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Abstract. To incorporate variation of neuron shape in neural models, we developed a method of generating a
population of realistically shaped neurons. Parameters that characterize a neuron include soma diameters, distances
to branch points, fiber diameters, and overall dendritic tree shape and size. Experimentally measured distributions
provide a means of treating these morphological parameters as stochastic variables in an algorithm for production
of neurons. Stochastically generated neurons shapes were used in a model of hippocampal dentate gyrus granule
cells. A large part of the variation of whole neuron input resistanceRN is due to variation in shape. Membrane
resistivity Rm computed fromRN varies accordingly. Statistics of responses to synaptic activation were computed
for different dendritic shapes. Magnitude of response variation depended on synapse location, measurement site,
and attribute of response.
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1. Introduction

Simulations of biological neural networks require ge-
ometry of neurons. Dye filling and tracing of neurons is
a time-consuming process, particularly if serial recon-
struction is involved. Typically biologically realistic
simulations are performed on one or two reconstructed
geometries (e.g., Jonas et al., 1993; deSchutter and
Bower, 1994a, 1994b). This is an insufficient number
of cell shapes when the effects of geometry and sources
of variation are considered. Alternatively, arrays of
neurons with all the same shape per type of neuron are
used in network simulations (e.g., Traub and Miles,
1991; Wilson and Bower, 1989; Manor et al., 1997).
To address this undersampling problem, a population
of cell shapes is required for a particular type of neu-
ron. If these shapes are sufficiently realistic—that is,

if the population of generated cell shapes (statistically)
looks and behaves like a population of neuron shapes—
then this provides a method for addressing two types
of problems. First, this approach can be used to ana-
lyze sources of variation of parameter measurements
and signal responses due to natural variation of neu-
ron shape. Second, to analyze interaction of functional
groups of neurons in a biological neural network, one
could generate shapes per type of neuron and distribu-
tions of synaptic connections. This would incorporate
stochastic variability of neuronal shapes and connec-
tions with existing methods of single neuron compu-
tations to model interaction of many neurons. In both
types of problems, analysis of variation in response due
to variation in neuron shape is addressed.

We have developed an algorithm for generating a
population of stochastic neurons from a data set of
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neurons, whose distributions of morphological features
have been measured or can be approximated. A prob-
lem of the first type is then addressed using the tech-
nique of stochastic neurons. The extensive and detailed
analysis of signals in single neurons provides a com-
parison and is augmented by this strategy.

We used this approach to analyze responses of hip-
pocampal dentate gyrus (DG) granule neurons to stim-
ulation of different parts of the perforant pathways. In
the hippocampus, the extrinsic afferents to the den-
tate gyrus have entorhinal, hippocampal, hypothala-
mic, septal, and brainstem origins (Cowan et al., 1980;
Witter, 1993). Of these, the most important pathway,
quantitatively and perhaps functionally, is formed by
the axons that arise from the medial and lateral parts
of the entorhinal cortex. These projections constitute
the perforant pathway, which is divided into the lateral
and medial perforant pathways (LPP and MPP), and
form part of the intrinsic circuitry of the entorhinal-
hippocampal system. The axons in LPP originate from
neurons in the lateral entorhinal cortex and preferen-
tially synapse onto the distal third (with respect to the
soma) of dendrites in the molecular layer. In contrast,
the MPP projects from the medial entorhinal cortex
and preferentially synapses onto the middle third of
the dendrites. Electrophysiological responses of gran-
ule neurons to the activation of the two pathways have
been described extensively (Wang et al., 1996; Wang
and Wojtowicz, 1997).

We computed the voltage signals within the soma
and dendritic tree of the stochastically generated DG
neurons, after discretizing the dendritic trees into elec-
trical compartments at high resolution to preserve ge-
ometry (Rall, 1959; Hines, 1989; Winslow, 1990).
While it is now technically possible to experimentally
record these signals (Stuart and Sakmann, 1994), this
has been done only in neurons that are easier to access
and record than the DG neurons. The simulation re-
sults presented here provide results that are currently
not (easily) attainable in a biological preparation.

We compared properties of soma excitatory post-
synaptic potentials (EPSPs) from the experiments with
simulations on different neuronal shapes in the stochas-
tically generated population and with predictions from
cable theory of dendrites (Rall, 1964; Rall et al., 1992;
Holmes, 1989). Although voltage activated channels
have been reported and theoretically analyzed (Stuart
and Sakmann, 1994; Cook and Johnston, 1997), we
first resolved signals in stochastic neurons with pas-
sive membrane. We also commented on values ofRm

computed from whole neuron resistanceRN in terms
of variation in geometry of neurons. We found that
some parameters depend strongly on the shape of den-
dritic trees while others do not. Preliminary electro-
physiological data determined that some aspects of the
computed synaptic responses varied in accordance with
experimental data obtained by stimulation of LPP and
MPP in the hippocampal slice preparation.

Initial results of this work have been published in
abstract form (Jou et al., 1995).

2. Methods

2.1. Stochastic Generation of Cell Shapes

A typical dendritic tree traced from a Lucifer Yellow-
filled granule neuron in a hippocampal slice prepara-
tion is shown in Fig. 1 (see Section 2.4 for details).
The algorithm for stochastic generation of cell shapes
uses the probability distributions of various shape char-
acteristics observed in granule cells. For example, the
soma is approximated by a prolate ellipsoid with length
of 18.6± 3.43µm (mean± standard deviation) and a
width of 10.3± 2.06µm (Claiborne et al., 1990). As-
suming that the soma length and width are each nor-
mally distributed (for lack of further data), then a new
soma can be generated by simply choosing a random
number from a normal distribution of mean 18.6 and

Figure 1. Representative reconstructed image of a Lucifer Yellow–
filled DG granule cell (DG) neuron from a hippocampal slice prepa-
ration. This cell has been used for quantitation of the dendritic tree
(traced shape included in Table 4). Asterisks indicate branches that
did not appear to be completly filled with the dye and were arbitra-
rily extended toward the fissure of the molecular layer. Scale bar:
100µm.



Stochastic Neurons 7

Table 1. Probability distributions used to generate DG granule
cells are the specific distributions used in the implementation of
the shape-generation algorithm. In the branch point distribution,
fB(ω), ω is the normalized distance of a branch point from the
soma, whereω= 0 is at the some andω= 1 is at the distal tips of
the dendritic tree (at the fissure). Equation (1) in the text gives the
values for fB(ω). The noise distribution is a function applied to
thex andy coordinates of points along the dendrite to approximate
dendritic wiggle, the small turns and deviations which a dendrite
exhibits (see text). Starred distributions (*) are based on data from
Claiborne et al. (1990), where the standard deviations were com-
puted from the standard error values given in the reference. Note
that all dendrites were assumed to terminate at 300µm.

Item Distribution mean± sd

Soma length* Normal 18.6± 3.43µm

Soma width* Normal 10.3± 2.06µm

Number of primary dendrites* Normal 1.9± 1.37

Number of branch points* Normal 13± 2.97

Branch point location* Staircase fB(ω)

Tree height Constant 300µm

Transverse spread* Normal 325± 75.4µm

Longitudinal spread* Normal 176± 41.1µm

Noise distribution Normal 0± 1µm

standard deviation 3.43 for its length inµm, and a
second random number from a normal distribution of
mean 10.3 and standard deviation 2.06 for its width
in µm. A random variate from a normal distribution
can be generated using the standard Box-Muller algo-
rithm (Press et al., 1992, sec. 7.2). A population of
soma shapes generated in this manner should have the
same distribution of lengths and widths as actual soma
shapes. This same principle of using probability dis-
tributions based on biological observations from real
rat granule cell dendritic trees can generate a dendritic
tree. The distributions that we used are given in Table 1.

