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internal pressure. By this definition, all vessels that
respond to increasing pressure by a myogenic reduc-
tion in lumen diameter would be considered part of
the microcirculation. Such a definition would include
the smallest arteries and arterioles in the microcircu-
lation in addition to capillaries and venules (68). 

A primary function of the microcirculation is to
optimize the delivery of nutrients and removal of
waste products from all cells of the body in response to
variations in demand (113). A second important func-
tion is to avoid large fluctuations in hydrostatic pres-
sure at the level of the capillaries that otherwise would
impair capillary exchange. Finally, it is at the level of
the microcirculation that a substantial proportion of
the drop in hydrostatic pressure occurs. The microcir-
culation is, therefore, extremely important in deter-
mining the overall peripheral resistance (68). 

In normal conditions, systemic, regional, and local
metabolic and myogenic autoregulatory mechanisms
ensure adequate progress of these microcirculatory
functions (60, 113). In pathological conditions (e.g.,
obesity), however, the loss of such mechanisms results
in the development of microvascular dysfunction. 

Microvascular Dysfunction 
in Obesity

Evidence from several studies indicates that obesity
impairs microvascular function in several ways. First,
impairments of endothelial function of different
microvascular structures have been demonstrated in
obesity. Obese subjects showed blunted vasodilation
in response to classic endothelium-dependent
vasodilators in skin and resistance arteries (24, 29,
101). In addition, obese individuals showed dimin-
ished vasodilator function of resistance vessels and
capillary recruitment to reactive hyperemia (6, 24, 29,
41) and shear stress (6). Of great interest are observa-
tions on insulin-mediated control of tissue perfusion.
Over a decade ago, Laakso et al. (64) drew attention to
the decreased sensitivity of resistance vessels to
insulin-induced endothelium-dependent vasodila-
tion in obese individuals. Others have confirmed this
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The clustering of cardiovascular risk factors, including
obesity and central fat distribution, hypertension,
insulin resistance, dyslipidaemia, and proinflammato-
ry and prothrombotic factors, has been recognized for
many years and is often referred to as the metabolic
syndrome (1, 47). Abdominal obesity is considered to
play a central role in this syndrome and is a major risk
factor for chronic diseases such as Type 2 diabetes
mellitus and cardiovascular disease (49, 88). The inci-
dence of obesity is progressively increasing worldwide
and has reached epidemic proportions in several
countries (37). Consequently, the prevalence of obesi-
ty-related disorders, such as insulin resistance and
hypertension, is also increasing at an alarming rate.
Although this is well recognized, the underlying
mechanisms of obesity and obesity-related disorders
remain relatively poorly understood. Unraveling these
mechanisms is very important because it may lead to
the development of therapeutic strategies that target
the development of obesity-associated clinical disor-
ders and, eventually, the development of Type 2 dia-
betes mellitus and cardiovascular disease. 

Microvascular dysfunction may affect both periph-
eral vascular resistance (5, 75) and insulin-mediated
glucose disposal (19, 92, 94, 117), thereby contributing
to hypertension and insulin resistance, respectively.
Recently, it has become clear that obesity is character-
ized by microvascular alterations (3, 29, 94).
Therefore, we suggest that obesity may be a primary
cause of microvascular dysfunction resulting in
changes in pressure and flow patterns and, conse-
quently, obesity-related hypertension and insulin
resistance. 

Microcirculation (Definition 
and Functions) 

