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Axonal Velocity Distributions in Neural Field Equations
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Abstract

By modelling the average activity of large neuronal populations, continuum mean field models (MFMs) have become an
increasingly important theoretical tool for understanding the emergent activity of cortical tissue. In order to be
computationally tractable, long-range propagation of activity in MFMs is often approximated with partial differential
equations (PDEs). However, PDE approximations in current use correspond to underlying axonal velocity distributions
incompatible with experimental measurements. In order to rectify this deficiency, we here introduce novel propagation
PDEs that give rise to smooth unimodal distributions of axonal conduction velocities. We also argue that velocities
estimated from fibre diameters in slice and from latency measurements, respectively, relate quite differently to such
distributions, a significant point for any phenomenological description. Our PDEs are then successfully fit to fibre diameter
data from human corpus callosum and rat subcortical white matter. This allows for the first time to simulate long-range
conduction in the mammalian brain with realistic, convenient PDEs. Furthermore, the obtained results suggest that the
propagation of activity in rat and human differs significantly beyond mere scaling. The dynamical consequences of our new
formulation are investigated in the context of a well known neural field model. On the basis of Turing instability analyses,
we conclude that pattern formation is more easily initiated using our more realistic propagator. By increasing characteristic
conduction velocities, a smooth transition can occur from self-sustaining bulk oscillations to travelling waves of various
wavelengths, which may influence axonal growth during development. Our analytic results are also corroborated
numerically using simulations on a large spatial grid. Thus we provide here a comprehensive analysis of empirically
constrained activity propagation in the context of MFMs, which will allow more realistic studies of mammalian brain activity
in the future.
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Introduction

Since the introduction of continuum formulations for the
dynamics of neural masses in cortical tissue [1-6], the interest in
this class of neural mean field models (MIMs) has been steadily
growing. MFMs have been used to describe a wide range of
phenomena by acting as a mesoscopic bridge between the results
of neuroimaging and the underlying anatomy, physiology and
pharmacology. The growing list includes: the effects of anaesthet-
ics, tranquillizers, and stimulants [7-10], gamma band oscillations
[11-13], epilepsy [14-18], sleep [19,20], and evoked potentials
[21,22]. A recent review by Deco et al. [23] details both the
theoretical framework and some general principles for the
application of such theories.

However, MFMs face severe technical difficulties when dealing
with non-local neural activity, which is propagated across cortex
by long-range axonal fibres. In order to incorporate the effects of
such distributed activity a number of assumptions are typically
made, the most important being a single value for the activity
propagation delay between distant neural masses. This is the case
even in otherwise sophisticated models, for example in those
combining MFMs with Dynamic Causal Modelling (DCM) [24].
Most modelling approaches (e.g., [25,26]) follow here the lead of
the seminal paper by Jirsa and Haken [27], who employed several
simplifying assumptions to describe long-range activity propaga-
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tion with a partial differential equation (PDE). However, their
ansatz still assumes a single value for the cortico-cortical axonal
conduction velocity, and thus conduction delays between neural
masses are exactly proportional to their distance with one
uniform constant. We will show below that approximations made
in deriving the actual propagation PDE result in an implicit
velocity distribution, which nevertheless due to its origin remains
strongly peaked at maximum conduction velocity and is one-
sided, i.e., there is an infinitely sharp cut-off at maximum speed.
MTFMs typically describe neural masses consisting of 103 to 107
neurons each. Thus even if the conduction velocity of one axon
can be approximated well with a single conduction velocity, one
should expect a distribution of conduction velocities between
neural masses given the many axons involved. Empirical
measurements of conduction velocities, either directly via
conduction latencies or indirectly via fibre diameters, indeed
suggest that conduction delays are rather broadly distributed.
Initial attempts by Hutt and Atay [28,29] to incorporate broad
axonal velocity distributions in a particular, spatially continuous
MFM have revealed that such broad distributions maximize the
speed of travelling front solutions. This may indicate the influence
of natural selection optimizing information transmission in
cortex.