2.2. The Algorithm

A dendritic tree is comprised of connected branch seg-
ments, situated between branch points and end points
in three dimensions. Generating the dendritic tree in-
volves six steps: (1) generating the branch point nor-
malized distances, (2) connecting the branch points to
form a one-dimensional projected tree, (3) mapping the
one-dimensional projected tree to a three-dimensional
tree, (4) scaling the normalized coordinates to real coor-
dinates, (5) adding dendritic diameters, and (6) adding
dendritic wiggle (see Fig. 2).

2.2.1. Generating the Branch Point Locations.The
branch points{b1, b2, . . . ,bnB} are first generated
in normalized coordinatesbi = (χi , ψi , ωi ) and then
scaled to actual coordinates(xi , yi , zi ). A branch point
location distribution fB(ω) describes the probability
of a branch point occurring at normalized distanceω
within the stratum moleculare, whereω= 0 is at the
soma in stratum granulosum andω= 1 is at the hip-
pocampal fissure where the granule cell dendrites ter-
minate (Claiborne et al., 1990). This distribution fol-
lows directly from experimental observations of branch
points. For example, the branch point probability dis-
tribution of Table 1 is

fB(ω) =


0.63, 0≤ ω ≤ 1/3,

0.27, 1/3< ω ≤ 2/3,

0.10, 2/3< ω ≤ 1,

(1)

which means that 63% of the branch points occur (uni-
formly distributed) within the proximal third of the
stratum moleculare or dendritic tree, 27% uniformly
within the middle third, and 10% uniformly within the
distal third.

First, choose the number of branch pointsnB follow-
ing the experimentally observed distribution in Table 1.
In general, the probability distribution of branch point
normalized distances can take on almost any form. Sec-
ond, the branch point normalized distancesωi are gen-
erated for any arbitrary probability distributionfB(ω)

as follows. Choose random variatesu1, u2, . . . ,unB

from a uniform random distribution on [0, 1] gener-
ated using the Park-Miller algorithm (Press et al., 1992,
sec. 7.1). Then apply

ωi = F−1
B (ui ); i = 1, . . . ,nB, (2)

whereFB(ω) is the cumulative density function corre-
sponding tofB(ω).

Probability[ωi ≤ ω] = FB(ω) =
∫ ω

−∞
fB(t) dt

=
∫ ω

0
fB(t) dt, (3)

where 0≤ ω ≤ 1 andF−1
B (ω) is its inverse. It can be

shown by graphical plots offB(ω) versusω andFB(ω)

versusω that the frequency distribution of the set ofωi

points resulting from Eq. (2) isfB(ω). Thus, the values
of the normalized distances from the soma of the gen-
erated branch points will behave like the experimental
observations.
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Figure 2. Steps in the algorithm to generate a normalized dendritic tree. Details in text. A: The generated branch pointsbi = (0, 0, ωi );
i = 1, . . . ,nB, where theωi are values of normalized distances from the soma shown on the vertical axis (ω = 0 at soma andω = 1 at bottom).
B: Connected branch points to form a 1D collapsed tree. The connections have been expanded slightly so that they are visible; in actuality, all
the branch points are still collinear on a single axis underneath the soma, as in the previous step. C: Expanded 1D tree to form a 3D tree, where
the branch points arebi = (χi , ψi , ωi ).

Preliminary to connecting the branch points, sort the
ωi -values so thatω1 ≤ ω2 ≤ · · · ≤ ωnB . Let the branch
points bebi = (0, 0, ωi ) for i = 1, . . . ,nB (Fig. 2A).

2.2.2. Connecting the Branch Points to Form a 1D
Projected Tree. A branch point by definition repre-
sents a point in space where a singleparent dendrite
branches into two child dendrites. The point at the dis-
tal tip is called anend point. If one assumes that the
dendritic tree always extendsoutward from ω = 0
to ω = 1, then it is possible to connect the branch
points and end points together in an unambiguous man-
ner to produce a connected tree. At this stage, the
branch points are projections on the normalizedz-axis
(ω-axis).1

The branches are connected as follows. Choose the
number of primary branchesnP, again drawing from
an experimentally derived distribution (Table 1). Cre-
atenP parent segments (primary segments), connect-
ing the soma to branch pointsb1, . . . ,bnP . Then for
eachbi , create two child segments betweenbi and the
next two distal pointsbj andbj+1, wherei < j , which
do not already have parent dendrites. If no such branch
point exists, then create an end point atω = 1 and con-
nect a child segment to it.

The resulting set of dendritic segments produces a
connected tree with the desired characteristics. Since
ωi ≤ω j for i < j and all distal branch end points are lo-
cated at normalized distance 1, connections are always
made for increasingω, and all the segments will extend
in a proximal-to-distal direction. Since connections are
always made to the next two distal (most proximal un-
connected) points, it is guaranteed that each connected
branch point always has one parent and two child den-
dritic segments. Finally, since this process is done for
all branch points in the setB, no branch point is left
unconnected (Fig. 2B).

2.2.3. Mapping the 1D Projected Tree to a 3D Tree.
This step may be thought of as expanding the genera-
ted (projected onω-axis) tree into a 3D tree by assign-
ing normalizedχ andψ coordinates to each branch
point.

First assign(χ, ψ) coordinates to the end points such
that they project inside a circle of radius 1. Four end
points are assigned values of(−1, 0), (1, 0), (0, −1),
and(0, 1). The remaining end points are distributed
randomly within the unit circle by generating pairs of
uniform random numbersχ,ψ within [−1, 1] and ac-
cepting the pair only ifχ2+ ψ2 ≤ 1.
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For each of the remaining points, which are all
branch points, their(χ, ψ) values are assigned the av-
erage values of the distal end points of the two child
branches to which it is connected. That is, if the
two distalward segments ofbi connect to(χ1, ψ1) and
(χ2, ψ2), then (χi , ψi ) of bi is set to((χ1+χ2)/2,
(ψ1+ψ2)/2).

2.2.4. Scaling the Normalized Coordinates to Actual
Coordinates. An actual distanceH is chosen for the
dendritic tree from the height distribution (Table 1),
which in this case is constant. Then settingzi = Hωi

for i = 1, . . . ,nB scales the normalized distances to
actual distances from the soma.

Longitudinal and transverse spreadsl treeandttreeare
chosen for the tree from the experimental distribution
(Table 1). Scale the unit circle that contains the end
points onto an ellipse with diametersl treeandttreeby set-
ting x= 1

2l treeχ andy= 1
2ttreeψ . This produces a spa-

tial arrangement of the dendritic tips consistent with the
experimental observation that the widest spreadttree of
the tips occurs in the transverse plane of the hippocam-
pus and perpendicular spreadl tree in the longitudinal
plane (Claiborne et al., 1990). Thus, the set of points
{bi ; i = 1, . . . ,nB}, where

bi = (xi , yi , zi ) =
(

1

2
l treeχi ,

1

2
ttreeψi , Hωi

)
,

are the actual 3D coordinates of a full dendritic tree
(Fig. 2C).

