;“ Journal of Computational Neuroscience 6, 5-26 (1999)
“ © 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Signals in Stochastically Generated Neurons
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Action Editor:

Abstract. To incorporate variation of neuron shape in neural models, we developed a method of generating a
population of realistically shaped neurons. Parameters that characterize a neuron include soma diameters, distance:s
to branch points, fiber diameters, and overall dendritic tree shape and size. Experimentally measured distributions
provide a means of treating these morphological parameters as stochastic variables in an algorithm for production
of neurons. Stochastically generated neurons shapes were used in a model of hippocampal dentate gyrus granule
cells. A large part of the variation of whole neuron input resistaRgds due to variation in shape. Membrane
resistivity R, computed fromRy varies accordingly. Statistics of responses to synaptic activation were computed

for different dendritic shapes. Magnitude of response variation depended on synapse location, measurement site,
and attribute of response.

Keywords: stochastic neurons, dendrites, synapse location, hippocampus, membrane resistivity

1. Introduction if the population of generated cell shapes (statistically)
looks and behaves like a population of neuron shapes—
Simulations of biological neural networks require ge- then this provides a method for addressing two types
ometry of neurons. Dyefilling and tracing of neuronsis of problems. First, this approach can be used to ana-
a time-consuming process, particularly if serial recon- lyze sources of variation of parameter measurements
struction is involved. Typically biologically realistic  and signal responses due to natural variation of neu-
simulations are performed on one or two reconstructed ron shape. Second, to analyze interaction of functional
geometries (e.g., Jonas et al., 1993; deSchutter andgroups of neurons in a biological neural network, one
Bower, 1994a, 1994b). This is an insufficient number could generate shapes per type of neuron and distribu-
of cell shapes when the effects of geometry and sourcestions of synaptic connections. This would incorporate
of variation are considered. Alternatively, arrays of stochastic variability of neuronal shapes and connec-
neurons with all the same shape per type of neuron aretions with existing methods of single neuron compu-
used in network simulations (e.g., Traub and Miles, tations to model interaction of many neurons. In both
1991; Wilson and Bower, 1989; Manor et al., 1997). types of problems, analysis of variation in response due
To address this undersampling problem, a population to variation in neuron shape is addressed.
of cell shapes is required for a particular type of neu-  We have developed an algorithm for generating a
ron. If these shapes are sufficiently realistic—that is, population of stochastic neurons from a data set of
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neurons, whose distributions of morphological features computed from whole neuron resistaneg in terms

have been measured or can be approximated. A prob-of variation in geometry of neurons. We found that

lem of the first type is then addressed using the tech- some parameters depend strongly on the shape of den-

nique of stochastic neurons. The extensive and detaileddritic trees while others do not. Preliminary electro-

analysis of signals in single neurons provides a com- physiological data determined that some aspects of the

parison and is augmented by this strategy. computed synaptic responses varied in accordance with
We used this approach to analyze responses of hip-experimental data obtained by stimulation of LPP and

pocampal dentate gyrus (DG) granule neurons to stim- MPP in the hippocampal slice preparation.

ulation of different parts of the perforant pathways. In Initial results of this work have been published in

the hippocampus, the extrinsic afferents to the den- abstract form (Jou et al., 1995).

tate gyrus have entorhinal, hippocampal, hypothala-

mic, septal, and brainstem origins (Cowan et al., 1980;

Witter, 1993). Of these, the most important pathway, 2. Methods

quantitatively and perhaps functionally, is formed by

the axons that arise from the medial and lateral parts 2 1. Stochastic Generation of Cell Shapes

of the entorhinal cortex. These projections constitute

the perforant pathway, which is divided into the lateral A typical dendritic tree traced from a Lucifer Yellow-
and medial perforant pathways (LPP and MPP), and fjlled granule neuron in a hippocampal slice prepara-
form part of the intrinsic circuitry of the entorhinal-  tjon is shown in Fig. 1 (see Section 2.4 for details).
hippocampal system. The axons in LPP originate from The algorithm for stochastic generation of cell shapes
neurons in the lateral entorhinal cortex and preferen- yses the probability distributions of various shape char-
tially synapse onto the distal third (with respect to the acteristics observed in granule cells. For example, the
soma) of dendrites in the molecular layer. In contrast, somais approximated by a prolate ellipsoid with length
the MPP projects from the medial entorhinal cortex of 18.6+3.43um (meant standard deviation) and a
and preferentially synapses onto the middle third of idth of 10.3+ 2.06 xm (Claiborne et al., 1990). As-
the dendrites. Electrophysiological responses of gran- syming that the soma length and width are each nor-
ule neurons to the activation of the two pathways have mally distributed (for lack of further data), then a new
been described extensively (Wang et al., 1996; Wang soma can be generated by simply choosing a random

and Wojtowicz, 1997). number from a normal distribution of mean 18.6 and
We computed the voltage signals within the soma

and dendritic tree of the stochastically generated DG
neurons, after discretizing the dendritic trees into elec-
trical compartments at high resolution to preserve ge-
ometry (Rall, 1959; Hines, 1989; Winslow, 1990).
While it is now technically possible to experimentally
record these signals (Stuart and Sakmann, 1994), this
has been done only in neurons that are easier to access
and record than the DG neurons. The simulation re-
sults presented here provide results that are currently
not (easily) attainable in a biological preparation.

We compared properties of soma excitatory post-
synaptic potentials (EPSPs) from the experiments with { \
simulations on different neuronal shapes in the stochas- *
tically generated population and with predictions from
cable theory of dendrites (Rall, 1964; Rall et al., 1992; Figurel Representative reconstructed image of a Lucifer Yellow—
Holmes, 1989). Although voltage activated channels filled DG granule cell (DG) neuron from a hippocampal slice prepa-
have been reported and theoretically analyzed (Stuartration. This ce]l has begn used for quanti_tatio_n o_f the dendritic tree
and Sakmann, 1994; Cook and Johnston, 1997), we (220 $hahe ncled v e ) Atk et brances
first resolved signals in stochastic neurons with pas- il extended toward the fissure of the molecular layer. Scale bar:
sive membrane. We also commented on valueR.pf 100.m.




Table 1 Probability distributions used to generate DG granule
cells are the specific distributions used in the implementation of
the shape-generation algorithm. In the branch point distribution,
fs(w), w is the normalized distance of a branch point from the
soma, where» =0 is at the some and =1 is at the distal tips of

the dendritic tree (at the fissure). Equation (1) in the text gives the
values forfg(w). The noise distribution is a function applied to
thex andy coordinates of points along the dendrite to approximate
dendritic wiggle, the small turns and deviations which a dendrite
exhibits (see text). Starred distributions (*) are based on data from
Claiborne et al. (1990), where the standard deviations were com-
puted from the standard error values given in the reference. Note
that all dendrites were assumed to terminate at300

Item Distribution meagt: sd
Soma length* Normal 18.6 3.43m
Soma width* Normal 10.&2.06 um
Number of primary dendrites* Normal 191.37
Number of branch points* Normal 182.97
Branch point location* Staircase fe(w)
Tree height Constant 3Q0m
Transverse spread* Normal 32575.4um
Longitudinal spread* Normal 17641.1um
Noise distribution Normal &1um

standard deviation 3.43 for its length jom, and a
second random number from a normal distribution of
mean 10.3 and standard deviation 2.06 for its width
in um. A random variate from a normal distribution

can be generated using the standard Box-Muller algo-

rithm (Press et al., 1992, sec. 7.2). A population of

Stochastic Neurons 7

2.2.1. Generating the Branch Point Locations.The
branch points{bs, by, ..., by} are first generated
in normalized coordinatel; = (xi, ¥, wj) and then
scaled to actual coordinates, v, z). A branch point
location distributionfg(w) describes the probability
of a branch point occurring at normalized distarce
within the stratum moleculare, whete=0 is at the
soma in stratum granulosum aad=1 is at the hip-
pocampal fissure where the granule cell dendrites ter-
minate (Claiborne et al., 1990). This distribution fol-
lows directly from experimental observations of branch
points. For example, the branch point probability dis-
tribution of Table 1 is

063 0<w<1/3
027, 1/3<w=<2/3,
0.10, 2/3<w <1,

fe(w) = 1)

which means that 63% of the branch points occur (uni-
formly distributed) within the proximal third of the
stratum moleculare or dendritic tree, 27% uniformly
within the middle third, and 10% uniformly within the
distal third.