The microcirculation is widely taken to encompass
vessels <150 �m in diameter. It therefore includes
arterioles, capillaries, and venules. Nowadays, a defi-
nition based on arterial vessel physiology rather than
diameter or structure has been proposed, depending
on the response of the isolated vessel to increased
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observation in the microcirculation of the skin, using
nailfold capillairoscopy (29). In addition to abolished
insulin-induced vasodilation in resistance vessels,
impaired microvascular recruitment during hyperin-
sulinemia has also been demonstrated (29). The latter
is in good accordance with regard to microvascular
recruitment in skeletal muscle. Wallis et al. (117)
revealed impaired muscle microvascular action of
insulin in obese rats, whereas Clerk et al. (21) were the
first to demonstrate this in human obesity. In fact,
measures of body fatness are strongly related to skin
microvascular function even in lean individuals (27,
94). Second, in addition to these functional changes,
structural impairments of the microvasculature have
been demonstrated in obesity. The skeletal muscle cir-
culation of obese Zucker rats shows decreased 
capillary density, so-called rarefaction (40, 42), and
structural remodeling (103). Recent studies of obese
individuals have also demonstrated this capillary rar-
efaction in human skeletal muscle (46, 107). There is
convincing evidence that this reduction in microvessel
density in obesity may be most accurately predicted by
the reduced bioavailability of vasodilative agents (i.e.,
endothelial dysfunction) in obesity. However, the
mechanisms through which this endothelial dysfunc-
tion-related reduction in skeletal muscle microvessel
density evolves have not been fully elucidated (43).
Some studies suggest that insulin, acting on the
insulin and IGF receptors, in concert with angiotensin
II (AngII) stimulates vascular remodeling (see also
remodeling in hypertension below) (51). 

In accord with a causal role for obesity in the patho-
genesis of endothelial dysfunction, weight loss was
found to improve endothelial function (131). It can be
concluded that a clear association between obesity
and microvascular dysfunction, possibly via the
endothelium, in different tissues has been established. 

Microvascular Dysfunction 
and Hypertension

In most forms of hypertension, cardiac output is close
to normal, and the peripheral vascular resistance is
increased in proportion to the increase in blood pres-
sure. Since the major drop in hydrostatic pressure
occurs in precapillary vessels ranging from 300 to 10
�m in diameter, i.e., the smallest arteries and arteri-
oles, these vessels represent the principal site of the
increased resistance in hypertension (68). 

Hypertension is characterized by functional as well
as structural changes in this microvasculature (68).
First, the mechanisms regulating vasomotor tone may
be abnormal, leading to enhanced vasoconstriction or
reduced vasodilatation (55). Second, decreases in
arteriolar diameters and increases in the wall-to-
lumen ratio of small arteries have been demonstrated
(55, 68, 104). Third, a reduction in the density (rarefac-
tion) of arterioles, venules, and capillaries can be

observed in different vascular beds (55, 56, 92, 104).
Since the Hagen-Poiseille’s law shows that the resist-
ance of a blood vessel is related to the inverse of the
fourth power of vessel diameter, it can be appreciated
that small reductions in diameter have significant con-
sequences for vascular resistance (104). 

It has been known for many years that increased
wall-to-lumen ratio and microvascular rarefaction can
be viewed as a result of increased vascular pressure.
Among the factors that initiate this remodeling are
endothelial dysfunction, changed blood flow, and
increased transmural pressure. Since the endothelium
serves as a pressure sensor and integrates signals to
the underlying vascular smooth muscle cells, it plays
an important role in this remodeling process. In addi-
tion, an increasing number of studies have shown that
AngII is an important factor that stimulates vascular
remodeling. Via multiple signalling pathways, AngII
induces synthesis of growth factors and pro-inflam-
matory mediators, which lead to vascular injury and
structural remodeling (109). 

Besides being the consequence of hypertension,
there is also evidence that these microvascular abnor-
malities may precede the elevation in blood pressure.
A smaller retinal arteriolar diameter has been shown
to prospectively predict the development of hyperten-
sion (57, 122). With regard to rarefaction, Le Noble et
al. (67) found a structural rarefaction of capillaries
and small arterioles in muscle of spontaneously
hypertensive rats even in the absence of a substantial
elevation in blood pressure. Human studies have
demonstrated that patients with mild borderline pri-
mary hypertension showed as much skin capillary
rarefaction as those with established hypertension
(5). In addition, impaired microvascular vasodilation
and capillary rarefaction were associated with a
familial predisposition to essential hypertension (75).
Furthermore, capillary density has been found to cor-
relate inversely with blood pressure in hypertensive,
normotensive lean, and normotensive obese subjects
(29, 92, 94). 