2.2.5. Adding Dendritic Diameters. Each dendritic
segment length was divided by the smallest integer
such that the size of a compartment is≤1 µm, and
each compartment assigned a diameter based on the
distance of the compartment’s midpoint and using the
dendritic diameter versus distance functionKdiamd(z)
obtained from the electron micrograph measurements
described below. The length of each compartment is
well within 10% of the space constant for a granule neu-
ron, so that numerical accuracy of the compartmental
simulations can be assured. Since dendritic diameter
is taken to only be a function of distance on thez-axis
(not radial from soma or arc length on branch), two
child branches at a branch point have the same initial
diameter but can taper at different rates, depending on
the angle of branching, with respect to thez-axis, or
the derivative∂d/∂z as function ofz. Since we do
not have sufficient data to take into account a correla-
tion between soma size and initial dendritic diameter,

Table 2. Measurements from two methods used to
determine dendritic diameter± standard deviation
(D± sd) as a function of distance (z) from the soma
of DG granule neurons. The number of measure-
ments inn. Not adjusted for shrinkage. See text.

z (µm) D± sd(µm) n

Method 1

0–30 2.1± 0.63 10

30–60 1.6± 0.57 8

60–90 1.1± 0.40 7

90–120 1.1± 0.63 10

120–150 0.98± 0.26 7

150–180 0.94± 0.22 5

180–210 0.85± 0.49 6

210–240 0.95± 0.10 4

240–270 0.81 1

270–300 0.87 2

Method 2

0–40 1.2± 0.38 23

40–80 1.1± 0.23 23

80–120 1.1± 0.32 27

120–160 0.88± 0.26 19

160–200 0.89± 0.16 24

200–240 0.79± 0.16 25

240–280 0.68± 0.24 17

280–320 0.71± 0.24 17

the same diameter function is used regardless of soma
size. Table 2 gives a small sample of dendritic diame-
ters from one rat dentate gyrus that we measured (Sec-
tion 2.5) and is in agreement with Desmond and Levy
(1984). The variations of diameters are presumably
due to variations among neurons. We do not have any
direct data on this but incorporated this variability in
the shrinkage factor,Kdiam (see Section 2.6).

2.2.6. Adding Dendritic Wiggle. Finally, the seg-
ments of a dendritic tree do not travel in straight lines
through the stratum moleculare; rather, they tend to ex-
perience small turns or dendritic wiggle. This can be
emulated by applying a noise function to the coordi-
nates of each compartment in the XY plane, so that each
(x, y) value is given a random normally distributed off-
set value. This has the effect of slightly increasing the
dendritic length of the generated tree. The noise func-
tion has a mean of zero to avoid a biased shift in the
new positions of the dendritic compartments.
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2.3. Implementation of Algorithm

A program that implements this algorithm and uses
the distribution functions listed in Table 1 was writ-
ten using ANSI C. To ensure uniformity across differ-
ent versions of C, uniform and normal random num-
ber generation routines were also written. Uniformly
distributed random numbers were generated using the
Park-Miller algorithm with a Bays-Durham shuffle,
and normally distributed numbers were generated using
the Box-Muller method (Press et al., 1992). Each gen-
erated shape is assigned an integer number, which also
serves as the seed for the random number stream. This
gives each shape a unique identifying number and pro-
vides a convenient way to reproduce uniquely an entire
generated shape from a single number. The program
takes a shape number and a value forKdiam and pro-
duces the corresponding generated shape. A montage
of representative generated shapes is shown in Fig. 3.
The program, as implemented, can generate a single
novel complete granule cell shape in≤10 s on a Sun 3
workstation.

2.4. Digitization of Filled DG Granule Neurons

A DG granule neuron was filled with Lucifer Yellow
and photographed onto a slide and traced (Fig. 1).
The photographic negative was video digitized us-
ing an instrumentation video camera (NC-70, Dage-
MTI, Inc., Michigan City, IN 46360) and a Win-TV
board (Hauppauge Computer Works, Inc., Hauppauge,
NY 11788) on a PC with a program running under
DOS (Winslow, 1994). The digitized images were
transferred to a Silicon Graphics Indigo computer
(Silicon Graphics, Inc., Mountain View, CA 94039-
7311), where the scale bar and the nodes and branches
of the tree were traced using a tree tracing program
(Winslow, 1995). Details on the hardware, data struc-
tures, and algorithms used have been described previ-
ously (Winslow et al., 1987).

Similar to the representative traced granule neuron
shown in Fig. 1, the extent of the dendrites gave a
good indication of the location of the hippocampal fis-
sure when the original stained cell is viewed in the
slice preparation. The dendrites appeared to terminate
almost completely at the fissure, consistent with ob-
servations by others (Claiborne et al., 1990). Three
dendrites seemed to disappear before reaching the fis-
sure, but they also gradually faded out from the im-
age, likely as a result of projecting above or below the

Figure 3. Six representative generated shapes. Shapes such as these
were computer-generated using the stochastic algorithm described in
the main text. A shape can be uniquely identified and reproduced
from a single ID number, which serves as the random number stream
seed. Images were generated from the output geometry files using
a ray tracer. Clockwise from the upper left: shape 30, 7, 2, 22, 1,
and 6.

focal plane. Given that nearly all granule neuron den-
drites terminate at the fissure or the pial layer, when the
neuron was traced, those dendrites that faded out pre-
maturely were extended by eye in the construction of
the traced shape model. A total of three dendritic seg-
ments were extended, adding only 247µm of dendritic
length to the tree, for a total dendritic length of 3380
µm. The traced shape had 30 dendritic segments, three
primary branches, and a longitudinal spread of 404µm.
These values agreed well with published values on re-
constructed granule cells (Table 4). In particular, the
dendritic length of this granule cell from a immature
(21-day-old) rat agreed well and was even slightly
higher than the average dendritic length of an adult
rat granule cell. This is consistent with the observation
that at three weeks after birth the dendritic arborization
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of granule neurons is the same as in adult cells (Cowan
et al., 1980), although spine development is not yet
fully mature (Cotman et al., 1973; Crain et al., 1973).
Therefore, a branch point distribution based on granule
neuron dendritic trees in adults can still be used to gen-
erate trees in younger, 15- to 30-day-old rats, although
adult measurements of spine sizes and densities cannot
be used without appropriate scaling.

2.5. Measurement of Dendritic Diameters

To complete the statistics for dendrites, diameters
are required. Transverse hippocampal slices from a
35-day-old rat were prepared with standard methods
for electrophysiological experimentation (Wang et al.,
1996). For electron microscopy examination, 400µm
slices were fixed in 6.2% glutaraldehyde in 0.1 M
sodium cacodylate buffer (pH 7.4) containing 0.011%
CaCl2 and 4% sucrose. After rinsing in buffer, the tis-
sue was postfixed in 2% osmium tetroxide, dehydrated
in ethanol, embedded in epoxy, and sectioned on a Re-
ichert “Ultracut” microtome.

Since the long axis of the dendritic tree is approx-
imately perpendicular to incoming axons of the per-
forant pathway, thin sections (75 nm) were cut in a
plane parallel to the dendritic tree and the incoming per-
forant pathway, so as to facilitate recognition and mea-
surement of the dendritic profiles. Dendritic branches
were distinguishable from axons and other cells in the
neuropil since they appeared mainly in longitudinal or
oblique view, lacked synaptic vesicles, and were gen-
erally more electronlucent. Four consecutive sections
were micrographed using a Hitachi H-7000 transmis-
sion electron microscope.

• Method 1 In five separate fields, diameter measure-
ments were made of dendritic profiles that extended
longitudinally or obliquely. Each field, which ex-
tended from the cell body layer to the fissure of the
molecular layer, was about 360 by 30µm. Measure-
ments of 10 to 20 profiles from each field were made
by a naive observer. In cases where the diameter of
the dendrite was not uniform along its length, it was
assumed that the dendrite had been cut obliquely to
its long axis, so the smallest ellipsoid diameter (true
diameter) was measured.
• Method 2 The dendritic diameter measurements

were independently confirmed in another field from
a different area of the same dentate gyrus by a differ-
ent observer. A square grid (20×20µm per square)

was overlaid on each micrograph. Coordinates cor-
responding to the squares were uniformly, randomly
chosen with a density of approximately 24 samples
per micrograph (total area 43,000µm2). Within each
randomly chosen square, a measurement of dendritic
diameter was made if a dendrite could be identified
within the chosen sample. Dendrites were identified
by (1) electronlucent, (2) presence of postsynaptic
density, (3) presence of mictrotubles, and (4) lack of
vesicles. The number of these identified features
(one to four) per observed dendrite and diameter
were recorded. These values were used to compute
a weighted mean of diameters, so that diameters that
came from unequivocal dendrites contributed more
to the mean than tenuously identified dendrites.