First, choose the number of branch poimgollow-
ing the experimentally observed distribution in Table 1.
In general, the probability distribution of branch point
normalized distances cantake on almostany form. Sec-
ond, the branch point normalized distanagsire gen-
erated for any arbitrary probability distributioi (w)
as follows. Choose random variates, Uy, .. ., Un,
from a uniform random distribution on [0, 1] gener-

soma shapes generated in this manner should have théted using the Park-Miller algorithm (Press etal., 1992,
same distribution of lengths and widths as actual soma Sec. 7.1). Then apply

shapes. This same principle of using probability dis-
tributions based on biological observations from real

rat granule cell dendritic trees can generate a dendritic

tree. The distributions that we used are givenin Table 1.

2.2. The Algorithm

A dendritic tree is comprised of connected branch seg-

ments, situated between branch points and end points

in three dimensions. Generating the dendritic tree in-
volves six steps: (1) generating the branch point nor-

=1,... )

whereFg (w) is the cumulative density function corre-
sponding tofg (w).
Faw) = [

/ et
0

where 0< w < 1 and Fgl(w) is its inverse. It can be

, NB,

o =Fghu); i

Probability[w; < w] fg(t) dt

©)

malized distances, (2) connecting the branch points to shown by graphical plots dfg (w) versusw andFg(w)

form a one-dimensional projected tree, (3) mapping the

versusw that the frequency distribution of the setf

one-dimensional projected tree to a three-dimensional points resulting from Eq. (2) ifg (w). Thus, the values

tree, (4) scaling the normalized coordinates to real coor-
dinates, (5) adding dendritic diameters, and (6) adding
dendritic wiggle (see Fig. 2).

of the normalized distances from the soma of the gen-
erated branch points will behave like the experimental
observations.
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Figure 2  Steps in the algorithm to generate a normalized dendritic tree. Details in text. A: The generated brandhy pei@s0, wj);

i=1..., ng, where they; are values of normalized distances from the soma shown on the verticabaxi @t soma and = 1 at bottom).

B: Connected branch points to form a 1D collapsed tree. The connections have been expanded slightly so that they are visible; in actuality, all
the branch points are still collinear on a single axis underneath the soma, as in the previous step. C: Expanded 1D tree to form a 3D tree, where
the branch points afg = (xi, ¥i, wi)-

Preliminary to connecting the branch points, sortthe  The resulting set of dendritic segments produces a
wi-valuessothab; < wy < -+ < wy,. Letthe branch connected tree with the desired characteristics. Since
points beb; = (0,0, w;) fori =1, ..., ng (Fig. 2A). w; <wjfori < j and all distal branch end points are lo-

cated at normalized distance 1, connections are always

made for increasing, and all the segments will extend
2.2.2. Connecting the Branch Points to Form a 1D jn 3 proximal-to-distal direction. Since connections are
Projected Tree. A branch point by definition repre-  aways made to the next two distal (most proximal un-
sents a point in space where a singlgent dendrite  connected) points, it is guaranteed that each connected
branches into two child dendrite$he point atthe dis-  pranch point always has one parent and two child den-
tal tip is called arend point If one assumes that the  gritic segments. Finally, since this process is done for

dendritic tree always extendsutward from w = 0 all branch points in the sé8, no branch point is left
tow = 1, then it is possible to connect the branch nconnected (Fig. 2B).

points and end points together in an unambiguous man-

ner to produce a connected tree. At this stage, the

branch points are projections on the normalizeakis 2.2.3. Mapping the 1D Projected Tree to a 3D Tree.

(w-axis)? This step may be thought of as expanding the genera-
The branches are connected as follows. Choose theted (projected om-axis) tree into a 3D tree by assign-

number of primary branchas., again drawing from ing normalizedy andvs coordinates to each branch

an experimentally derived distribution (Table 1). Cre- point.

atenp parent segments (primary segments), connect-  Firstassigriy, ¥) coordinates to the end points such

ing the soma to branch poinks, ..., b,,. Then for that they project inside a circle of radius 1. Four end
eachb;, create two child segments betwdgrand the points are assigned values(efl, 0), (1, 0), (0, —1),
next two distal point®; andb;..1, wherei < j, which and(0, 1). The remaining end points are distributed
do not already have parent dendrites. If no such branchrandomly within the unit circle by generating pairs of
point exists, then create an end poinbat 1 and con- uniform random numberg, ¥ within [-1, 1] and ac-

nect a child segment to it. cepting the pair only if¢® + 2 < 1.
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For each of the remaining points, which are all Table 2 Measurements from two methods used to

branch points thei(’x ) values are assigned the av- determine dendritic diameter standard deviation
' ’ (D + sd) as a function of distance)(from the soma

erage values of the distal end points of the two child of DG granule neurons. The number of measure-
branches to which it is connected. That is, if the ments inn. Not adjusted for shrinkage. See text.
two distalward segments bf connect ta( 1, ¥1) and
(x2. ¥2), then (xi. ¥3) of by is set to((x+ x2)/2. 2 (um P+ sdm "
(Y1 +12)/2). Method 1
2.2.4. Scaling the Normalized Coordinates to Actual 2(:20 i'ig'gi 1;)
Coordinates. An actual distancé is chosen for the o
dendritic tree from the height distribution (Table 1), 60-90 1.5:0.40 !
which in this case is constant. Then settiig= H w; 90-120 1.1£0.63 10
fori = 1,...,ng scales the normalized distances to 120-150 0.980.26 7
actual distances from the soma. 150-180 0.94:0.22 5
Longitudinal and transverse spredglg andtyec are 180-210 0.85:0.49 6
chosen for the tree from the experimental distribution 210-240 0.93-0.10 4
(Table 1). Scale the unit circle that contains the end 240-270 0.81 1
points onto an ellipse with diametégs.andtye.by set- 270-300 0.87 2
ting X = 3lyeex andy = tyeety. This produces a spa- Method 2
tial arrangement of the dendritic tips consistent with the
experimental observation that the widest sprigagbf 0-40 1.2£0.38 23
the tips occurs in the transverse plane of the hippocam- 40-80 11023 23
pus and perpendicular sprehde in the longitudinal 80-120 18032 27
plane (Claiborne et al., 1990). Thus, the set of points 120-160 0.88:0.26 19
{bi;i=1,...,ng}, where 160-200 0.8%0.16 24
L L 200-240 0.7%0.16 25
b= (%, ¥i,2) = (EltreeXia Ettreelﬁi, Hwi>, 240-280 0.680.24 17
280-320 0.7#0.24 17

are the actual 3D coordinates of a full dendritic tree

(Fig- 2C). the same diameter function is used regardless of soma

size. Table 2 gives a small sample of dendritic diame-
ters from one rat dentate gyrus that we measured (Sec-
tion 2.5) and is in agreement with Desmond and Levy
E(1984). The variations of diameters are presumably
due to variations among neurons. We do not have any
direct data on this but incorporated this variability in
the shrinkage factoK giam (S€e Section 2.6).