Hutt and Atay [28,29] made use of a general integro-differential
formula for activity propagation, which allows a straightforward
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Author Summary

Due to the sheer number of neurons and the complexity of
their interactions, the modelling of brain activity is
particularly challenging. How can computationally tracta-
ble models of brain function be developed that are
nevertheless biologically plausible? The “mean field”
approach, borrowed from statistical physics, is to model
the average activity of populations of neurons rather than
the behaviour of individual neurons. While a large number
of promising theories have been developed with this
approach, they fall short of biological fidelity in the way
interactions between distant populations have been
modelled. In particular, it is often assumed that all neurons
interact via connections of very similar conduction
velocity, when in fact experiment suggests quite the
opposite: populations of neurons are connected by axonal
fibres with a broad range of velocities. We develop here
activity propagators that provide for the first time the
ability to realistically and efficiently simulate connectivity
in mean field theories, and demonstrate how to use them
to fit successfully experimental data from both human and
rat. With our novel propagators, one can thus study on an
empirical basis the role of activity propagation in both
healthy and diseased mammalian brains.

introduction of velocity distributions. It is just this integro-
differential formula, which is commonly simplified towards a
PDE [27]. As discussed for example by Liley et al. [26], local PDE
formulations offer a number of significant advantages over their
non-local (integral) counterparts. In particular, they enable the use
of powerful analytical and numerical analysis methods, at least for
specific spatial wavenumbers, and allow the application of
standard numerical techniques for the solution of MFMs. The
latter point is particularly important for large-scale simulations, see
for example [9,13], where computation speed is essential. As
derived in [30] by the present authors, one can always extract the
velocity distribution implied by the PDE formulation of an MFM.
But so far the exact form of these distributions have been largely
an accidental side product of approximations. It is hence no
surprise that the velocity distributions of models in current use are
unsatisfactory. Incorporating a sensible velocity distribution into
an analytically and numerically tractable PDE formulation has not
been achieved before.

Motivated by physiological and anatomical fidelity on one
hand, and by computational necessity on the other, we here
introduce a novel PDE formulation describing the propagation of
cortico-cortical axonal activity that incorporates monotonically
decaying synaptic connectivity with a smooth unimodal distri-
bution of axonal conduction velocities. We obtain good fits with
our new model to experimental data on conduction velocities
derived from myelinated fibre diameter measurements in the
human corpus callosum [31]. This allows for the first time to
simulate long-range conduction in humans based directly on
experimental findings. A straightforward extension of initial
propagator ansatz also allows us to fit data from lower mammals,
which generally feature less small diameter (myelinated) fibres.
Studying activity conduction in animal cortex is important in its
own right, but also significant for the suitability of animal models
for human studies. For example, the CoCoMac database [32,33]
contains precise information on the connectivity of macaque
cortex from extensive tracer studies, which cannot be obtained
similarly from humans since such techniques are lethal. While
CoCoMac connectivity can be mapped to human cortex [34] and
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calibrated with human connectivity data from non-invasive
Magnetic Resonance Imaging [35], the question would remain
whether similar anatomical connections actually serve the same
function. Clearly an improved understanding of the dynamics of
activity conduction in animals and humans is of great significance
to this question.

We obtain reasonable fits with our extended ansatz to extensive
unmyelinated and myelinated data from rat subcortical white
matter [36], and discuss briefly the clear differences that exist to
the fit to human callosal data. Finally, we also analyse analytically
and numerically the dynamical impact of using our new
propagator. Following the methods in Coombes et al. [30], we
can show that in contrast to the most commonly used long-
wavelength propagator, our realistic velocity distributions enable
the formation of spatio-temporal patterns for smaller perturbations
in mean neuronal firing rates. This may follow more closely the
biological situation, where a range of energetic constraints need to
be negotiated in order to ensure that pattern formation, and thus
perception, occurs in metabolically optimal circumstances. We
confirm these results with some explorative computational
simulations on large spatial grids using our novel propagator. So
far, conduction parameters in mean field models have been either
chosen largely arbitrarily from a wide range of plausible values, or
adjusted freely to help reproducing the phenomena under
investigation. Our fits to human and rat data, and future fits to
other experimental data using our methods, constrain propagation
parameters empirically and independently. This will reduce
considerably the uncertainties of future predictions using the
mean field framework.