The results from these two methods were found not
to differ significantly and are reported in Table 2. They
are similar to those of Desmond and Levy (1984) ob-
tained from adult animals. Using a generalized least-
squares curve-fitting procedure, diameter as a function
of distance,z, from the soma within the dendritic layer
was best fit by

fd(z) = 1.713 exp(−z/47.70)+ 0.8626, (4)

where fd andz are inµm.
We corrected for tissue shrinkage, which occurred

as a result of the chemical processing for electron
microscopy (Hayat, 1981), by using a unitless scal-
ing factor,Kdiam= Dt/Dm, whereDt = true diameter,
Dm=measured diameter, andS= shrinkage= (Dt −
Dm)/Dt . In the computation of passive parameters
and the simulations,Kdiam was varied from between
1.0 (S= 0) to 1.4 (S= 29%). The function

d(z) = Kdiam fd(z) (5)

is used in both the generated shapes and the traced
shape to set the dendritic diameters. Shrinkage of
30 to 40%, including extracellular space, is expected
from the EM tissue preparation procedure (Hayat,
1981). However, the exact shrinkage of the dendrites
is not known and dendrites have lipid membranes,
small cross-sections, and intracellular organelles, thus
they presumably shrink less. Consequently, we chose
Kdiam= 1.2 (S=17%).

2.6. Dendritic Spines

Up to 50% of the dendritic surface membrane may be
attributed to the presence of dendritic spines (Hama
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Figure 4. Local voltage responses to synaptic conductance placed on the different types of spines. The spine was located on the medial region
of the dendritic tree at 200µm from the soma in generated cell shape #49. A: An expanded spine, SPE. B: A simple spine, SP. C: No spine with
dendritic shaft only for comparison.

et al., 1989), which are small, fingerlike protrusions
extending from the dendrites of many neurons and
often, but not always, terminating in bulbous expan-
sions (Fig. 4). They increase the effective surface area,
thereby increasing the electrotonic length of dendritic
segments and electrotonically distancing the synapse
from the soma (Holmes, 1989; Stratford et al., 1989;
Holmes and Levy, 1990; Holmes and Rall, 1992; Segev
et al., 1992; and discussion in Rall et al., 1992). Given
the large number of spines on a single granule neu-
ron, explicit creation of one or two compartments per
spine on the dendritic tree generates a large number
of compartments requiring more equations and time-
consuming simulations. Using the technique of Major
(1992), we represented the spines on each dendritic
segment by increasing the length and diameter of the
segment and replacing the spiny dendrite with a single
longer and wider smooth (spineless) dendrite.

The surface area contribution of spines was assumed
to beKspineA µm2 per 1µm of dendrite (arc length),
where A = 4.180, 2.806, 2.401µm2 for the proxi-
mal, middle, and distal portions, respectively, of the
stratum moleculare (Hama et al., 1989, Table 3).Kspine

is the scaling parameter that was introduced to address
the uncertainty regarding the actual spine density and
size on granule neurons of immature rats. Immature
spines are not as large or elaborate and do not appear
at the same densities as adult spines (unpublished ob-
servation). We scaled down the adult spine estimates
by Kspine, where Kspine< 1 is interpreted as model-
ing smaller, less elaborate, and less densely distributed
spines.Kspine= 0.5 means the spine surface areas are
half that of the adult spine surface areas as measured
by Hama et al. (1989). The simulated cells have half
the number of spines as an adult rat granule neuron
(Desmond and Levy, 1985) or the full adult number of
spines, but each spine has half the adult surface area.
More likely, there is a combination of both smaller
and fewer spines in the simulated immature rat granule
neuron compared with an adult.

Our data are based on six dendritic segments (three
from lateral and three from medial perforant pathway)
with a total length of 10.7µm. All these segments
were fully reconstructed from serial EM sections. We
counted 35 synapses contacting the dendrites and only
five contacting spines. All spines were very small,
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Table 3. Parameters used in the simulations. The
spine values are based on adult-sized rat DG granule
neurons (Hama et al., 1989). Each linear parameter is
scaled byK 1/2

spine, so that the final surface area of all the
spines is scaled by a factor ofKspine. See text.

Parameter Value

α 0.5

1t 0.25

Cm 0.7µF/cm2

gmax 0.45 nS

Kspine 0.5

Kdiam 1.2

Ri 150Ä cm

Rm 78.3 KÄ cm2

Vrest −69.8 mV

Compartment length ≤1µm

Spine Area µm2/µm dendrite length
Proximal third Kspine4.180

Middle third Kspine2.806

Distal third Kspine2.401

SPE Spines

Head Height K 1/2
spine0.51µm

Head diameter K 1/2
spine0.50µm

Base height K 1/2
spine0.752µm

Base diameter K 1/2
spine0.185µm

SP Spines

Base height K 1/2
spine1.253µm

Base diameter K 1/2
spine0.333µm

Tip diameter K 1/2
spine0.258µm

measuring 0.5 to 1µm in length and diameter. Two
other spinelike projections were devoid of synapses.
Seven spines per 10.7µm of the dendritic length
amounts to 0.65 spines/µm, a much smaller spine den-
sity than the reported 1.4 spines/µm in adult animals
(Desmond and Levy, 1985), consistent with our esti-
mate ofKspine = 0.5. To implement this, we wrote
a program that takes a dendritic tree shape (such as
the traced shape or a generated shape) and for a given
value ofKspine calculates the spine-collapsed version.
For most of the simulationsKspine= 0.5 was used.

2.7. Shape to Compartments

The 3D description of a dendritic tree has the form
of a list of xyzcoordinates of locations of the soma,

branch points, and distal tips. This representation gives
the visual lifelike shape and exact shape measure-
ments, which are then the data used for the shape statis-
tics. The dendrite is discretized into compartments,
whereby each branch point and dendrite end points are
centers of compartments, and each branch is subdi-
vided into compartments. Because the structure is in
3D, the true lengths of branches must be calculated
from the 3D distance between branch points.

The discretized neuron, when represented by com-
partments for simulation, is a list of tuples, one per
compartment, consisting of compartment number,
compartment location, compartment parameters, list of
compartments to which it connected, and input synapse
number.

2.8. Simulation of Synaptic Potentials

A set of 50 different cell shapes was generated and con-
verted into compartmental models. The compartments
assigned in generating the neuron were used for the
simulations. Thus, the minimum and maximum com-
partment lengths are 0.5 and 1.0µm, respectively. The
average number of compartments per simulation was
at least 3,430, which corresponds to the total length
of the generated dendritic tree. All computer simu-
lations were done using NEURON 2.0 (Hines, 1984,
1989) on either a SUN-3 running BSD Unix or an In-
tel 486DX33 PC running Linux. Simulation parame-
ters are given in Table 3. When an activated synapse
was on a spine, these spines were explicitly modeled,
using one or two compartments with the dimensions
given in Table 3, with spine measurements from Hama
et al. (1989). The remaining spines were implicitly
represented in the simulations, using the spine collapse
procedure. The time course of synaptic conductance
was simulated by theα function,gmax(αt) exp(1−αt),
whereα = 0.5 andgmaxwere chosen, so that simulated
responses at the soma had shape and amplitude similar
to those of recorded responses in granule cells.