2.2.5. Adding Dendritic Diameters. Each dendritic
segment length was divided by the smallest integer
such that the size of a compartment<id um, and
each compartment assigned a diameter based on th
distance of the compartment’s midpoint and using the
dendritic diameter versus distance functi®famd(z)
obtained from the electron micrograph measurements
described below. The length of each compartment is
well within 10% of the space constant fora granule neu- 2.2.6. Adding Dendritic Wiggle. Finally, the seg-
ron, so that numerical accuracy of the compartmental ments of a dendritic tree do not travel in straight lines
simulations can be assured. Since dendritic diameter through the stratum moleculare; rather, they tend to ex-
is taken to only be a function of distance on thaxis perience small turns or dendritic wiggle. This can be
(not radial from soma or arc length on branch), two emulated by applying a noise function to the coordi-
child branches at a branch point have the same initial nates of each compartmentinthe XY plane, sothateach
diameter but can taper at different rates, depending on (x, y) value is given arandom normally distributed off-
the angle of branching, with respect to thaxis, or set value. This has the effect of slightly increasing the
the derivativead/dz as function ofz. Since we do dendritic length of the generated tree. The noise func-
not have sufficient data to take into account a correla- tion has a mean of zero to avoid a biased shift in the
tion between soma size and initial dendritic diameter, new positions of the dendritic compartments.
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2.3. Implementation of Algorithm

A program that implements this algorithm and uses
the distribution functions listed in Table 1 was writ-
ten using ANSI C. To ensure uniformity across differ-
ent versions of C, uniform and normal random num-
ber generation routines were also written. Uniformly
distributed random numbers were generated using the
Park-Miller algorithm with a Bays-Durham shuffle,
and normally distributed numbers were generated using
the Box-Muller method (Press et al., 1992). Each gen-
erated shape is assigned an integer number, which also
serves as the seed for the random number stream. This
gives each shape a unique identifying number and pro-
vides a convenient way to reproduce uniquely an entire
generated shape from a single number. The program
takes a shape number and a value Kr.m and pro-
duces the corresponding generated shape. A montage
of representative generated shapes is shown in Fig. 3.
The program, as implemented, can generate a single
novel complete granule cell shape<dri0 s ona Sun 3
workstation.

2.4. Digitization of Filled DG Granule Neurons

A DG granule neuron was filled with Lucifer Yellow

and photographed onto _a slide apd trac.etlj.(F|g. 1). Figure3 Sixrepresentative generated shapes. Shapes suchasthese
The ph_OtOQrame r.‘egat.we was video digitized US- \yere computer-generated using the stochastic algorithm described in
ing an instrumentation video camera (NC-70, Dage- the main text. A shape can be uniquely identified and reproduced

MTI, Inc., Michigan City, IN 46360) and a Win-TV from a single ID number, which serves as the random number stream
board (Hauppauge Computer Works, Inc., Hauppauge, seed. Images were generated from the output geometry files using
. . a ray tracer. Clockwise from the upper left: shape 30, 7, 2, 22, 1,
NY 11788) on a PC with a program running under __
DOS (Winslow, 1994). The digitized images were
transferred to a Silicon Graphics Indigo computer
(Silicon Graphics, Inc., Mountain View, CA 94039- focal plane. Given that nearly all granule neuron den-
7311), where the scale bar and the nodes and brancheslirites terminate at the fissure or the pial layer, when the
of the tree were traced using a tree tracing program neuron was traced, those dendrites that faded out pre-
(Winslow, 1995). Details on the hardware, data struc- maturely were extended by eye in the construction of
tures, and algorithms used have been described previ-the traced shape model. A total of three dendritic seg-
ously (Winslow et al., 1987). ments were extended, adding only 24m of dendritic
Similar to the representative traced granule neuron length to the tree, for a total dendritic length of 3380
shown in Fig. 1, the extent of the dendrites gave a um. The traced shape had 30 dendritic segments, three
good indication of the location of the hippocampal fis- primary branches, and a longitudinal spread of 464
sure when the original stained cell is viewed in the These values agreed well with published values on re-
slice preparation. The dendrites appeared to terminateconstructed granule cells (Table 4). In particular, the
almost completely at the fissure, consistent with ob- dendritic length of this granule cell from a immature
servations by others (Claiborne et al., 1990). Three (21-day-old) rat agreed well and was even slightly
dendrites seemed to disappear before reaching the fis-higher than the average dendritic length of an adult
sure, but they also gradually faded out from the im- rat granule cell. This is consistent with the observation
age, likely as a result of projecting above or below the that at three weeks after birth the dendritic arborization
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of granule neurons is the same as in adult cells (Cowan was overlaid on each micrograph. Coordinates cor-
et al., 1980), although spine development is not yet responding to the squares were uniformly, randomly
fully mature (Cotman et al., 1973; Crain et al., 1973).  chosen with a density of approximately 24 samples
Therefore, a branch point distribution based on granule  per micrograph (total area 43,00@?). Within each
neuron dendritic trees in adults can still be used to gen-  randomly chosen square, a measurement of dendritic
erate trees in younger, 15- to 30-day-old rats, although diameter was made if a dendrite could be identified
adult measurements of spine sizes and densities cannot within the chosen sample. Dendrites were identified
be used without appropriate scaling. by (1) electronlucent, (2) presence of postsynaptic
density, (3) presence of mictrotubles, and (4) lack of
vesicles. The number of these identified features
(one to four) per observed dendrite and diameter
were recorded. These values were used to compute
a weighted mean of diameters, so that diameters that
came from unequivocal dendrites contributed more
to the mean than tenuously identified dendrites.

2.5. Measurement of Dendritic Diameters

To complete the statistics for dendrites, diameters
are required. Transverse hippocampal slices from a
35-day-old rat were prepared with standard methods
for electrophysiological experimentation (Wang et al.,

1996). For electron microscopy examination, 408 The results from these two methods were found not

slices were fixed in 6.2% glutaraldehyde in 0.1 ':)" to differ significantly and are reported in Table 2. They
sodium cacodylate buffer (pH 7.4) containing 0.011% 46 similar to those of Desmond and Levy (1984) ob-

CaCh and 4%.sucr.oseo. After rinsing in buffer, the tis- (ained from adult animals. Using a generalized least-
sue was postfixed in 2% osmium tetroxide, dehydrated g3 res curve-fitting procedure, diameter as a function

in etha‘l‘nol, emb”edgled in epoxy, and sectioned on a Re- gistancez, from the soma within the dendritic layer
ichert “Ultracut” microtome. was best fit by

Since the long axis of the dendritic tree is approx-
imately perpendicular to incoming axons of the per- fqg(2) = 1.713 exg—z/47.70) + 0.8626  (4)
forant pathway, thin sections (75 nm) were cut in a .
plane parallel to the dendritic tree and the incoming per- Where fa andzare inum. , ,
forant pathway, so as to facilitate recognition and mea- Ve corrected for tissue shrinkage, which occurred
surement of the dendritic profiles. Dendritic branches S @ result of the chemical processing for electron
were distinguishable from axons and other cells in the Microscopy (Hayat, 1981), by using a unitless scal-
neuropil since they appeared mainly in longitudinal or N9 factor,Kgam= Dt/Dm, whereD, = true diameter,
oblique view, lacked synaptic vesicles, and were gen- Dm =measured diameter, argi= shrinkage= (D; —
erally more electronlucent. Four consecutive sections Pm)/ Dt In the computation of passive parameters

were micrographed using a Hitachi H-7000 transmis- @nd the simulationsigiam was varied from between
sion electron microscope. 1.0(S=0)to 1.4 §=29%). The function