Thus microvascular abnormalities in obesity may
contribute to the development of hypertension.
Furthermore, a “vicious cycle” may exist in which the
microcirculation maintains or even amplifies
increased blood pressure in obesity. 

Microvascular Dysfunction and
Insulin Resistance

Insulin resistance is typically defined as decreased
sensitivity for insulin-mediated glucose disposal. A
major action of insulin in muscle and adipose tissue
involves translocation of the insulin-responsive glu-
cose transporter (GLUT4) to the cell surface, leading to
glucose uptake in peripheral tissues. This requires
phosphatidylinositol (PI3)-kinase-dependent signal-
ing pathways (63). 

253PHYSIOLOGY • Volume 22 • August 2007 • www.physiologyonline.org

REVIEWS
 on June 16, 2012

physiologyonline.physiology.org
D

ow
nloaded from

 

http://physiologyonline.physiology.org/


have demonstrated a strong relationship between cap-
illary recruitment and skeletal muscle glucose uptake
(22, 29, 86, 93, 115). In addition, specific inhibition of
insulin-mediated microvascular effects causes a con-
comitant 30–40% reduction in glucose disposal (10,
114, 115). This indicates a functional coupling between
insulin-induced effects on muscle microvascular per-
fusion and glucose uptake. This link is underscored by
the fact that the vascular actions of insulin are estab-
lished through stimulation of PI3-kinase-dependent
insulin-signaling pathways that bear striking similari-
ties to the metabolic insulin-signaling pathways (63).
Both human and rat studies underline this coupling.
Obese Zucker rats are characterized by both impaired
insulin-induced glucose uptake and impaired capillary
recruitment in the basal state and during hyperinsu-
linemia (117). In human obesity, similar impairments
have recently been demonstrated (21, 28, 29, 64). 

These findings suggest the involvement of
microvascular dysfunction in the development of obe-
sity-related insulin resistance. In terms of cause and
effect, there is support for the suggestion that
microvascular dysfunction precedes and even predicts
the development of insulin resistance and Type 2 
diabetes (71, 72, 122). This idea is also supported by
studies showing endothelial dysfunction in mildly
overweight, normoglycemic subjects with a strong
family history of Type 2 diabetes mellitus (13). 

Possible Mechanisms for Obesity-
Associated Microvascular
Dysfunction

There may be several mechanisms involved in the
development of obesity-associated microvascular dys-
function. In the following subsections, we will discuss
two main mechanisms. 

Intracellular signaling

The metabolic action of insulin to stimulate glucose
uptake in skeletal muscle and adipose tissue is medi-
ated through stimulation of PI3-kinase-dependent sig-
naling pathways. These pathways involve the insulin
receptor, insulin receptor substrate 1 (IRS-1), PI3-
kinase, phosphoinositide-dependent kinase 1 (PDK-
1), and protein kinase B (Akt) (63). The vasodilator
actions of insulin require highly parallel PI3-kinase-
dependent insulin-signaling pathways. Insulin-
induced stimulation of Akt directly increases 
endothelial NO synthase (eNOS) activity, leading to
increased NO production (63, 82) (FIGURE 1). 

In addition to its vasodilator actions, insulin also
has vasoconstrictor effects. These vasoconstrictor
effects are mainly mediated by the vasoconstrictor
peptide endothelin-1 (ET-1) (63). ET-1 is produced in
the vascular endothelium through stimulation of the
intracellular MAP-kinase signaling pathway and the
extracellular signal-regulated kinase-1/2 (ERK1/2)
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In addition to this metabolic action, insulin has two
discrete actions on the arterial vasculature to promote
the delivery of insulin and glucose to skeletal muscles.
In the 1990s, Baron and colleagues were the first to
report insulin’s ability to vasodilate resistance vessels
and consequently increase total skeletal muscle blood
flow (8, 9). It was demonstrated that this increase in
bulk blood flow was paralleled by an increase in
insulin-mediated glucose uptake (11, 64). 