2.9. Electrophysiological Recordings
in Hippocampal Slices

Recordings and analysis of synaptic responses were de-
scribed in our recent publications (Wang et al., 1996;
Wang and Wojtowicz, 1997). All recordings were per-
formed from cell bodies of the granule neurons in the
whole-cell configuration. Input resistances were mea-
sured by applying 10 mV, 100 ms depolarizing voltage
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steps from a resting membrane potential (approxi-
mately−70 mV) and measuring steady-state currents.
Synaptic responses were evoked at 0.1 Hz by electrical
stimulation of afferent axons in the outer (LPP) and
middle (MPP) molecular layers. Stimulus current was
adjusted to produce approximately equal amplitudes
of evoked excitatory potentials (EPSPs) from LPP and
MPP, as recorded in the cell body.

3. Results

3.1. Verification of the Algorithm

Verification of the algorithm, and overall correctness
of the program that implemented the algorithm, was
done by ascertaining the realism and statistics of the
generated shapes, of which a representative sample is
shown in Fig. 3. Population statistics of tree measure-
ments, some of which were not directly based on dis-
tributions used in the algorithm, were computed on
100 generated shapes, shapes 0 to 99. The number of
dendritic segments, number of primary branches, trans-
verse spread, longitudinal spread, dendritic length, and
tree shape (the ratio of longitudinal spread to trans-
verse spread) were evaluated. These statistics for the
generated shapes were then compared with those same
statistics published in the literature (Table 4).

The generated cell shapes appear to be realistic. In
all cases the mean statistics are comparable, imply-
ing that on average the generated shapes are similar to
actual cell shapes, at least with respect to the number of
dendritic segments, number of primary branches, trans-
verse spread, longitudinal spread, dendritic length,

Table 4. Tree statistics comparing published values from actual DG granule neurons, computed values from the
traced shape, and computed values from 100 generated shapes. Published and generated shape values are± standard
deviation. Tree shape is the ratio of longitudinal spread to transverse spread. Longitudinal spread and tree shape
from the traced shape is not available since it was projected on to a single plane. Note that the means of actual versus
generated shapes are not significantly different. Published values are from Claiborne et al. (1990).

Characteristic Published values Traced shape Generated shapes

n 48 1 100

Dendritic segments 29± 6.86 30 25.8± 6.11

Primary branches 1.9± 1.39 3 2.41± 1.26

Transverse spread (µm) 325± 75.41 404 314± 66.8

Longitudinal spread (µm) 176± 41.13 — 177± 39.0

Dendritic length (µm) 3221± 535 3380.24 3430± 802

Tree shape 0.56± 0.21 — 0.54± 0.20

and tree shape. Further, the standard deviations of all
the statistics are also comparable. This suggests that
the population of generated shapes also encapsulates
the same variability expected in a population of real
granule cellsin vivo. Thus, we conclude that our algo-
rithm and program, which implemented the algorithm,
are valid for their purpose of generating this type of
neuron.

3.2. Passive Parameters

In addition to morphological details, the passive para-
meters of granule neurons must be determined before
simulations can be performed. The whole cell input re-
sistanceRN = 280.4± 150.2 MÄwas measured exper-
imentally in 320 granule neurons. This value is higher
thanRN reported for adult rats (Staley et al., 1992) as
may be expected if the dendritic tree and soma were
more compact in our immature animals.

Given a value of axoplasmic resistivityRi , the pre-
viously obtained measurement ofRN , and a specific
cell shape (either the traced cell shape or a generated
shape), a unique value for membrane resistivityRm

may be computed using a recursive procedure. Instead
of using Ri , Rm and a given shape to computeRN

(Rall, 1957, 1989; Segev et al., 1989; Nitzan et al.,
1990), we computed the theoretical value ofRm such
thatRN = 280.4 MÄ for each generated shape (Fig. 5).
Because of recent evidence that the internal axoplas-
mic resistivity Ri is actually much higher than previ-
ously thought (Shelton, 1985; Jonas et al., 1993; Rapp
et al., 1994; Major et al., 1994; Thurbon et al., 1994;
Borst and Haag 1996), computations were performed
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Figure 5. A: Pathway to compute membrane resistivityRm. Given estimates of passive parametersRm andRi , and a cell shape, one can obtain
a theoreticalRN from cable theory. In this article,RN was experimentally measured, andRi varied across a physiologically plausible range.
Model geometries came from a tracing of an actual DG cell as well as from computer-generated shapes. B: Computed membrane resistivityRm

for generated and traced DG cell shapes, corrected for shrinkage. The dendritic diameters used in the shapes have been expanded to account
for tissue shrinkage (Kdiam= 1.2). Points are theRi andRm values such that the measuredRN is 280.4 MÄ from young rat DG cells. Hollow
shapes are for the traced shape; filled shapes are average values for 100 generated shapes. Triangles (upper curve):Kspine= 1.0, which gives
spine surface areaKspineA = 4.180, 2.806, and 2.401µm2 perµm of dendrite for the proximal, middle, and distal thirds of the dendritic tree;
squares (middle curve):Kspine= 0.75, giving KspineA= 3.135, 2.105, and 1.801µm2 perµm; circles (lower curve):Kspine = 0.50, giving
KspineA = 2.090, 1.403, and 1.201µm2 perµm. The values corresponding toKspine= 0.50 are most appropriate for our young preparation.
Bars are standard error.

from below the traditional value ofRi = 70Ä cm, to
Ri = 400Ä cm, which are generous bounds on the true
Ri . Assuming tissue shrinkage factorKdiam= 1.2, the
results obtained are shown in Fig. 5B.

The nominal value ofCm used in the simulations
was 0.7µF/cm2, which is lower than the usual value
of 1.0µF/cm2 but is currently believed to be the most
accurate value of membrane capacitance (Fettiplace

et al., 1971; Takashima and Schwan, 1974; Benz et al.,
1975; Takashima, 1976; Haydon et al., 1980; Major
et al., 1994). However, ifCm is actually higher (e.g.,
Borst and Haag, 1996), this will significantly alter the
simulated responses (see below). The predicted re-
sponse will be more sluggish, with a slower rise time,
lower amplitude, and longer time constant (not shown)
and would not agree with our data.
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Two agreements with theory may be seen at this
point. First, the mean computedRm of our morpholog-
ically realistic granule neurons, which were stochasti-
cally generated, is very dependent on the surface area
of spines, as previously shown (e.g., Rall et al., 1992;
Stratford et al., 1989; Holmes 1989; Holmes and Rall,
1992; Segev et al., 1989). The standard deviations as-
sociated with meanRm computed for differentKspine

values vary linearly with respect toKspine (3.0, 2.4,
1.8 KÄ cm2 for Kspine= 1.00, 0.75, 0.50, respectively)
but is constant with respect toRi (as shown in Fig. 5).
The large differences in computedRm values due to
different choices ofKspinemean that an accurate mea-
surement of the spatial extent of spines is critical, if an
exact determination ofRm is desired using this method.
Second, the computedRm is slightly decreasing for in-
creasing axoplasmic resistivityRi varying from 50 to
400Ä cm, which agrees with Rall’s equation (Rall,
1989, Eq. (2.46))R−1

N = AD tanh(L)/RmL. This re-
lates RN to Rm, and Ri for an equivalent cylinder,
where areaAD = π ld for length l , diameterd, and
L = l/λ. Other versions of this formula can be found
in the literature (e.g., Rall et al., 1992; Johnston and
Wu, 1995, sec. 4.8). Figure 5, computed for fine spa-
tial discretization resolution per stochastically gener-
ated neuron, implies thatRm values typically computed
from the membrane time constantτ may be incorrect
by at most 10%, despite recent estimates ofRi that may
be several times higher than 70Ä cm (Spruston et al.,
1993, 1994).

