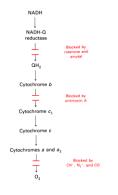
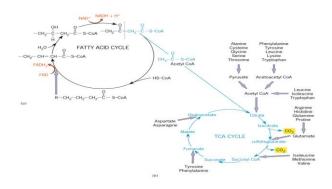
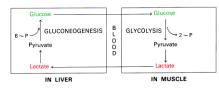




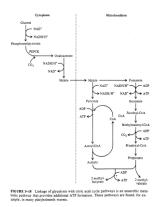
Figure 5.5



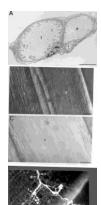

Reaction sequence	ATP yield per glucose
Glycolysis: glucose into pyruvate (in the cytosol)	
Phosphorylation of glucose	- 1
Phosphorylation of fructose 6-phosphate	- 1
Dephosphorylation of 2 molecules of 1,3-DPG	+2
Dephosphorylation of 2 molecules of phosphoenolpyruvate	+2
2 NADH are formed in the oxidation of 2 molecules of glyceraldehyde 3-phosphate	
Conversion of pyruvate into acetyl CoA (inside mitochondria)	
2 NADH are formed	
Citric acid cycle (inside mitochondria)	
2 molecules of guanosine triphosphate are formed from 2 molecules of succinyl CoA	+2
6 NADH are formed in the oxidation of 2 molecules each of isocitrate, a-ketoglutarate, and malate	
2 FADH ₂ are formed in the oxidation of 2 molecules of succinate	
Oxidative phosphorylation (inside mitochondria)	
2 NADH formed in glycolysis; each yields 2 ATP (assuming transport of NADH by the glycerol phosphate shuttle)	+4
2 NADH formed in the oxidative decarboxylation of pyruvate; each yields 3 ATP	+6
2 FADH ₂ formed in the citric acid cycle; each yields 2 ATP	+4
6 NADH formed in the citric acid cycle: each yields 3 ATP	+18
each yields 3 ATP NET YIELD PER GLUCO	


TCA and ETC	:	
Molecule	ATP worth	Total
4 NADH	3	12
1 FADH ₂	2	2
(Above, I wrot	te 2 FADH, in class by mistake)	
1GTP	1	1
		15
	X2 TCA cycles	s=30 ATP
	-	
Glycolysis:		
	Gly Net ATP	2
		32 Total
	2 NADH in Gly (3 ATP/each)	6
		38 Total
But us	se 2 ATP for the transport into Mit	-2 (1 ATP for each NADH)
		36 ATP Grand total


Pyru Inhibited by ATP, acetyl CoA, and NADH Acetyl CoA Inhibited by ATP 21 Oxalo-Citrate acetate Malate cis-Ac Isocitrate rate a-Ketoglu Succ Succinyl CoA d CoA


Endosymbiotic theory Lynn Margulis

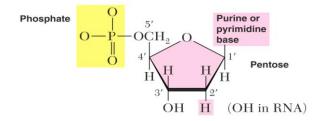


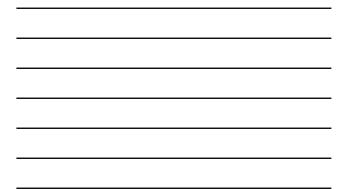

Anaerobic- Bacteria, some yeasts, some invertebrates can live without O_2 .

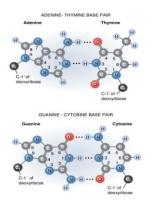
Ex. Clostridium botulinum can not grow in O_2 .

Aerobic- require a supply of O_2 . Some tissues like muscle can function anaerobically and build up an " O_2 debt" but pay back occurs.

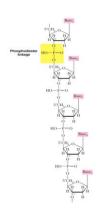
With O_2 the cells are 20 times more efficient to produce ATP.




Homework problems


Competitive


1. Binds at active site


- 2. Increase [S] removes inhibition
- 3. Increase [I] more block till saturated
- (alter rate and Increase Km, without a change on Vmax) 4. Slope changes
- Non- Competitive
- 1. Dose not binds at active site
- 2. Increase [S] no effect
- 3. Increase [I] more block till saturated (no change on Km, but decrease Vmax)
- 4. Slope changes