Although several studies have confirmed this vascu-
lar action of insulin (15, 25, 105), some studies have
failed to observe changes in total flow with insulin
(19). Part of this discrepancy can be explained by sub-
ject factors as limb muscularity and physiological fit-
ness. However, the duration and dose of the insulin
infusion seems also to be important (123). In most
studies, insulin-induced increases in total limb blood
flow are only observed using supra-physiological
doses of insulin or after several hours delay when
physiological concentrations are used (128).
Moreover, insulin-mediated changes in glucose
uptake often precede insulin-mediated changes in leg
blood flow, and studies during hyperinsulinemia and
manipulation of total limb blood flow with different
vasodilators have shown that total limb blood flow can
be increased without any changes in insulin-mediated
glucose uptake. As a consequence, the physiological
importance, in stimulating glucose uptake, of insulin’s
ability to increase total blood flow is doubtful (128). 

Besides these actions on resistance vessels, insulin
induces a second vascular action further down the
arterial tree, termed functional capillary recruitment.
By reducing precapillary arteriolar tone and/or alter-
ing arteriolar vasomotion, insulin redirects blood flow
within the microvascular bed from non-nutritive to
nutritive vessels, with a resultant increase in the over-
all number of perfused capillaries. Given that the
nutritive capillary bed is directly involved in nutrient
delivery to muscles, an increase in blood volume of
the nutritive capillary bed directly enhances access of
glucose and insulin to muscle tissue (19, 63). 

Insulin-induced functionally capillary recruitment
has been shown to require physiological concentra-
tions of insulin with a time course that approximates
the time course for insulin-mediated glucose uptake
in skeletal muscle (63, 115, 123). Rattigan et al. (87)
were the first to report this insulin-mediated capillary
recruitment within the skeletal muscle of a rat’s hind
limb. In subsequent in vivo rat studies, this insulin-
induced effect on capillary perfusion was further
established (17, 86, 116, 128). In human muscle, it was
shown that insulin increased microvascular blood vol-
ume (21, 22, 84). Moreover, hyperinsulinemia was
shown to enhance skin post-occlusive capillary
recruitment and microvascular vasomotion in human
skin and muscle (26, 93). 

In support of the physiological importance of
insulin-induced capillary recruitment, several studies
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(35). The PI3-kinase pathways are not involved
(FIGURE 1). Thus insulin has opposing endothelial-
derived vasodilating and vasoconstrictor effects, with
the net effect being dependent on the balance
between these two. Normally, the net result is either
neutral or vasodilatory. 

Obesity-associated microvascular dysfunction may
be caused by cellular defects that influence this bal-
ance. First, obesity is associated with an increased pro-
duction of reactive oxygen species (ROS) (30, 65, 80).
ROS limits the bioavailability of NO via reduced NO
production and direct inactivation of NO by superox-
ide (O2

–) (66). Second, muscle and kidney eNOS
expression and activity are diminished in obesity (50,
69, 89, 111, 124), resulting in blunted NO production.
Finally, the intracellular insulin signaling transduction
pathway is impaired (119). Fatty acid elevation
induces phosphorylation of IRS-1 that interferes with
insulin-receptor mediated phosphorylation of IRS-1,
and in turn results in impaired activation of PI3-kinase
(97). As a consequence of these cellular defects,
endothelium-derived vasodilation, including insulin-
mediated dilation, is blunted in obesity. 

In contrast, the signaling pathways for insulin-medi-
ated vasoconstriction seem to be intact or only selec-
tively impaired in obesity. Cardillo et al. (14) demon-
strated impaired MAP-kinase pathway activity in obese
rats, whereas Jiang et al. (59) showed intact MAP-
kinase pathways in the vasculature of obese Zucker
rats. However, ERK1/2 activation remains intact in obe-
sity (59). Therefore, insulin-induced vasoconstriction
can be demonstrated. In line with this, insulin induced
ET-1-dependent vasoconstriction has been shown in
skeletal muscle arterioles of obese rats (36). 