The computedRm values suggest thatKspine= 0.5
is reasonable. When the higher values ofKspine= 0.75
andKspine= 1.00 were used to computeRm, theseRm

values do not agree with other estimates based on the
membrane time constantτ measured to be 56.3 ms
in a similar experimental preparation (immature rat
DG granule cells) (Zhang et al., 1993). Assuming
thatτ = 56.3 ms and thatCm= 0.7µF/cm2, then from
τ = RmCm one obtainsRm= 80.4 KÄ cm2. This is very
close to the theoreticalRm values that we computed
whenKspine= 0.5 (Table 5).

The variation inRm of the generated shapes shown
in Table 5 is due to variation in shape alone because
the computedRm per shape is the value such that
RN = 280.4 MÄ, the mean of the experimentally ob-
tained values. Additionally, the large variation of ex-
perimentalRN measurements may be partially due to
the different tree geometries. To test this hypothe-
sis, Rm was fixed at 78.3 KÄ cm2 (Ri = 150Ä cm,
Kspine= 0.5) and thenRN computed for 100 randomly

Table 5. Computed membrane resistivityRm for generated shapes.
All shapes have been spine-collapsed assuming spine surface areas
of A= 4.180, 2.806, 2.401µm2 perµm of dendrite at the proximal,
middle and distal portions. TheRm is computed such that, for a given
geometry,Ri andKspine, it produces the whole cell input resistance
RN = 280.4 MÄ, which is the average of the experimentally ob-
tained values (see text). A tissue shrinkage factor has been assumed
(Kdiam= 1.2). The meanRm and standard deviation (n = 100) are
shown. Same values are shown in Fig. 7.

Kspine= 0.50 0.75 1.00

Ri (Ä cm) Rm for generated shapes (KÄ cm2)

50 81.6± 19.6 102± 24.5 123± 29.5

100 80.0± 19.7 100± 24.7 121± 29.7

150 78.3± 19.8 98.2± 24.8 118± 29.9

200 76.7± 19.8 96.0± 25.0 115± 30.1

250 75.0± 20.1 93.9± 25.2 113± 30.3

300 73.4± 20.3 91.9± 25.4 110± 30.5

350 71.8± 20.4 89.8± 25.6 108± 30.7

400 70.2± 20.6 87.8± 25.8 105± 31.0

generated shapes. The result was anRN of 296.5±
83.2 MÄ. SinceRm was constant, the standard devi-
ation of 83.2 MÄ is the result of the shape variation
within the population of generated cells.

Uniformly changing the surface area contribution
of spines can emulate the presence of spines during
varying stages of development. When spine sizes were
changed along with tree geometries, the resulting stan-
dard deviation was similar to that produced by chang-
ing tree geometries alone; fixingRm and Ri as be-
fore, but varyingKspine uniformly between 0.5 and
0.9 over 300 generated shapes, produced anRN of
248.2 ± 77.8 MÄ. Similarly, uniformly varying the
membrane resistivity in the range 70.0 to 85.0 KÄ cm2

produced a similar standard deviation; the computed
RN over 400 generated shapes was 273.2± 64.8 MÄ.
These observations are consistent with the idea that
the cell-to-cell variance associated with experimentally
measuredRN values in real cells can be at least par-
tially due to their different tree geometries as suggested
by Rall (1959).

3.3. Synaptic Potential Simulations

After activating a synapse, a voltage depolarization
occurs on the synapse-bearing spine or shaft then
spreads throughout the dendritic tree. What eventually
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conducts to the cell body is what is observed in whole-
cell current clamp recordings.

As shown in Fig. 4 (inset), dendritic spines may
be without an expansion of the spine head (SP), or
they may have a terminal expansion of the spine head
(SPE). When the synapse occurs on the tip of an SP
spine or the head of an SPE spine, the spine response
inside the tip or the head is amplified (Fig. 4). This
was expected from theoretical considerations; since
the spine has a greater input resistance than the par-
ent dendrite, the same synaptic conductance produces
more depolarization at the spine than at the dendrite
(Koch and Zador, 1993). The simulated depolariza-
tion inside the spine head of an SPE spine was ap-
proximately 20% greater than the response to the same
synapse when placed directly on the shaft. The spine
response inside the tip of an SP spine had an ampli-
tude of 4.96 mV, which is also slightly larger (by 6%)
than the response to a shaft synapse but not as large
as the SPE response. This is likely because the neck
diameter of SP spine is larger than that of an SPE
spine

Despite the initial differences in the synaptic res-
ponse, however, by the time the depolarization has con-
ducted to the dendritic shaft that contains the spine, the
response to a spine synapse becomes virtually identical
with the response to the same synapse placed directly
on the shaft. This implies that when studying the con-
ducted soma or shaft response to synaptic activation,
the exact synapse configuration is not important. This
is consistent with previous calculations that current loss
across the spine neck is negligible (Koch and Zador,
1993), since current loss is proportional to membrane
surface area and the spine neck area is very small (Har-
ris and Stevens, 1989). Hence, the remaining simula-
tions were performed with the synapse placed directly
on the shaft.

3.4. Responses to LPP and MPP Stimulation

Since LPP and MPP make excitatory synaptic connec-
tions with the the distal and medial thirds, respectively,
of the dendritic tree of granule neurons as shown in
Fig. 6, can the responses at the soma due to stimula-
tion of the LPP and MPP be distinguished? We ad-
dress this question by simulations on the generated set
of neurons and compare the results with simulations
in which LPP and LPP were individually stimulated
for the same recorded cell. The inset in Fig. 6 lo-
calizes the measurements of interest on the waveform

recorded at the soma for the simulations and the ex-
periments.

3.5. Effect of Dendritic Diameter on Simulated
Local and Conducted EPSPs

When the location of the synapse was varied along the
dendrite, it was found that the local response varied
significantly. In particular, the amplitude of the local
shaft depolarization depends greatly on the distance of
the synapse from the soma; distal synapses consistently
depolarized the local dendritic tree much more greatly
than the similar synapse located more medially (Fig. 7).
This is primarily because distal dendrites are thinner
and tend to be closer to a terminated dendrite, compared
with a more proximal dendrite, which is thicker, and the
incoming current can spread in two directions. Distal
local responses also tended to fall faster. This implies
that LPP synapses can cause much larger and shorter
lasting depolarizations in the local dendritic tree than
MPP synapses. Half width and decay times are shorter
in LPP regions (see Table 6) in spite of slightly longer
rise times.

These local differences in shapes and amplitudes
tended to disappear by the time the responses had con-
ducted to the soma (Fig. 7). With the exception of the
rise time of the conducted response, the location of the
originating synapse cannot be easily determined from
the shape of the conducted response, at least in terms of
their amplitudes, half-widths, or decay time. However,
more medial synapses had more rapid rise times at the
cell body than more distal synapses.

Figure 8 shows the peak amplitude of the transient
response along an entire dendritic tree to a LPP and to
a MPP synapse. This profile of the transient response
in a specific dendritic tree shape is similar to the steady
state result of Rall and Rinzel (1973) using equiva-
lent cylinders. There is substantial distal-to-proximal
decrement within even the single branch that contains
the synapse. By the time the synaptic response has
passed its first or second branch point, there is no
longer an amplitude difference between the response
to an LPP or an MPP synapse. However, there is
some difference in the distal direction (compare the
distal tips). Because a distal synaptic response appears
to decay much more rapidly along the dendritic tree
than a proximal synaptic response, the amplitudes of
both responses appear very similar by the time they
have conducted to the upper half of the dendritic tree
(Table 7).
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Figure 6. Experimental arrangement for stimulating and recording synaptic responses in lateral and medial perforant afferents in the hip-
pocampal slice preparation from rat. The stimulating electrodes made of fine tungsten wires were placed in middle (S1) and the outer (S2)
molecular layer to activate two independent bundles of afferent pathways. This results in activation of synapses located in the middle and distal
third of the dendritic tree, respectively of dentate granule cells. The resulting voltage depolarizations were measured at the soma of the dentate
granule neuron using the whole-cell recording under current-clamp configuration (R). The granule cell illustrated here is one of the stochastically
generated shapes described in this article. Inset: The waveform characteristics amplitude, 10 to 90% rise time, and half width of an evoked
response at the soma due to stimulation of the medial perforant pathway (S1) or the lateral perforant pathway (S2). These characteristics, along
with the decay time (tdt, not shown here), are used to measure the shapes of synaptic responses. The amplitude is the voltage difference between
the peak of the response and the baseline. The 10 to 90% rise time is the time it takes for the rising phase to go from 10 to 90% of the peak
voltage attained. The half width is the time the response requires to go from 50% of the peak voltage in the rising phase to 50% of the peak
voltage in the falling phase. The decay time is the valuetdt, which best fits the curve exp(−t/tdt) to the falling phase of the response.