Model

Dispersive propagator

In most neural field models developed to date the activity
variables that are spatially propagated are the local mean neuronal
population firing rates, ;. Because action potentials propagate
with a finite conduction velocity, the mean rate of arrival of pre-
synaptic impulses ¢ to cells of type k from neurons of type j can
be written as a time-retarded integral of the respective distant local
mean excitatory neuronal firing rates:

b (x,t)=JCdx’ deu];k(v|x,x’)wjk(x,x’)Sj (x’,t— M), (1)

v

= J V dz’J dx' Gu(x,x',t—1) S;(X, ). (2)
— 0 C

where spatial integration occurs over a two-dimensional planar
cortical sheet C (X,X/E[Rz). The distance-dependent velocity
distribution function fjx(v|X,X’) takes into account that fibre paths
with different conduction velocities can exist between different
domains. This conditional distribution is normalised such that
I dvfie(v|x,X')=1. The function wj(x,x') is the synaptic
footprint that describes the geometry of network connections.
The distance dependent Green’s function, Gy, is defined as:

G (X' x.1) = JO“ dvﬁ/((v|x,x/)w,-k(x,x’)é(z— x=x] |). 3)

14

In the absence of detailed anatomical data it is common practice to
consider synaptic connectivity functions to be homogeneous and
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isotropic so that wj (X,X') = wj(|x —X'|). We will also assume that
this restriction applies to the velocity distribution functions, i.e.,
S xX)=fx(v|[x—X]), and therefore Gy(x,X,t—1)=
Gix(|x—x'|,t—1'). This assumption of isotropy can be relaxed at
the price of increased computational effort [30,37,38], as will be
discussed below in a separate subsection. The right hand side of (2)
now has a convolution structure, and its Fourier transform,
P (k,w) = [ dxdt exp(—iwt—ik-x) yields

¢jk (k5w) =

where k= |k|. If G (k,) has the form R,k(k2 iw)/ P, k(k2 iw) then
the integro-differential Eq. (2) can be written as the equivalent
PDE  Rj(—V?%,0/00)¢; (x,1) = Pu(—V*,0/00)Sj(x,1), ie., the
corresponding partial differential operators are obtained with the

g]k(k,(i))Sj(k,CO), (4)

Fourier replacements k*— —V? and io—d/0t.

The most common propagator form used in mean field models of
electroencephalographic activity derives from the following simple
ansatz for the Green’s function: an exponential decay with distance
of propagated firing rates is combined with isotropic conduction

W?k r . r Fourier
gjk(r t)f ~2 CXp| — = ol 1— =~ >
Znajk Ojik Vik

where r=|x|>0 and axonal velocity ¥y >0 together imply the
causal conduction of activity through a Dirac J distribution of delays.
The normalization constant W/(‘)k counts the total number of synaptic
connections made by the axonal fibres originating from neurons of
type j that terminate on neurons of type k. The exponential decay
with the characteristic distance scale 6j should be understood as
due to diminishing connectivity [39], rather than as decay of the
amplitudes of the action potentials themselves. The Fourier domain
propagator in Eq. (5) is non-polynomial, but can be approximated
for small k, and hence long wavelengths A=2n/k, with a
polynomial form. Setting ¥ =+/3/2vx and G =+/3/26% we

obtain

02
Wi Vi

2
- . Vik -
a/?k (lw—l— %) + v%kk2
. o «

(6)
. NG (z— ~L>
Wi p ( _ ik t ) Vi

gjk(ra[): 152 €

Fourier
=

gk(kaw) =

where © is the Heaviside step function, which now maintains
causality. We will subsequently refer to this as the long-wavelength
approximation. The standard inhomogeneous, 2-dim. telegraph
equation [25-27] results

[(1 a+~i) -V2
Vik O Gjk
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e Si(x.1). (7)
/k

¢jk(x t)
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Note that (7) is a special case. If we substitute
Vit

P (x.0)= eXp(— f—)@k(X,l) =
Ojkc

1 &
s

then @ obeys an inhomogeneous wave equation. Note that Eq.