Thus there is an imbalance between NO and ET-1
production in obesity, wherein the vasoreactivity is
shifted from vasodilation toward vasoconstriction.
This is further demonstrated in Cardillo’s study in
which obese, hypertensive individuals showed
insulin-induced vasoconstriction and increased ET-1-
dependent vasoconstrictor tone as well as decreased
NO-dependent vasodilator tone (14, 48). This
endothelial dysfunction may contribute importantly
to obesity-associated insulin resistance and obesity-
associated hypertension. 

Endocrine signaling

Adipokines. The fact that measures of adiposity and
microvascular function are closely linked is strongly
suggestive for signaling pathways between adipose tis-
sue and the microcirculation. Adipose tissue functions
not merely as a passive storage depot but as a highly
active endocrine organ. Adipose tissue, and in partic-
ular visceral adipocytes, secrete a variety of bioactive
substances called adipokines. In the case of obesity,
there is an enhanced production of free fatty acids
(FFA) (81), angiotensinogen, leptin, resistin, and sev-
eral inflammatory cytokines such as tumor necrosis

factor (TNF)-� and interleukin-6 (IL-6) (52, 99, 121,
127), whereas the production of adiponectin, an anti-
inflammatory adipokine, is reduced (7). 

FFA and TNF-� elevation impair insulin sensitivity
and increase blood pressure through mechanisms that
are not completely understood but do involve
microvascular function (20, 28, 125). In lean rats, acute
FFA elevation impairs insulin-mediated capillary
recruitment and muscle glucose uptake (20). In addi-
tion, human studies also demonstrate endothelial dys-
function in response to FFA exposure. Steinberg et al.
(102) and Watanabe et al. (120) demonstrated a reduc-
tion in endothelium-dependent vasodilation with
intralipid infusion in resistance vessels. In another
study, elevation of FFA levels in lean subjects resulted
in impaired basal and insulin-induced skin capillary
recruitment and endothelium-dependent vasodila-
tion, which was associated with reduced glucose
uptake. Conversely, obese women showed improved
basal and insulin-mediated skin capillary recruitment
and glucose uptake in response to lowering FFA levels
(28). In this study, approximately 29% of the effects of
FFA elevation or lowering on insulin-induced glucose
uptake could be explained by changes in microvascu-
lar function, which is consistent with a role for FFA-
induced microvascular dysfunction in the develop-
ment of obesity-associated disorders (28). 
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FIGURE 1. Mechanisms of insulin-mediated nitric oxide and 
endothelin 1 production
Mechanisms of insulin-mediated nitric oxide (NO) and endothelin 1 (ET-1) production
leading to vasodilation and vasoconstriction, respectively. Angiotensin II (AngII), tumor
necrosis factor � (TNF-�), and free fatty acids (FFA) inhibit the PI3-kinase (PI3K) path-
way and stimulate the MAPK pathway. IRS-1, insulin receptor substrate 1; PDK-1, phos-
phoinositide-dependent kinase 1; Akt, protein kinase B; eNOS, endothelial nitric oxide
synthase. 
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importantly, adipose tissue-derived TNF-� may sup-
press insulin-mediated hemodynamic and metabolic
effects through inhibition of IRS-1 phosphorylation
(53, 121). In addition to these direct effects of TNF-�,
TNF-� may also induce microvascular dysfunction
indirectly through stimulation of lipolysis, thereby
leading to an increased release of FFAs (FIGURE 1). 

Leptin is another adipocyte-derived hormone that
rises with increasing percentage of body fat (99, 121),
which is likely to be the result of resistance to its
appetite-suppressing effects in obesity. Leptin plays
an important role in vascular physiology, as leptin sig-
naling in skeletal muscle activates various kinases
including PI3-kinase (32). Therefore, decreased leptin
signaling leads to impaired insulin-induced microvas-
cular function and, as a consequence, decreased
insulin-mediated glucose uptake. Furthermore,
increased levels of leptin have been shown to increase
ROS production in endothelial cells (99). 