3.6. Comparison of Response Differences
Due to Shape

To directly analyze response differences due to varia-
tion in shape and location of synaptic input, we com-
pared simulated responses from different stochastically
generated neurons by plotting measurements of the re-
sponse versus distance from soma. Figure 9 shows the
rise times (10 to 90%) and peak amplitudes of local and
conducted responses. Fifty different generated cell and
dendritic tree shapes were used, with a total of 1,318
synapse locations (an average of 26 different random
locations within the dendritic arbour of a given cell
shape). All parameters, except for synapse locations,
were unchanged; thus, the scattering observed in the
figures is indicative of the variation due purely to ge-
ometric differences. Of the 1,318 synapse locations,
396 were classified as MPP (had a distance between
100 and 200µm), and 438 were classified as LPP (had

a distance between 200 and 300µm). Table 6 gives an
overall picture from comparing inputs from LPP and
MPP synapses. The scatter of the simulated data due
to morphology is presented in Fig. 9. For a given dis-
tance from the soma (horizontal axis), each data point is
the simulated response from a different stochastically
generated neuron. That is, the distribution shows the
effect of variation in shape alone.

3.7. Comparison of Responses from Stimulation
of Lateral and Medial Pathways

In the experiments, examination of the averaged re-
sponses from 12 neurons showed a significant differ-
ence (P< 0.05, t-test) in the 10 to 90% rise times
between the two pathways whereas the amplitudes, the
half-widths, and the decay timestdt did not differ sig-
nificantly Fig. 10).
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Figure 7. Examples of local and conducted voltage responses to synaptic activation in distal (S2) and medial (S1) dendrites of generated shape
#22. The local responses in the dendrite differed dramatically in amplitudes, whereas the conducted responses in the soma differed in rise times.

Overall, the soma EPSP shape parameters suggest
that the averaged synaptic responses originating in the
middle third of the dendritic tree (via the MPP) can
be distinguished from the ones originating in the distal
third (via the LPP) on the basis of their rise times.

4. Discussion

4.1. Stochastically Generated Neurons

The use of stochastically generated neurons is a practi-
cal way of analyzing influences of shape on parameter
and response measurements. We have demonstrated a
method of generating a distribution of neuron shapes
based on statistics of morphology and applied this
method in an investigation of variation of synaptic

responses and membrane resistance estimates due to
neuron shape. We have used only passive membrane
to keep separate the effects of shape from effects of
active membrane (e.g., Cook and Johnston, 1997).

4.2. Variation of Parameters

Simulations of synaptic potentials at different dendritic
locations on the population of dendritic shapes reveal
striking, previously unreported variations among the
synaptic parameters. For example, the rise times and
the amplitudes of the synaptic potentials depended
strongly on the dendritic location with respect to the
cell soma (Fig. 9A, B; Table 6). The rise times were
similar for different shapes and dendritic locations
when recorded locally but showed a clear decline for
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Table 6. Summary of comparison of simulated responses from
different stochastically generated neurons, shown as local and
conducted response measurements versus the two regions of
input. Same data as shown in Fig. 11 but only those results
corresponding to MPP and LPP regions, respectively located at
100–200 and 200–300µm from the soma. The measurements
of response are defined as in Fig. 2. Values are mean± standard
deviation.

Characteristic MPP responses LPP responses

Local responses

n 396 438

Amplitude (mV) 3.45± 0.832 5.08± 0.589

10–90% rise time (ms) 2.21± 0.152 2.28± 0.072

Half width (ms) 12.5± 5.27 8.28± 1.40

Decay time,tdt (ms) 18.1± 5.25 13.1± 1.82

Conducted responses

n 396 438

Amplitude (mV) 0.597± 0.139 0.586± 0.152

10–90% rise time (ms) 4.73± 0.452 5.40± 0.364

Half width (ms) 29.7± 4.21 30.3± 4.56

Decay time,tdt (ms) 36.1± 6.40 36.6± 6.51

proximal dendritic locations when recorded at the soma
(Fig. 9B). The amplitudes varied locally within the
dendrites but decayed at the soma to values that were
essentially similar for different shapes and dendritic
locations (Fig. 9A, bottom panels). In contrast, the

Figure 8. The same synaptic locations on the same neuron as in Fig. 7 show the characteristic decay profiles of the dendritic voltages generated
at two locations. A synapse located in the middle dendrite (S1) produced peak voltage of approximately 3.2 mV near the synapse (*), which
rapidly decayed to about 1.7 mV at the first branch and to 0.8 mV at the soma. The potentials invading the adjacent branches through the branch
points (breaks in the curves) are also plotted. Synapses located in the distal dendrite (S2) produced peak voltage of approximately 5.5. mV (*),
which decayed along the dendrite to about 0.8 mV at the soma. Thus, synapses at S1 and S2 are predicted to have similar effects at the soma.

Table 7. Effect of shrinkage of dendritic diameter on simulated
local and conducted responses. The response on the synapse-
containing dendrite shaft (local response) and at the soma (con-
ducted response) varies with the diameter of the dendrites in the
tree. To test this, the raw diameter curve observed from EM photos
was multiplied byKdiam = 1.0 (assumed no shrinkage occurred
during the EM preparation),Kdiam = 1.2 (17% shrinkage), and
Kdiam= 1.4 (29% shrinkage). The shapes of these responses are
described here in terms of their amplitudes, 10 to 90% rise times,
half-widths, and decay time (tdt). The responses shown are for a
synapse located in the MPP region.Kdiam = 1.2 is the nominal
value used in the main simulations.

Diameter Amplitude Rise time Half width tdt

Kdiam (mV) (ms) (ms) (ms)

Local response

1.0 5.67 2.50 9.30 9.72

1.2 4.67 2.34 8.59 9.45

1.4 3.90 2.23 8.19 9.42

Conducted response

1.0 0.600 6.20 28.3 32.3

1.2 0.660 5.84 26.6 30.1

1.4 0.686 5.60 25.8 29.1

half-widths and decay times varied strongly with
dendritic shapes, especially when conducted toward
the soma (right-hand panels in Fig. 9B). The local, but
not the conducted, responses also depended strongly on
the dendritic locations. These simulations have clear
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Figure 9. Comparison of simulated responses from different stochastically generated neurons, shown as response measurement versus distance
from soma. For a given distance from the soma each data point is the simulated response from a different generated neuron. These results are
from 1318 different synapse locations on 50 different generated neurons. A: Rise times (10–90%). B: Peak amplitudes of local and conducted
responses. Each point represents the rise time or amplitude of the synapse-bearing shaft (local) or the soma (conducted) in response to a synapse
located at the given distance—for example, 0µm distance corresponds to a synapse on the soma and 300µm corresponds to a synapse on a
dendrite’s distal tip at the hippocampal fissure. Same as in A and B but illustrating C population half-widths and D decay time (tdt) of simulated
local and conducted responses.