(8)
Virt

Vz] P (x,0) = exp( ) Si(x,1),
Ojic //c

(8) corrects a sign error in Eq. (61) of Ref. [25]. The approximate
impulse response gjk(r,t) in Eq. (6) can hence be recognized as that
of a 2-dim. wave with velocity v multiplied by an exponential
decay with velocity-dependent distance vy t.

The infinitely precise conduction delay 5(t—r/ Tijk) of ansatz Eq.
(5) is at odds with the broadly distributed delays measured by
experiment. In the next section we will show that the long-
wavelength approximation largely inherits this problem. An obvious
amelioration would be to use a Gaussian normal distribution of
delays:

2
gjk(",l)=cexp<— le) exp [_ U;"%ﬂc)

J! delay

oW, (9

where ¢ is an appropriate normalization constant and the Heaviside
® enforces causality. However, Eq. (9) leads to the same type of non-
polynomial Fourier structure as Eq. (5), only multiplied with
exp [(iwodelay)z /2]. Thus again an approximation would be needed
to obtain a polynomial form and hence a PDE. A key observation is
that the problematic fractional power 3/2 arises from the spatial
Fourier transform of exp (— ar) terms, where the a are independent
of distance but can depend on time, and that we can eliminate all

such terms from the ansatz by setting Gdefay —+/ 10k / VK :

r L(=r/v)’] _ P4t
exp( —— ) exp| —=s————| =exp| ——|.
Ok 2 to‘jk/vjk

We can Fourier transform this expression, first spatially (which is
equivalent to a zeroth order Hankel transform) and then
temporally, even if it is multiplied with powers of ¢. Hence we
now propose the following Green’s function:

2 2 2
vt
20'jijkl

Gi(r,1) = o), (11)

Wi v/k ikl n_zexp _
2n+1g(n) a Tk

where 7>0 and I'(n) is the Gamma function with I'(n)=(n—1)!
for integer n. The corresponding Fourier domain propagator is

0 .n
Wik Vi

non|; Vik ENE
g {lw—i- 2é7(1 +ayk )}

Using this to propagate local mean firing rates according to Eq. (4)
is hence equivalent to the following two-dimensional PDE

6 V]k
ot o

0 n
(1-0c kVZ] P (x,0)= {1 ; Six.0 ., (13)
k
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where only neN; will realize any practical benefits for analysis and
computation. Note that for n=1 this corresponds to a two-
dimensional, inhomogeneous cable equation. We will subsequently
refer to this novel ansatz as the dispersive propagator.

It should be emphasized at this point that single propagation
PDEs, like the dispersive Eq. (13) and the long-wavelength Eq. (7),
imply that firing rate activity passes continuously between any two
arbitrarily chosen cortical locations. However, cortico-cortical
fibres are known to also selectively connect separated areas of
cortex in a direct manner, see for example Ref. [40]. Such non-
local propagation cannot be modelled with the PDE descriptions
of activity conduction described so far. To include non-local effects
one must either resort again to the general integral equations, or
map cortex to a mixture of overlapping patches based on a chosen
PDE description. Recently good progress has been achieved for
the latter option [38], in particular also by turning such
descriptions into a kind of DCM [41], which makes possible
robust fits to experimental neuroimaging data. Our efforts here are
complementary to these pioneering works, since we are concerned
with obtaining physiological conduction velocity distributions in
the typical PDE framework. For example, the long-wavelength
approximation Eq. (5) in Ref. [38] could be replaced with our
dispersive Eq. (13) as basis for considering non-local effects,
thereby increasing the realism of the non-local conduction model
even further. We will explain in a separate subsection below in
what way anisotropy and inhomogeneity can also affect the
extraction of velocity distributions from experimental data.