, , , d(2) = Kgiamfa(2) (5)
e Method1 Infive separate fields, diameter measure-
ments were made of dendritic profiles that extended is used in both the generated shapes and the traced
longitudinally or obliquely. Each field, which ex- shape to set the dendritic diameters. Shrinkage of
tended from the cell body layer to the fissure of the 30 to 40%, including extracellular space, is expected
molecular layer, was about 360 by @én. Measure- from the EM tissue preparation procedure (Hayat,
ments of 10 to 20 profiles from each field were made 1981). However, the exact shrinkage of the dendrites
by a naive observer. In cases where the diameter ofis not known and dendrites have lipid membranes,
the dendrite was not uniform along its length, it was Small cross-sections, and intracellular organelles, thus
assumed that the dendrite had been cut obliquely to they presumably shrink less. Consequently, we chose
its long axis, so the smallest ellipsoid diameter (true Kgiam=1.2 (S =17%).
diameter) was measured.
e Method 2 The dendritic diameter measurements 2.6. Dendritic Spines
were independently confirmed in another field from
a different area of the same dentate gyrus by a differ- Up to 50% of the dendritic surface membrane may be
ent observer. A square grid (2020 um per square)  attributed to the presence of dendritic spines (Hama
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Voltage (mV)

0O 10 20 30 40 50 60
Time (ms)

Figure 4 Local voltage responses to synaptic conductance placed on the different types of spines. The spine was located on the medial region

of the dendritic tree at 200m from the soma in generated cell shape #49. A: An expanded spine, SPE. B: A simple spine, SP. C: No spine with
dendritic shaft only for comparison.

et al., 1989), which are small, fingerlike protrusions is the scaling parameter that was introduced to address
extending from the dendrites of many neurons and the uncertainty regarding the actual spine density and
often, but not always, terminating in bulbous expan- size on granule neurons of immature rats. Immature
sions (Fig. 4). They increase the effective surface area, spines are not as large or elaborate and do not appear
thereby increasing the electrotonic length of dendritic at the same densities as adult spines (unpublished ob-
segments and electrotonically distancing the synapseservation). We scaled down the adult spine estimates
from the soma (Holmes, 1989; Stratford et al., 1989; by Kspine Where Kgpine< 1 is interpreted as model-
Holmes and Levy, 1990; Holmes and Rall, 1992; Segev ing smaller, less elaborate, and less densely distributed
etal., 1992; and discussion in Rall et al., 1992). Given spines.Kgpine = 0.5 means the spine surface areas are
the large number of spines on a single granule neu- half that of the adult spine surface areas as measured
ron, explicit creation of one or two compartments per by Hama et al. (1989). The simulated cells have half
spine on the dendritic tree generates a large numberthe number of spines as an adult rat granule neuron
of compartments requiring more equations and time- (Desmond and Levy, 1985) or the full adult number of
consuming simulations. Using the technique of Major spines, but each spine has half the adult surface area.
(1992), we represented the spines on each dendriticMore likely, there is a combination of both smaller
segment by increasing the length and diameter of the and fewer spines in the simulated immature rat granule
segment and replacing the spiny dendrite with a single neuron compared with an adult.
longer and wider smooth (spineless) dendrite. Our data are based on six dendritic segments (three
The surface area contribution of spines was assumedfrom lateral and three from medial perforant pathway)
to be KspineA wm? per 1um of dendrite (arc length),  with a total length of 10.7«um. All these segments
where A = 4.180, 2.806, 2.40Ln? for the proxi- were fully reconstructed from serial EM sections. We
mal, middle, and distal portions, respectively, of the counted 35 synapses contacting the dendrites and only
stratum moleculare (Hama etal., 1989, TableKine five contacting spines. All spines were very small,



Table 3 Parameters used in the simulations. The
spine values are based on adult-sized rat DG granule
neurons (Hama et al., 1989). Each linear parameter is

1/2
spine

scaled byK

so that the final surface area of all the

spines is scaled by a factor Bfpine See text.

Parameter Value
a 0.5

At 0.25

Cm 0.7 uFlcn?
Imax 0.45nS
K:spine 0.5

Kdiam 1.2

R 15022 cm
Rm 78.3 KQ cn?
Vrest —69.8 mV
Compartment length <lpum

Spine Area um?/pm dendrite length
Proximal third Kspine4.180
Middle third Kspine 2.806
Distal third Kspine 2.401
SPE Spines
Head Height Ke/me0.51m
Head diameter k2 0.50um

Base height
Base diameter

SP Spines
Base height

Base diameter
Tip diameter

spine

kY2 0.752um

spine

kY2 0.185um

spine

KY2 1.253um

spine

kY2 0.333.um

spine

KY2 0.258;m

spine

measuring 0.5 to um in length and diameter. Two
other spinelike projections were devoid of synapses.
Seven spines per 10.Zm of the dendritic length
amounts to 0.65 spingsih, a much smaller spine den-
sity than the reported 1.4 spingsh in adult animals
(Desmond and Levy, 1985), consistent with our esti-
mate of Kspine = 0.5. To implement this, we wrote
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branch points, and distal tips. This representation gives
the visual lifelike shape and exact shape measure-
ments, which are then the data used for the shape statis-
tics. The dendrite is discretized into compartments,
whereby each branch point and dendrite end points are
centers of compartments, and each branch is subdi-
vided into compartments. Because the structure is in
3D, the true lengths of branches must be calculated
from the 3D distance between branch points.

The discretized neuron, when represented by com-
partments for simulation, is a list of tuples, one per
compartment, consisting of compartment number,
compartment location, compartment parameters, list of
compartments to which it connected, and input synapse
number.

2.8. Simulation of Synaptic Potentials

A set of 50 different cell shapes was generated and con-
verted into compartmental models. The compartments
assigned in generating the neuron were used for the
simulations. Thus, the minimum and maximum com-
partment lengths are 0.5 and L.th, respectively. The
average number of compartments per simulation was
at least 3,430, which corresponds to the total length
of the generated dendritic tree. All computer simu-
lations were done using NEURON 2.0 (Hines, 1984,
1989) on either a SUN-3 running BSD Unix or an In-
tel 486DX33 PC running Linux. Simulation parame-
ters are given in Table 3. When an activated synapse
was on a spine, these spines were explicitly modeled,
using one or two compartments with the dimensions
given in Table 3, with spine measurements from Hama
et al. (1989). The remaining spines were implicitly
represented in the simulations, using the spine collapse
procedure. The time course of synaptic conductance
was simulated by the function,gmax(at) exp(l—at),
wherex = 0.5 andgmaxWere chosen, so that simulated
responses at the soma had shape and amplitude similar
to those of recorded responses in granule cells.

a program that takes a dendritic tree shape (such as S _
the traced shape or a generated shape) and for a giver?-9-  Electrophysiological Recordings

value of Kgpine Calculates the spine-collapsed version.
For most of the simulationKspine = 0.5 was used.

2.7. Shape to Compartments

The 3D description of a dendritic tree has the form
of a list of xyz coordinates of locations of the soma,

in Hippocampal Slices

Recordings and analysis of synaptic responses were de-
scribed in our recent publications (Wang et al., 1996;
Wang and Wojtowicz, 1997). All recordings were per-
formed from cell bodies of the granule neurons in the
whole-cell configuration. Input resistances were mea-
sured by applying 10 mV, 100 ms depolarizing voltage
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steps from a resting membrane potential (approxi- and tree shape. Further, the standard deviations of all
mately—70 mV) and measuring steady-state currents. the statistics are also comparable. This suggests that
Synaptic responses were evoked at 0.1 Hz by electricalthe population of generated shapes also encapsulates
stimulation of afferent axons in the outer (LPP) and the same variability expected in a population of real
middle (MPP) molecular layers. Stimulus current was granule cellsn vivo. Thus, we conclude that our algo-
adjusted to produce approximately equal amplitudes rithm and program, which implemented the algorithm,
of evoked excitatory potentials (EPSPs) from LPP and are valid for their purpose of generating this type of