(Continued on next page.)

implications for the interpretation of the electrophysio-
logically recorded synaptic responses in the soma gen-
erated at different dendritic distances. Thus, one would
expect that the rise times, but not the other parameters,
show a clear dependence on the distance from the soma.
This was indeed observed in the electrophysiological

experiments, where we produced synaptic responses in
LPP (distal) and MPP (proximal) segments of the den-
dritic trees. The variability due to shapes apparently
masked the dependence on distances in the cases of
half-amplitude and decay times (see table in Fig. 10).
We were unable to compare the local simulated
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Figure 9. (Continued).

responses with the electrophysiological data because
the dendritic recordings in these particularly thin den-
drites are not presently feasible.

It should be noted that, at present, we are not cer-
tain how much of the variability in the parameter
values is due to variations between different locations
in a given shape and how much is due to differences
in shapes. The experiments on a given shape could
be easily performed on the modeled dendrites, as we
have done in Figs. 7 and 8, for example. However, the

electrophysiological verification of these results is not
feasible, since, in the slice preparation, it is not possi-
ble to synaptically activate the exact known dendritic
branch with any certainty. Such experiments are pos-
sible in cell culture, where the individual dendrites can
be seen under a high-power microscope (see below,
Section 4.3). The geometry of dendrites is, however,
distorted in culture, due to abnormal growth conditions
and the unavoidable two-dimensional arrangements of
the branches.
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Figure 10. Comparison of rise times and half-widths in depolar-
izing responses at lateral and medial synapses. Averaged evoked
reponses were compared in 12 experiments. The mean values and
their standard errors are shown by large symbols. The pairs of re-
sponses from LPP and MPP to the same neuron are joined by lines
to indicate that in all but one case the rise times were longer in the
lateral responses. The table below shows that the mean rise-time
was significantly longer (*) in the lateral responses (pairedt-test,
P < 0.05).

The simulations on the population of stochastic neu-
rons also appear to offer at least a partial explanation
for the observed variation in the electrophysiologically
reported values of input resistances (see Section 3.2).
Our simulations show that a large part of this varia-
tion could be due to shapes. Thus, neurons with den-
dritic trees possessing single primary dendrites and
relatively few proximal branches presumably yield rel-
atively higherRN values. This prediction can be ex-
amined in future electrophysiological and simulation
experiments by comparingRN values for each identi-
fied dendritic shape.

4.3. Physiological Implications of Signal
Processing in Dendrites

All of the characteristics above apply only when the
cell is behaving passively, as when responding to low-
amplitude synaptic activations. Active mechanisms

were not required to explain the shape characteristics of
the responses to low-level activation. However, when
larger evoked responses are recorded, the shapes of
the resultant synaptic responses in DG granule neu-
rons take on different characteristics. In particular, the
half-widths are much smaller, and the responses fall
more rapidly (data not shown), probably as a result of
active, voltage-gated channels, which are opened by
the large depolarizations.

Since different generated cell shapes were used, one
can be reasonably confident that the general transmis-
sion properties observed may apply to the general pop-
ulation of DG granule cell geometries foundin vivo. In
addition, the variation in geometry may help to explain
differences inRm computed fromRN in the DG gran-
ule cell population. This could be a source of variation
in other reported values ofRm in the literature.

The key feature of dentate gyrus is the convergence
of LPP and MMP inputs on dendrites of granule neu-
rons. The physiological consequences of this conver-
gence are not known. In the hippocampal slice prepa-
ration, it can be shown that LPP can boost or increase
long-term potentiation (LTP) in MPP when two inputs
are coactivated (Wang and Wojtowicz, 1997). One
way to explain this phenomenon arises from the char-
acteristics of dendritic transmission described in this
article. Since the distal region of the dendritic tree
depolarizes much more than the medial region, the ax-
ial current will predominantly move in the distal to
proximal direction during coactivation of the two path-
ways. As a result, the medial region will receive a
large depolarization and consequently produce larger
LTP.

The simulations suggest that it is difficult to distin-
guish the location of a synapse from its conducted, low-
level soma response. The amplitude, half-width, and
decay time of simulated conducted responses to MPP
activation are not significantly different from those
of simulated conducted responses to LPP activation
(Table 6, and Fig. 9). It has been shown (e.g., Rall,
1964; Holmes, 1989) that the conducted response at
the soma has longer rise times for distal compared with
proximal synapses. For granule neurons, rise time is
the best predictor of synapse location. This agreed with
the analysis of actual cell responses recorded in DG
granule neurons (compare with Fig. 10). Of the four
response shape characteristics analyzed, only rise time
appeared to be significantly correlated with synapse
location.
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The finding that the response due to input from LPP
takes an extra 1 ms in rise time than MPP synapses in
simulations could be critical for timing of the initiation
of action potentials at the spike-generating site. This
issue needs further experimental verification.

4.4. Comparison of Our Experiments with Others

The inability to easily discern synaptic origin from ac-
tual conducted responses in DG granule cells on the
basis of their half-widths (Fig. 10) differs from ex-
periments done in cat spinal motoneurons (Jack et al.,
1971, 1975; Iansek and Redman, 1973), where plots
of half-widths versus rise times formed an almost lin-
ear relationship with synapse distance. One possible
reason for this is that the cat spinal motoneuron mea-
surements were all made in a single fiber, whereas the
experimental setup used here to selectively stimulate
MPP and LPP synapses (Fig. 6) does not allow any
control over which strand (or strands) within the den-
dritic tree is activated. Likewise, in our simulations,
different branches were activated at random (Fig. 9,
Table 6).

Pioneering experiments on pyramidal hippocampal
neurons in CA1 showed no significant difference in rise
time or half-width between distal and proximal inputs
(Andersen et al., 1980). More recent measurements
using the whole-cell recording technique suggest a sig-
nificant degree of attenuation of the distal responses
along dendrites (Bekkers and Stevens, 1996). Other
studies suggest that synapses terminating on distal
dendrites may compensate for their remote location
by increased size or strength (Stricker et al., 1996; Liu
and Tsien, 1995; Pierce and Mendell, 1993; Pettit et al.,
1997).

4.5. Limitations

Although the simulations in the stochastic population
of neurons appear to produce useful or at least testable
predictions, some parameter values used to construct
the model need to be better defined. Specifically, the
dendritic diameters and the numbers of dendritic spines
would benefit from more extensive experimental data
not presently available (see Sections 2.5 and 2.6).
The incorporation of active membrane properties, in-
cluding calcium, potassium, and sodium voltage- and
time-dependent channels, will be ultimately necessary.
The simulations shown in Figs. 8 and 9 suggest that

the apparently small synaptic responses recorded at the
soma may arise from much larger (up to fivefold to ten-
fold) responses generated locally in the dendrites. It is
presently unknown whether such responses can acti-
vate voltage dependent channels in granule neurons.
More experimental data are needed in this regard.

4.6. Stochastic Neural Networks

In addition to simulation of the dentate gyrus granule
neurons, one can forsee similar stochastic treatment of
other neuronal types. For example, the dendritic trees
of the CA3 pyramidal neurons have been well described
(Traub and Miles, 1991). These neurons could possi-
bly be simulated stochastically, and the interactions of
the population of granule neurons and CA3 pyrami-
dal neurons could be examined, taking the geometrical
variations into account. Thus, statistics of shape can
be used with statistics of signals (e.g., Cowan, 1972).
We envisage that this type of modeling will extend
the presently used techniques of neuronal modelling,
where all neurons are assumed to have the exact same
shape and properties.
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Note

1. Three distances are used in this article: (1)z-distance along an
axis parallel to the long axis of the dendritic tree, (2) cumulative
distance between branch points of a dendritic tree, (straight line
without wiggle), and (3) cumulative arc length with dendritic
wiggle.
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