In the original ansatz of Eq. (5), impulses would arrive at
distance r from a source precisely after a time r/¥; had passed.
The extension in Eq. (9) was constructed such that the impulses
would arrive with a Gaussian normal distribution of delays having
mean r/ Vi and standard deviation Ggelay. We can recover this
from the respective Green’s functions by computing the statistical
characteristics of delays, appropriately normed by the decay of
connectivity to distance 7

_ o drt G 2ot (1=<0)* Gu(r)
Iy dt G(ry ' Jo© dt Gi(rp)

{1y (14)

Thus indeed {t)=r/¥jc and o,=0 for the original ansatz Eq. (3),
but for the long-wavelength approximation Eq. (6) thereof one
finds instead

(y=LKal/ow)

;
Vi Ko(r/Gjx) j

)'/&,k—>xw<> Vik ( )

1=

o \/1 N K1 (r/63)[ (6 /r)Ko(r/6) —Ki(r/Gx)]

Y’jk Ké(r/&jk) ( 16)

Gjk

Vi

where K,, is the nth order modified Bessel function of the second
kind. Similarly for the Gaussian extension Eq. (9) we obtain the
expected results {t>=r/vy and 6;=04elay, but for our new
dispersive propagator we find instead

with lim o,=
r/Gj =0

<t>: L Kn(r/o-jk) with

. r
i K1 () lim <H)=—, (17)

1/ o) =0 Vik
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_L\/an1(V/0'jk)Kn+l(r/o'jk)_Ki(r/o-jk)
v K. 1(r/ai)

lim o= YV

r/ajk—mo ij

(4]

(18)

with

From the results for /<{t) one can see that the characteristic long-
wavelength (V) and dispersive (vj) velocities still indicate the
axonal conduction velocities, but only on average and at large
distances. A “large” distance means here one much greater than
the characteristic decay scales of connectivity, Gy and o,
respectively. At large distances the standard deviation of delays
0, becomes constant for the long-wavelength approximation, but
6~/ for the dispersive propagator, i.c., it grows with the square
root of distance. We also see that o,—+/{tDoj /v at large
distances, which recovers the substitution of G4elay leading to Eq.
(10). Note finally that long-wavelength <t} is identical to the
dispersive {t) at all distances for v =vy and n=1.

Synaptic connectivity and velocity distribution

By integrating the dispersive Green’s function Eq. (11) over time
we obtain the implied dependency of synaptic connectivity with
distance

® e w?k r "71K r 19
. = tG(ri)= —————~ -
wik(r) Jo (1) 27l (n)a, (ij) " (Gﬂ‘) - ()

©
”?k = Jo dr2mrwi(r) . (20)

Here w](»),‘, counts the total number of synapses formed and

wie(r)/ WIQk 1s the probability distribution of the synaptic footprint,
i.e., the likelihood that a synapse forms at distance r, where
jooc dr2mrwi(r)/ W,(')k =1. Connectivity wjy(r) remains finite for
r—0 only if n>1, in which case W;k(0)=w](»)k/[47t(n— l)ajzk]. In
practice the n<1 divergence for r—0 is of little concern, as neural
field models are not meaningful below some minimal size rayg over
which mean population activity is defined. The contributions of
synaptic connections within the disc 0<r<r,, to the total
number of synaptic connections j(‘)k vanishes for ryyy < aj for all
n>0. Eq. (19) should be compared with the connectivity function
for the long-wavelength approximation Eq. (6)

0

Wik r
= Ko — 21
2n6% \op) @)

Jk

with Wy (r) normed to W?k as in Eq. (20). We note again an
equivalence to Eq. (19) with n=1.