MPP, as recorded in the cell body. neuron.
3. Results 3.2. Passive Parameters
3.1. \Verification of the Algorithm In addition to morphological details, the passive para-

meters of granule neurons must be determined before

Verification of the algorithm, and overall correctness simulations can be performed. The whole cell input re-
of the program that implemented the algorithm, was sistanceRy = 280.4 + 1502 MQ2 was measured exper-
done by ascertaining the realism and statistics of the imentally in 320 granule neurons. This value is higher
generated shapes, of which a representative sample ighanRy reported for adult rats (Staley et al., 1992) as
shown in Fig. 3. Population statistics of tree measure- may be expected if the dendritic tree and soma were
ments, some of which were not directly based on dis- more compact in our immature animals.
tributions used in the algorithm, were computed on  Given a value of axoplasmic resistiviig, the pre-
100 generated shapes, shapes 0 to 99. The number ofiiously obtained measurement Bf, and a specific
dendritic segments, number of primary branches, trans- cell shape (either the traced cell shape or a generated
verse spread, longitudinal spread, dendritic length, and shape), a unique value for membrane resistigty
tree shape (the ratio of longitudinal spread to trans- may be computed using a recursive procedure. Instead
verse spread) were evaluated. These statistics for theof using R;, Ry and a given shape to compuRy
generated shapes were then compared with those samé¢Rall, 1957, 1989; Segev et al., 1989; Nitzan et al.,
statistics published in the literature (Table 4). 1990), we computed the theoretical valueRyf such

The generated cell shapes appear to be realistic. InthatRy = 2804 M for each generated shape (Fig. 5).
all cases the mean statistics are comparable, imply- Because of recent evidence that the internal axoplas-
ing that on average the generated shapes are similar tamic resistivity R; is actually much higher than previ-
actual cell shapes, atleast with respect to the number of ously thought (Shelton, 1985; Jonas et al., 1993; Rapp
dendritic segments, number of primary branches, trans- et al., 1994; Major et al., 1994; Thurbon et al., 1994;
verse spread, longitudinal spread, dendritic length, Borst and Haag 1996), computations were performed

Table 4 Tree statistics comparing published values from actual DG granule neurons, computed values from the
traced shape, and computed values from 100 generated shapes. Published and generated shape-\sthradoace
deviation. Tree shape is the ratio of longitudinal spread to transverse spread. Longitudinal spread and tree shape
from the traced shape is not available since it was projected on to a single plane. Note that the means of actual versus
generated shapes are not significantly different. Published values are from Claiborne et al. (1990).

Characteristic Published values Traced shape Generated shapes
n 48 1 100

Dendritic segments 296.86 30 25.8:6.11

Primary branches 1981.39 3 2.4H-1.26
Transverse spreag.(n) 325+ 75.41 404 314-66.8
Longitudinal spread/(m) 176+41.13 — 17A-39.0

Dendritic length fcm) 3221+ 535 3380.24 3438802

Tree shape 0.560.21 — 0.54+0.20
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Figure 5 A: Pathway to compute membrane resistiigy;. Given estimates of passive paramef@gsandR;, and a cell shape, one can obtain

a theoreticaRy from cable theory. In this articleRy was experimentally measured, aRdvaried across a physiologically plausible range.

Model geometries came from a tracing of an actual DG cell as well as from computer-generated shapes. B: Computed membranBgesistivity

for generated and traced DG cell shapes, corrected for shrinkage. The dendritic diameters used in the shapes have been expanded to accoun
for tissue shrinkageigiam = 1.2). Points are th&® and Ry, values such that the measurigg is 280.4 M2 from young rat DG cells. Hollow

shapes are for the traced shape; filled shapes are average values for 100 generated shapes. Triangles (upfgihetve], which gives

spine surface areldspineA = 4.180, 2.806, and 2.40am? per um of dendrite for the proximal, middle, and distal thirds of the dendritic tree;

squares (middle curve)Kspine=0.75, giving KspineA = 3.135, 2.105, and 1.804m? per um:; circles (lower curve):Kspine = 0.50, giving

KspineA = 2.090, 1.403, and 1.20&m? per um. The values corresponding kspine= 0.50 are most appropriate for our young preparation.

Bars are standard error.

from below the traditional value dR =70 Q2 cm, to etal., 1971; Takashima and Schwan, 1974; Benz et al.,
R =400<2 cm, which are generous bounds on the true 1975; Takashima, 1976; Haydon et al., 1980; Major
R;. Assuming tissue shrinkage fact€giam = 1.2, the et al., 1994). However, i€, is actually higher (e.qg.,
results obtained are shown in Fig. 5B. Borst and Haag, 1996), this will significantly alter the

The nominal value ofZ;, used in the simulations simulated responses (see below). The predicted re-
was 0.7u F/cn?, which is lower than the usual value  sponse will be more sluggish, with a slower rise time,
of 1.0« F/en? but is currently believed to be the most  lower amplitude, and longer time constant (not shown)
accurate value of membrane capacitance (Fettiplaceand would not agree with our data.
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Two agreements with theory may be seen at this Table5 Computed membrane resistivin for generated shapes.

point. First, the mean computé}, of our morpholog-
ically realistic granule neurons, which were stochasti-

All shapes have been spine-collapsed assuming spine surface areas
of A=4.180, 2.806, 2.40Lm? perm of dendrite at the proximal,
middle and distal portions. THyy, is computed such that, for agiven

cally generated, is very dependent on the surface areageometryR andKspine it produces the whole cell input resistance

of spines, as previously shown (e.g., Rall et al., 1992;

Stratford et al., 1989; Holmes 1989; Holmes and Rall,

Rn =280.4 M2, which is the average of the experimentally ob-
tained values (see text). Atissue shrinkage factor has been assumed

1992; Segev et al., 1989). The standard deviations as- (Kdiam = 1.2). The mearRp and standard deviatiom & 100) are

sociated with mearfry,, computed for differenKgpine
values vary linearly with respect tBspine (3.0, 2.4,
1.8 K2 cmé for Kspine= 1.00, 0.75, 0.50, respectively)
but is constant with respect & (as shown in Fig. 5).
The large differences in computdR},, values due to
different choices oK spine mean that an accurate mea-
surement of the spatial extent of spines is critical, if an
exact determination dRy, is desired using this method.
Second, the computed, is slightly decreasing for in-
creasing axoplasmic resistivify; varying from 50 to
400 © cm, which agrees with Rall's equation (Rall,
1989, Eq. (2.46))RN1= Aptanh(L)/RnL. This re-
lates Ry to Ry, and Ry for an equivalent cylinder,
where areaAp = nld for lengthl, diameterd, and

L =I/x. Other versions of this formula can be found

in the literature (e.g., Rall et al., 1992; Johnston and
Wu, 1995, sec. 4.8). Figure 5, computed for fine spa-

tial discretization resolution per stochastically gener-
ated neuron, implies th&,, values typically computed
from the membrane time constantnay be incorrect
by at most 10%, despite recent estimateRadhat may
be several times higher than ¥0cm (Spruston et al.,
1993, 1994).

The computedR, values suggest tha€spine=0.5
is reasonable. When the higher value&gfine=0.75
andKgpine=1.00 were used to computgy,, theseRy,

shown. Same values are shown in Fig. 7.

K spine = 0.50 0.75 1.00
R (2 cm) Rm for generated shapes (Kcn?)

50 81.6+19.6 102+ 24.5 123+29.5
100 80.0+19.7 100+ 24.7 1214+29.7
150 78.3+19.8 98.2£24.8 118+29.9
200 76.7£19.8 96.0£ 25.0 115+30.1
250 75.0£20.1 93.9£25.2 113+30.3
300 73.4+20.3 91.9£25.4 110+ 30.5
350 71.8+20.4 89.8+25.6 108+ 30.7
400 70.2+20.6 87.8£25.8 105+ 31.0

generated shapes. The result wasRyn of 2965+
83.2 MQ. SinceR, was constant, the standard devi-
ation of 832 M is the result of the shape variation
within the population of generated cells.