Adiponectin is unique amongst the adipokines in
that increasing fatness is associated with a lower con-
centration (7). Adiponectin affects glucose uptake and
vascular endothelium via increased phosphorylation
of IRS-1 and other molecules in the insulin-signaling
cascade (16). 

In conclusion, several adipose tissue-derived fac-
tors, in particular FFA and TNF-�, influence insulin
signaling and, thereby, insulin-mediated vasodilation.
These endocrine factors therefore provide a potential
link between obesity-associated microcirculatory dys-
function and obesity-related hypertension and insulin
resistance. 

Besides these endocrine factors linking obesity to
impaired insulin-induced vasodilation, recently a
vasoregulatory role for local deposits of fat has been
postulated (126). Obese Zucker rats are characterized
by a well circumscribed depot of fat cells around the
origin of the nutritive arteriole supplying the cremas-
ter muscle, whereas lean rats are not. Adipokines
released by these fat cells may inhibit directly
vasodilatory pathways distal in the arteriole and there-
by cause loss of blood flow in the nutritive capillary
network supplied by this arteriole. In this hypothesis,
adipokines released from fat depots have local rather
than a systemic vasoregulatory effect, a mechanism
that is termed “vasocrine” signaling. 

The renin-angiotensin system. Recent evidence
suggests that the renin-angiotensin system (RAS) is
another important system involved in microvascular
functioning and, consequently, the development of
insulin resistance. All the components of the RAS nec-
essary to generate the vasoconstrictor AngII are
expressed in human adipose tissue (61, 91). Increased
activity of the RAS has been demonstrated in obesity,
both systemically and within adipose tissue, and this
may relate directly to the mass of adipose tissue (12,
83). Furthermore, a reduction in body weight leads to
a reduced RAS activity in plasma and adipose tissue

256 PHYSIOLOGY • Volume 22 • August 2007 • www.physiologyonline.org

The mechanisms by which circulating FFAs impair
basal and insulin-mediated effects on microvascular
function are not completely understood. First, eleva-
tion of FFA blunts insulin-induced PI3-kinase activa-
tion in human muscle (31, 97, 119) and in cultured
cells (62, 118) (FIGURE 1). Second, FFA elevation
induces an increase in ROS production (70). Third,
FFA elevation may cause vascular endothelial dys-
function indirectly via increased release of the vaso-
constrictor substance ET-1 (81). 

Increased production of the proinflammatory
cytokine TNF-� is associated with obesity-related
insulin resistance and hypertension (54, 79, 108). It
has been suggested that the vasculature is an impor-
tant target of TNF-� (125, 129). Indeed, in a rat in vivo
clamp study, acute administration of TNF-� has been
shown to inhibit insulin-mediated increases in
femoral blood flow and muscle capillary recruitment,
leading to a marked decrease in insulin sensitivity. The
inhibitory effect of TNF-� appeared to be wholly
hemodynamic in that insulin-mediated increases in
femoral blood flow and capillary recruitment were
totally blocked (125). Furthermore, in a human study,
weight loss resulted in significant amelioration of
endothelial function that closely correlated with a
reduction in circulating TNF-� (131). 

Circulating TNF-� may impair insulin-mediated
effects on microvascular function by impairing the
balance between endothelial-derived vasodilator and
vasoconstrictor substances. TNF-� downregulates the
expression of eNOS (85, 124) and upregulates ET-1
expression in human endothelial cells (73).
Furthermore, it may directly activate NAD(P)H oxi-
dase and increase ROS production in the endothelial
and vascular smooth muscle cells (30, 58). More

REVIEWS

FIGURE 2. The hypothesised relationships between obesity, microvascular
function, hypertension, and impaired insulin-mediated glucose uptake
Impaired microvascular function may play a central role in the development of obesity-
related disorders. 
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that parallels a fall in blood pressure (33, 110). Given
that weight loss reduces systemic RAS activity, adipose
tissue RAS components may have paracrine and
endocrine functions. This is further supported by the
fact that adipose-tissue derived AngII not only binds
to receptors on adipocyte plasma membranes but also
to presynaptic nerve endings and blood vessels (34). 