Both the dispersive and the long-wavelength propagator
thus have synaptic footprints decaying with distance ~r"~!
K, _1 (r/ O'jk), where for the latter n=1. However, experimental
counts of synaptic connectivity usually have been fit with the
simpler exponential decay

- W r ’
w(r)=-—>¢ — .
Wik (r) 267, Xp P (22)
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Thus the question arises whether dispersive connectivity is
compatible with data that apparently fit an exponential decay,
and whether one can use such previous fit results to constrain also
the dispersive propagator. An exponential decay is also what the
original ansatz Eq. (5) used. Hence in previous works it has been
assumed that model and fit scale are basically the same quantity. But
it will become clear now that after the long-wavelength approxi-
mation Eq. (6) this is not correct anymore. Let us assume that the
dispersive synaptic footprint Eq. (19) with parameters W]Qk and g
represents the true underlying distribution of connectivity, and that
from it parameters wj(‘)k = (5W]Qk and Gjx = &0 are estimated with a fit
assuming the exponential distribution Eq. (22). Therefore we wish to
determine which ¢ and & best corrects for the mismatch. In practice,
experimental counts of synaptic connections are usually sorted into
distance bins [r;,r;+1], where r;=i-Ar with i=0, ... ,inax. We can
scale /G =x and r/oy =ex, where Gj is known from the
experimental fit. The counts per bin are then

(s W/Qk it 1
,_rue= d J— K -~
C; 2nn1—*(n)o_jk LM )y n l(y) (23)
_ Wk k
= Tl (mox (exi,exiy1)
Wl i owd
LXp Jk dy eV = Jk —Xi __ ,—Xit1 24
K 2neay Jx, e 2neak ¢ ¢ ) (24)

A usual least square fit of ¢;F to ¢!™ will hence implicitly
minimize

Axonal Velocity Distributions

2
—x —X; ¢
[(e N, ,+1)_mk(sx,-,sx,'+1) . (29)

Imax

(=

i=

and we can minimize this expression explicitly to determine ¢ and
&. To give a numerical example: assume imax + 1 =20 bins of width
Ax=x;41—x;=0.25, i.c., the bin size was a fourth of the fitted g
and in the last bin connectivity had decayed to less than one
percent of maximum. For different powers n we can then obtain
numerically scaling factors  and &:

n={1, 2, 3, 4, 5, 6, 7 1,
0 ={05978, 1.164, 1.303, 1364, 1.398, 1418, 1433} ,26)
e ={04193, 1429, 2.067, 2.562, 2.980, 3.344, 3.675 }.

We find that the normalization correction é has an asymptotic
value for large powers 7, whereas the decay correction € grows as
v/n. The resulting synaptic connectivity is shown in Fig. 1A. For
simplicity we have assumed here that Vv](-)k =2n6’fk, ie., that
Wit(r)=exp(—r/6j). The dispersive curves are hence
Wit(r=eojx)= 82/[2"*1F(n)5]~(£x)”_1Kn, 1(ex) with the scaling
factors derived above. While we show continuous curves here, the
correction was performed for binned data. It is obvious from the
reasonably close match that dispersive connectivity may well be
mistaken for an exponential decay, given the large statistical and
systematic errors typically involved in synaptic counts. Note that
the n=1 divergence for small distances would not be visible in a
binned count. Nevertheless, it is obvious that the n=1 case, and
hence the long-wavelength approximation, does not match an
exponential decay better than higher powers of n. Furthermore,

disp. marg. velocity distribution

A dispersive connectivity B
1 T T T T T
n=1
=2
0.9- n=e
\ n=3
n=4
0.8 n=5{]
0 n=6
o~
S 0.7¢ n=7 ]
£ 06f
°
L =
[72] ~
= 0.5F s
o x
@ =T
%, 04f
g
i
£ 03f
=
0.2F
0.1F
0
0