Uniformly changing the surface area contribution
of spines can emulate the presence of spines during
varying stages of development. When spine sizes were
changed along with tree geometries, the resulting stan-
dard deviation was similar to that produced by chang-
ing tree geometries alone; fixinB, and R as be-
fore, but varyingKspine uniformly between 0.5 and

values do not agree with other estimates based on the0.9 over 300 generated shapes, producedRgnof

membrane time constant measured to be 56.3 ms
in a similar experimental preparation (immature rat
DG granule cells) (Zhang et al., 1993). Assuming
thatt = 56.3 ms and tha€C,, = 0.7 uF/cn?, then from
7 = RnCpyone obtainR, = 80.4 KQ cn?. Thisis very
close to the theoreticaR, values that we computed
whenKgpine = 0.5 (Table 5).

The variation inRy, of the generated shapes shown

2482 £+ 77.8 MQ. Similarly, uniformly varying the
membrane resistivity in the range 70.0 to 859 En?
produced a similar standard deviation; the computed
Rn over 400 generated shapes was.24364.8 MQ.
These observations are consistent with the idea that
the cell-to-cell variance associated with experimentally
measuredRy values in real cells can be at least par-
tially due to their different tree geometries as suggested

in Table 5 is due to variation in shape alone because by Rall (1959).

the computedR,, per shape is the value such that
Ry = 2804 M, the mean of the experimentally ob-
tained values. Additionally, the large variation of ex-
perimentalRy measurements may be partially due to

the different tree geometries. To test this hypothe-

sis, Ry was fixed at 78.3 R cn? (R =150 cm,
Kspine=0.5) and therRy computed for 100 randomly

3.3.  Synaptic Potential Simulations

After activating a synapse, a voltage depolarization
occurs on the synapse-bearing spine or shaft then
spreads throughout the dendritic tree. What eventually
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conducts to the cell body is what is observed in whole- recorded at the soma for the simulations and the ex-
cell current clamp recordings. periments.

As shown in Fig. 4 (inset), dendritic spines may
be without an expansion of the spine head (SP), or o ]
they may have a terminal expansion of the spine head 3.5. Effect of Dendritic Diameter on Simulated
(SPE). When the synapse occurs on the tip of an SP Local and Conducted EPSPs
spine or the head of an SPE spine, the spine response ) )
inside the tip or the head is amplified (Fig. 4). This When.the_locatlon of the synapse was varied anng.the
was expected from theoretical considerations; since dendrite, it was found that the local response varied
the spine has a greater input resistance than the Ioar_S|gn|f|cantly. _In parUcuIar, the amplitude of tr_le local
ent dendrite, the same synaptic conductance producesShaft depolarization depends greatly on the distance of
more depolarization at the spine than at the dendrite the Synapse from the soma; distal synapses consistently
(Koch and Zador, 1993). The simulated depolariza- depolanz_ed_the local dendritic tree much more gr_eatly
tion inside the spine head of an SPE spine was ap- thqn 'ghe s!mlla'r synapse Ioce}ted more med|ally (F|'g. 7).
proximately 20% greater than the response to the same T his is primarily because dlgtal dendnteg are thinner
synapse when placed directly on the shaft. The spine ar_ldtendto be cl(_)serto atermlnat_ed (jend_nte, compared
response inside the tip of an SP spine had an amp"_yvnha_more proxmaldendrlte,_wmch |s_th|cl_<er, and_the
tude of 4.96 mV, which is also slightly larger (by 6%) ncoming current can spread in two d|rect|on_s. _D|st_al
than the response to a shaft synapse but not as |argéocal responses also tended to fall faster. This implies
as the SPE response. This is likely because the neckthat LPP synapses can cause much larger and shorter
diameter of SP spine is larger than that of an SPE lasting depolanzatlons_ln the local dendr|t|c tree than
spine MPP synapses. Half width and decay times are shorter

Despite the initial differences in the synaptic res- " LPP regions (see Table 6) in spite of slightly longer
ponse, however, by the time the depolarization has con- 1S€ times. . . _
ducted to the dendritic shaft that contains the spine, the  1hese local differences in shapes and amplitudes
response to a spine synapse becomes virtually identicalt®nded to disappear by the time the responses had con-
with the response to the same synapse placed directlyducted to the soma (Fig. 7). With the exception of the
on the shaft. This implies that when studying the con- ns_e_tlm(_e of the conducted response, the Iocayon of the
ducted soma or shaft response to synaptic activation, °riginating synapse cannot be easily determined from
the exact synapse configuration is not important. This the shape of the conducted response, atleast in terms of
is consistent with previous calculations that currentloss their amplitudes, half-widths, or decay time. However,
across the spine neck is negligible (Koch and Zador, Mmore medial synapses had more rapid rise times at the
1993), since current loss is proportional to membrane C€ll body than more distal synapses. _
surface area and the spine neck area is very small (Har- Figure 8 shows the peak amplitude of the transient
ris and Stevens, 1989). Hence, the remaining simula- '€SPonse along an entire dendritic tree to a LPP and to

tions were performed with the synapse placed directly & MPP synapse. This profile of the transient response
on the shaft. in a specific dendritic tree shape is similar to the steady

state result of Rall and Rinzel (1973) using equiva-

lent cylinders. There is substantial distal-to-proximal
3.4. Responses to LPP and MPP Stimulation decrement within even the single branch that contains

the synapse. By the time the synaptic response has
Since LPP and MPP make excitatory synaptic connec- passed its first or second branch point, there is no
tions with the the distal and medial thirds, respectively, longer an amplitude difference between the response
of the dendritic tree of granule neurons as shown in to an LPP or an MPP synapse. However, there is
Fig. 6, can the responses at the soma due to stimula-some difference in the distal direction (compare the
tion of the LPP and MPP be distinguished? We ad- distal tips). Because a distal synaptic response appears
dress this question by simulations on the generated setto decay much more rapidly along the dendritic tree
of neurons and compare the results with simulations than a proximal synaptic response, the amplitudes of
in which LPP and LPP were individually stimulated both responses appear very similar by the time they
for the same recorded cell. The inset in Fig. 6 lo- have conducted to the upper half of the dendritic tree
calizes the measurements of interest on the waveform (Table 7).
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Figure 6 Experimental arrangement for stimulating and recording synaptic responses in lateral and medial perforant afferents in the hip-
pocampal slice preparation from rat. The stimulating electrodes made of fine tungsten wires were placed in middle (S1) and the outer (S2)
molecular layer to activate two independent bundles of afferent pathways. This results in activation of synapses located in the middle and distal
third of the dendritic tree, respectively of dentate granule cells. The resulting voltage depolarizations were measured at the soma of the dentate
granule neuron using the whole-cell recording under current-clamp configuration (R). The granule cell illustrated here is one of the stochastically
generated shapes described in this article. Inset: The waveform characteristics amplitude, 10 to 90% rise time, and half width of an evoked
response at the soma due to stimulation of the medial perforant pathway (S1) or the lateral perforant pathway (S2). These characteristics, along
with the decay timetf;, not shown here), are used to measure the shapes of synaptic responses. The amplitude is the voltage difference between
the peak of the response and the baseline. The 10 to 90% rise time is the time it takes for the rising phase to go from 10 to 90% of the peak
voltage attained. The half width is the time the response requires to go from 50% of the peak voltage in the rising phase to 50% of the peak
voltage in the falling phase. The decay time is the vajuyevhich best fits the curve expt/tqt) to the falling phase of the response.