In healthy subjects, infusion of the vasoconstrictor
AngII causes a redirection of blood flow between dif-
ferent vascular beds and within the skeletal muscle
vascular bed. This redistribution leads to an increase
in total muscle blood flow and capillary recruitment,
which as a result increases insulin-induced glucose
uptake (18, 38). In contrast, in obesity, the RAS seems
to have a detrimental effect on insulin-induced glu-
cose uptake, and activation of the RAS contributes to
obesity-associated hypertension (98, 110). Studies
have shown increased pressor responses to AngII in
rat and men with (visceral) obesity (4, 76, 95). In addi-
tion, a rat study demonstrated that AngII-induced
hypertension is associated with endothelial dysfunc-
tion (45). In addition, chronic AngII administration in
rats caused insulin resistance in muscle and adipose
tissue (44, 76), whereas blocking the RAS improved
insulin sensitivity in muscle of diabetic mice (96).
Moreover, several large-scale clinical trials have
demonstrated that AngII subtype 1 (AT1) receptor
blockers (ARBs) and angiotensin-converting enzyme
inhibitors (ACEi) decreased the risk for new-onset
diabetes mellitus in hypertensive patients by about
25% (2). Whether these protective effects of RAS
blockade are attributable to improvements in
microvascular function requires further study. Both
ACEis and ARBs have been shown to enhance blood
flow in peripheral tissues such as skeletal muscle (74,
77). A study in humans showed that a FFA-induced
impairment in the endothelial function was com-
pletely prevented by a single dose of either an ARB or
an ACEi, which suggests that an elevation of FFAs
induces endothelial dysfunction through activation of
the RAS (120). 

Several studies have been conducted to elucidate
the mechanisms by which RAS activation impairs
endothelial function. First, AngII stimulates phospho-
rylation of IRS-1 (39, 112), a process that interferes
with insulin-dependent activation of PI3-kinase,
resulting in inhibited glucose uptake and NO synthase
(100). Second, AngII is a well known stimulant of ROS
production causing an increased degradation of NO
(44, 45, 76, 130). Indeed, recent studies indicated a
reduced production of ROS in humans and rats using
the ARB valsartan (23, 96). Third, AngII stimulates the
production of ET-1 in the endothelium (78, 106)
(FIGURE 1). Fourth, AngII is known to have a number
of proinflammatory effects, such as the release of
inflammatory cytokines (51). For example, incubation
of muscle with AngII increased TNF-� secretion (108),
whereas an ARB or ACE-I decreased skeletal muscle

TNF-� (96). Finally, it has been proposed that AngII
exhibits anti-adipogenic actions, thereby inhibiting
adipocyte differentiation and elevating FFA levels.
Indeed, blocking the AT1 receptor stimulates adiopo-
genesis (90). 

To summarize, these data suggest an important role
for AngII in compromising microvascular function and
thus provide another potential link between obesity
and insulin resistance and hypertension (FIGURE 2). 

Conclusion

Obesity is an important risk factor for insulin resist-
ance and hypertension and plays a central role in the
metabolic syndrome. A better understanding of the
pathophysiology of the syndrome may lead to new
therapeutic approaches. It is therefore of great impor-
tance to unravel the underlying mechanisms. This
paper has reviewed the evidence for an important role
for the microcirculation as a possible link between
obesity, insulin resistance, and hypertension. 

Obesity is associated with several impairments in
the microcirculation, including rarefaction and
impaired endothelial function. It has been demonstrat-
ed that these microvascular dysfunctions not only
increase peripheral vascular resistance and blood
pressure but also decrease insulin-mediated glucose
uptake, and therefore provide a link between obesity
and obesity-related disorders. This microvascular dys-
function may be the result of alterations in intracellular
and endocrine signaling, in which the RAS may play a
prominent role. The detrimental effects of RAS activa-
tion on microvascular function in obesity may provide
an explanation for the protective effect of RAS blockade
for the development of Type 2 diabetes mellitus. 
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