Figure 1. Dispersive propagator: synaptic connectivity and marginal velocity distribution. (A) Synaptic connectivity wj.(r=¢g;x) for
different powers n, which has been adjusted to match an exponential decay (thin curve). While the curves are continuous here, adjustment with Eq.
(25) assumes a bin size Ax=0.25, see text for details. (B) Marginal velocity distribution v fi(v) for different powers n. Note that concerning the
dimensionless ratio u=v/vy one obtains f (1) = vy fi(v). The long-wavelength approximation ¥;f(v) of Eq. (36) is shown for comparison as thin

curve. See Egns. (19) and (32) for (A) and (B), respectively.
doi:10.1371/journal.pcbi.1000653.g001
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for n=1 in this example we find the optimal scaling
Wj(‘)k =1.673-W% and 0% =2.3856). In general for long-wave-
length models one should actually choose w;)k and oy which are
significantly larger than those measured in experiments. Note that
our long-wavelength decay scale absorbed an expansion factor
v/3/2 to keep Eq. (6) simple. Without this, scaling by
1/2/3-2.385~1.947 would be required here.

Eq. (3) enables us to determine the underlying conduction
velocity distribution of the axonal fibres that arises from our newly
proposed dispersive propagator. Thus we obtain

- 2
gjk(r,l)=JO avfi(v|r) wjk(r)é(t— €>=V7fjk(v= ; |r> wi(r) . (27)

Using the Green’s function Eq. (11), the distance-dependent
velocity distribution fj(v|r) becomes

2 2
Vi Y

ngk(V,II %) B (v)nlexp[_ ijTv_,-k

Jik(v[r)= . (28)
V2w (r) 2K, (L)
O'jk
which has a maximum at
noj\2 noj
Vmax = 1 + (_) — | Vik»
r r
(29)
fim Umex g%k Vw1
rfog=o Vi r noo Ve 2nog

The fi(v|r) distribution indicates the probability of conduction

A dispersive, n=3 B
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velocity v at a given distance r. As far as experimental data are
concerned, this distribution is appropriate for measurements of
conduction latencies between brain regions. For that case we can
consider r to be fixed and note that fj (v|r) is properly normed as a
conditional probability distribution in v, ie., J"Ol dvfi(v]r)=1. The
time ¢ =r/Vmay indicates the moment when most propagated activity
arrives at once in a region. One can speculate that this has the
highest likelihood to induce a signal visible over local background
activity. According to the first limit in Eq. (29), we then expect
latency data for distant (r>>ngj) regions to measure conduction
velocities ~vj. Fig. 2A shows a plot of the cumulative distribution

Fx(v|r) = JO duf (u] ) | (30)

corresponding to Eq. (28). We prefer to show the cumulative
distribution here, because of the large variations of fix(v|r) in the
shown range of v and r. Furthermore, this allows a direct
comparison with the long-wavelength approximation later on.
The sigmoidal shape of Fj(v|r) in v corresponds to the unimodal
form of fjx(v|r). The position of the mode Vmax of fix(v|r) is
indicated by a solid black line on the Fy(v|r) surface. That
Fie(vmax | ) <0.5 indicates that the distribution is skewed towards
higher velocities. However, we can see that the distribution becomes
less skewed for larger r. Furthermore, we see that neuronal
populations at greater distances on the cortical surface are
connected by faster fibres. While from a functional perspective this
makes intuitive sense, there is at present no direct anatomical or
histological evidence for this. We discuss some indirect evidence
below. The second limit in Eq. (29) shows that higher order n
distributions describe overall slower connectivity for the same vj.