3.6. Comparison of Response Differences a distance between 200 and 30&). Table 6 gives an

Due to Shape overall picture from comparing inputs from LPP and
MPP synapses. The scatter of the simulated data due

To directly analyze response differences due to varia- to morphology is presented in Fig. 9. For a given dis-

tion in shape and location of synaptic input, we com- tance fromthe soma (horizontal axis), each data pointis

pared simulated responses from different stochastically the simulated response from a different stochastically

generated neurons by plotting measurements of the re-generated neuron. That is, the distribution shows the

sponse versus distance from soma. Figure 9 shows theeffect of variation in shape alone.

rise times (10 to 90%) and peak amplitudes of local and

conducted responses. Fifty different generated cell and

dendritic tree shapes were used, with a total of 1,318 3.7. Comparison of Responses from Stimulation

synapse locations (an average of 26 different random of Lateral and Medial Pathways

locations within the dendritic arbour of a given cell

shape). All parameters, except for synapse locations, In the experiments, examination of the averaged re-

were unchanged; thus, the scattering observed in thesponses from 12 neurons showed a significant differ-

figures is indicative of the variation due purely to ge- ence P <0.05, t-test) in the 10 to 90% rise times

ometric differences. Of the 1,318 synapse locations, between the two pathways whereas the amplitudes, the

396 were classified as MPP (had a distance betweenhalf-widths, and the decay timég did not differ sig-

100 and 20Q:m), and 438 were classified as LPP (had nificantly Fig. 10).
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Figure 7. Examples of local and conducted voltage responses to synaptic activation in distal (S2) and medial (S1) dendrites of generated shape
#22. The local responses in the dendrite differed dramatically in amplitudes, whereas the conducted responses in the soma differed in rise times.

Overall, the soma EPSP shape parameters suggestesponses and membrane resistance estimates due to
that the averaged synaptic responses originating in theneuron shape. We have used only passive membrane
middle third of the dendritic tree (via the MPP) can to keep separate the effects of shape from effects of
be distinguished from the ones originating in the distal active membrane (e.g., Cook and Johnston, 1997).
third (via the LPP) on the basis of their rise times.

4.2. Variation of Parameters
4. Discussion

Simulations of synaptic potentials at different dendritic
4.1. Stochastically Generated Neurons locations on the population of dendritic shapes reveal

striking, previously unreported variations among the
The use of stochastically generated neurons is a practi-synaptic parameters. For example, the rise times and
cal way of analyzing influences of shape on parameter the amplitudes of the synaptic potentials depended
and response measurements. We have demonstrated strongly on the dendritic location with respect to the
method of generating a distribution of neuron shapes cell soma (Fig. 9A, B; Table 6). The rise times were
based on statistics of morphology and applied this similar for different shapes and dendritic locations
method in an investigation of variation of synaptic when recorded locally but showed a clear decline for
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Table 6 Summary of comparison of simulated responses from
different stochastically generated neurons, shown as local and
conducted response measurements versus the two regions of
input. Same data as shown in Fig. 11 but only those results
corresponding to MPP and LPP regions, respectively located at
100-200 and 200-300m from the soma. The measurements

of response are defined as in Fig. 2. Values are mestandard
deviation.

Characteristic MPP responses  LPP responses

Local responses

n 396 438
Amplitude (mV) 3.45+0.832 5.08t 0.589
10-90% rise time (ms) 2.240.152 2.28:0.072
Half width (ms) 12.5+5.27 8.28+1.40
Decay timetgt (Ms) 18.1+5.25 13.14+1.82
Conducted responses

n 396 438
Amplitude (mV) 0.5970.139 0.586+ 0.152
10-90% rise time (ms) 4.730.452 5.40t 0.364
Half width (ms) 29. 4 4.21 30.3:4.56
Decay timetgt (Ms) 36.1+6.40 36.6+6.51

Table 7 Effect of shrinkage of dendritic diameter on simulated
local and conducted responses. The response on the synapse-
containing dendrite shaft (local response) and at the soma (con-
ducted response) varies with the diameter of the dendrites in the
tree. Totestthis, the raw diameter curve observed from EM photos
was multiplied byKgiam = 1.0 (assumed no shrinkage occurred
during the EM preparationKgiam = 1.2 (17% shrinkage), and
Kdiam = 1.4 (29% shrinkage). The shapes of these responses are
described here in terms of their amplitudes, 10 to 90% rise times,
half-widths, and decay timet«). The responses shown are for a
synapse located in the MPP regiogiam = 1.2 is the nominal
value used in the main simulations.

Diameter Amplitude Rise time Half width tat
Kdiam (mv) (ms) (ms) (ms)
Local response

1.0 5.67 2.50 9.30 9.72
1.2 4.67 2.34 8.59 9.45
14 3.90 2.23 8.19 9.42
Conducted response

1.0 0.600 6.20 28.3 32.3
1.2 0.660 5.84 26.6 30.1
14 0.686 5.60 25.8 29.1

proximal dendritic locations when recorded at the soma half-widths and decay times varied strongly with
(Fig. 9B). The amplitudes varied locally within the dendritic shapes, especially when conducted toward
dendrites but decayed at the soma to values that werethe soma (right-hand panels in Fig. 9B). The local, but
essentially similar for different shapes and dendritic notthe conducted, responses also depended strongly on

locations (Fig. 9A, bottom panels).
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S2

e

W ad R e PO

0

50

T T T T

100
Distance (um)

150 200 250 300 350

Figure 8 The same synaptic locations on the same neuron as in Fig. 7 show the characteristic decay profiles of the dendritic voltages generated
at two locations. A synapse located in the middle dendrite (S1) produced peak voltage of approximately 3.2 mV near the synapse (*), which
rapidly decayed to about 1.7 mV at the first branch and to 0.8 mV at the soma. The potentials invading the adjacent branches through the branch
points (breaks in the curves) are also plotted. Synapses located in the distal dendrite (S2) produced peak voltage of approximately 5.5. mV (*),
which decayed along the dendrite to about 0.8 mV at the soma. Thus, synapses at S1 and S2 are predicted to have similar effects at the soma.
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Figure 9 Comparison of simulated responses from different stochastically generated neurons, shown as response measurement versus distance
from soma. For a given distance from the soma each data point is the simulated response from a different generated neuron. These results are
from 1318 different synapse locations on 50 different generated neurons. A: Rise times (10-90%). B: Peak amplitudes of local and conducted
responses. Each point represents the rise time or amplitude of the synapse-bearing shaft (local) or the soma (conducted) in response to a synapst
located at the given distance—for exampleyid distance corresponds to a synapse on the soma andr@Grresponds to a synapse on a
dendrite’s distal tip at the hippocampal fissure. Same as in A and B but illustrating C population half-widths and D deday tihsinulated

local and conducted responses.

(Continued on next page.

implications for the interpretation of the electrophysio- experiments, where we produced synaptic responses in
logically recorded synaptic responses in the soma gen- LPP (distal) and MPP (proximal) segments of the den-
erated at different dendritic distances. Thus, one would dritic trees. The variability due to shapes apparently
expect that the rise times, but not the other parameters,masked the dependence on distances in the cases of
show a clear dependence on the distance from the somahalf-amplitude and decay times (see table in Fig. 10).
This was indeed observed in the electrophysiological We were unable to compare the local simulated
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Figure 9 (Continued.

responses with the electrophysiological data becauseelectrophysiological verification of these results is not
the dendritic recordings in these particularly thin den- feasible, since, in the slice preparation, it is not possi-
drites are not presently feasible. ble to synaptically activate the exact known dendritic

It should be noted that, at present, we are not cer- branch with any certainty. Such experiments are pos-
tain how much of the variability in the parameter sible in cell culture, where the individual dendrites can
values is due to variations between different locations be seen under a high-power microscope (see below,
in a given shape and how much is due to differences Section 4.3). The geometry of dendrites is, however,
in shapes. The experiments on a given shape coulddistorted in culture, due to abnormal growth conditions
be easily performed on the modeled dendrites, as we and the unavoidable two-dimensional arrangements of
have done in Figs. 7 and 8, for example. However, the the branches.
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7 were not required to explain the shape characteristics of
v the responses to low-level activation. However, when

. larger evoked responses are recorded, the shapes of
the resultant synaptic responses in DG granule neu-

T 5 / rons take on different characteristics. In particular, the

£ half-widths are much smaller, and the responses fall

2 more rapidly (data not shown), probably as a result of

Fo4q active, voltage-gated channels, which are opened by

3 e the large depolarizations.

T 3 @/‘ Since different generated cell shapes were used, one
can be reasonably confident that the general transmis-
sion properties observed may apply to the general pop-

2 T T T T T T . . . .
w0 15 20 25 30 35 40 45 ulat|_o_n of DG gra_mL_JIe c_:eII geometries fouimdvivo. In _
Half Width (ms) apldltlon, the_ variation in geometry may help to explain
differences inR;,, computed fromRy in the DG gran-
Lateral Medial ule cell population. This could be a source of variation
?\mplitude (V) 6‘79;’-;.33 6.88;5;.33 in other reported values @ in the literature.
10-90% Rise Time (ms) 4.2010.74*  3.60%0.43* The key feature_of dentate gyrus is the convergence
Half-Width (ms) 29.5%6.69 28.125.75 of LPP and MMP inputs on dendrites of granule neu-
Decay Time, ¢4 (ms) 33.127.81  31.637.56 rons. The physiological consequences of this conver-

. . o o gence are not known. In the hippocampal slice prepa-
Figure 10 Comparison of rise times and half-widths in depolar- . . .
izing responses at lateral and medial synapses. Averaged evokedratlon' it can be §hc_>wn that L,PP can boost or mcrease
reponses were compared in 12 experiments. The mean values andlONg-term potentiation (LTP) in MPP when two inputs
their standard errors are shown by large symbols. The pairs of re- are coactivated (Wang and Wojtowicz, 1997). One
sponses from LPP and MPP to the same neuron are joined by lines way to explain this phenomenon arises from the char-
to indicate that in all but one case the rise times were Ionge!’ in t_he acteristics of dendritic transmission described in this
lateral responses. The table below shows that the mean rise-time _ . . . . "
was significantly longer (*) in the lateral responses (paireest, article. _Smce the distal region of th_e den.dl‘ltIC tree
P < 0.05). depolarizes much more than the medial region, the ax-
ial current will predominantly move in the distal to
proximal direction during coactivation of the two path-
ways. As a result, the medial region will receive a
large depolarization and consequently produce larger
LTP.

The simulations suggest that it is difficult to distin-
guish the location of a synapse from its conducted, low-
level soma response. The amplitude, half-width, and
decay time of simulated conducted responses to MPP
activation are not significantly different from those
of simulated conducted responses to LPP activation
(Table 6, and Fig. 9). It has been shown (e.g., Rall,
1964; Holmes, 1989) that the conducted response at
the soma has longer rise times for distal compared with
proximal synapses. For granule neurons, rise time is
4.3. Physiological Implications of Signal the best predictor of synapse location. This agreed with

Processing in Dendrites the analysis of actual cell responses recorded in DG
granule neurons (compare with Fig. 10). Of the four
All of the characteristics above apply only when the response shape characteristics analyzed, only rise time
cell is behaving passively, as when responding to low- appeared to be significantly correlated with synapse
amplitude synaptic activations. Active mechanisms location.

The simulations on the population of stochastic neu-
rons also appear to offer at least a partial explanation
for the observed variation in the electrophysiologically
reported values of input resistances (see Section 3.2).
Our simulations show that a large part of this varia-
tion could be due to shapes. Thus, neurons with den-
dritic trees possessing single primary dendrites and
relatively few proximal branches presumably yield rel-
atively higherRy values. This prediction can be ex-
amined in future electrophysiological and simulation
experiments by comparinBy values for each identi-
fied dendritic shape.
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The finding that the response due to input from LPP the apparently small synaptic responses recorded at the
takes an extra 1 ms in rise time than MPP synapses insoma may arise from much larger (up to fivefold to ten-
simulations could be critical for timing of the initiation  fold) responses generated locally in the dendrites. Itis
of action potentials at the spike-generating site. This presently unknown whether such responses can acti-
issue needs further experimental verification. vate voltage dependent channels in granule neurons.

More experimental data are needed in this regard.

4.4, Comparison of Our Experiments with Others

N o . 4.6. Stochastic Neural Networks
The inability to easily discern synaptic origin from ac-
tual conducted responses in DG granule cells on the |, aqgition to simulation of the dentate gyrus granule
basis of their half-widths (Fig. 10) differs from ex- neyrons, one can forsee similar stochastic treatment of
periments d.one in cat spinal motoneurons (Jack et al., giher neuronal types. For example, the dendritic trees
1971, 1975; lansek and Redman, 1973), where plots ofhe CA3 pyramidal neurons have been well described
of half-widths versus rise times formed an almost lin- (Traub and Miles, 1991). These neurons could possi-
ear relationship with synapse distance. One possible |y pe simulated stochastically, and the interactions of
reason for this is that the cat spinal motoneuron mea- o population of granule neurons and CA3 pyrami-
surements were all made in a single fiber, whereas the 45| neyrons could be examined, taking the geometrical
experimental setup used here to selectively stimulate iations into account. Thus, statistics of shape can
MPP and LPP synapses (Fig. 6) does not allow any e ysed with statistics of signals (e.g., Cowan, 1972).
control over which strand (or strands) within the den- e envisage that this type of modeling will extend
dritic tree is activated. Likewise, in our simulations, e presently used techniques of neuronal modelling
different branches were activated at random (Fig. 9, \yhere all neurons are assumed to have the exact same

Tab!e 6). . , , , shape and properties.
Pioneering experiments on pyramidal hippocampal

neurons in CAl showed no significant difference inrise

time or half-width between distal and proximal inputs Acknowledgments

(Andersen et al., 1980). More recent measurements

using the whole-cell recording technique suggest a sig- We thank the reviewers and the editor for their pene-
nificant degree of attenuation of the distal responses trating comments, which substantially improved the
along dendrites (Bekkers and Stevens, 1996). Otherarticle. We gratefully acknowledge Leo Marin and
studies suggest that synapses terminating on distalPriya Manjoo for their help with the electron micro-
dendrites may compensate for their remote location graphs and the measurement of dendritic diameters.
by increased size or strength (Stricker et al., 1996; Liu This work was supportin part by a M.R.C. Group grant
and Tsien, 1995; Pierce and Mendell, 1993; Pettit et al., to J. Martin Wojtowiczandan N.S.E.R.C grantto James
1997). L. Winslow.

4.5, Limitations Note

Although the simulations in the stochastic population 2 i e 2 o cumulative
of neurons appear to produce useful or at least testable  gistance between branch points of a dendritic tree, (straight line
predictions, some parameter values used to construct without wiggle), and (3) cumulative arc length with dendritic
the model need to be better defined. Specifically, the  wiggle.

dendritic diameters and the numbers of dendritic spines
would benefit from more extensive experimental data
not presently available (see Sections 2.5 and 2.6).

The incorporation of active membrane properties, in- L
Andersen P, Silfvenius H, Sunberg SH, Sveen O (1980) A com-

C_IUdmg calcium, potassium, _and so_dlum VOItage' and parison of distal and proximal dendritic synapses on CA1 pyra-
time-dependent channels, will be ultimately necessary.  mids in guinea pig hippocampal slices in vitdoPhysiol. (Lond.)

The simulations shown in Figs. 8 and 9 suggest that 307:273-299.
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