The distance-dependent connectivity function for each fibre
system of velocity v, wix(v,r), is then

long-wavelength

Figure 2. Cumulative distance-dependent velocity distributions: dispersive propagator vs. long-wavelength approximation. Shown
are cumulative distributions integrated over v as in Eq. (30). Dotted black lines on the base and on the plot surface show a grid of r/ay and v/v;
values, solid black lines on the plot surface show the positions of the maxima of the unintegrated distributions. (A) Dispersive propagator for n=3,
where Fj(v|r) corresponds to Eqgn. (28). (B) Long-wavelength approximation, where Fj(v|r) integrates Eqn. (33). We set 6 =aj and vy = vy for

comparison.
doi:10.1371/journal.pcbi.1000653.9g002
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Wi (n,r) =wi(r)fix (v 1)

Wik (rvjk)”lex va—l-vfk (31)

2"“7'51"(71)012,\,1) Gik v o 2k

where [ dr2nr [ dvwy(v,r)= W]Qk= and W]Qk counts the total number

of synapses formed. Hence, ij(v,r)/W?k defines the joint

probability distribution for propagation with speed v to distance
r. The marginal propagation velocity distribution over all r is then

o) . ) o0
()= J dr2nr—wjk(ov’r) == nO J dri* G (r,tz f)
0 W v Jo v

32
2nvy/2kf’ (32)

(V2 + ngk)n+l

where fooc dvfjix(v)=1. As far as experimental data are concerned,
this distribution is appropriate for measurements of local fibre
diameter statistics, which can be related to conduction velocities.
Such statistics catalogue all fibres passing through a local slice,
irrespective of the distance between the neural populations they
connect. This corresponds to integrating out the distance in Eq. (32).

We show the marginal velocity distribution (multiplied by the
constant vy) in Fig. 1B for several different powers n. The rapid
sharpening up of the distribution for higher powers is readily
apparent. The statistical characteristics of the dispersive f(v)
distribution are collected in Tab. 1; note also that it becomes a
beta-prime  distribution with «=1 and f=n under nonlinear
scaling x= vz/v]zk. For n<1/2 both the mean and standard
deviation of the dispersive f(v) do not exist, like for a Cauchy
random variable, and for 1/2<n<1 the mean exists but not the
standard deviation, due to the tail-thickness of the distribution.
Thus at n=1 large variations of the conduction velocity are
probable. The coefficient of variation g, /{v) asymptotes to 0.523,
even then indicating a broad distribution. For n=2,3,4 the
corresponding velocity distributions already have 66%, 79% and
84%, respectively, of this maximal “‘sharpness”. Skew 7, , exists for
n>3/2 and indicates preference for higher velocities. The mode
Vmode Of the marginal dispersive velocity distribution is smaller
than vy, see Tab. 1. This is more pronounced for higher order n
due to a larger fraction of slower fibres. By contrast, the mode Vax
of the conditional dispersive velocity distribution approaches vj
for large distances, see Eq. (29), but again more slowly for larger 7.
Both mode speeds are identical in the dispersive case for
r=0jVv/'1+2n, where below this distance Vpax <Vmode and above
this distance Vmax > Vmode- As we see from this example,
comparisons of the dominant speeds — Vmode estimated from fibre
diameters in a local slice and vpax from latencies between distant
brain regions — can be used as an experimental probe of the
underlying connectivity. For fibre distributions like the dispersive
one, in which more distant regions are connected by faster fibres,
one would expect distance-dependent relations between Vmode and
Vmax qualitatively similar to the ones just described. Latencies
observed at different distances could complement the experimen-
tal constraints from local fibre diameter measurements quantita-
tively, too. However, the difference between vmode and Vmax
becomes more significant for measurements at larger distances,
where unfortunately one would also generally expect worse signal
to noise ratios. Thus it is currently unclear whether such
comparisons are In fact feasible experimentally beyond a
qualitative consistency check. Nevertheless, there is a chance to
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gain significant new insights into brain connectivity here using
comparatively “simple” techniques, or even from a re-analysis of
previously obtained data.

The distance-dependent velocity distribution for the long-
wavelength approximation Eq. (6), unlike for the dispersive
propagator, is truncated for velocities greater than vj:

Again for r fixed fjk(v\r) becomes a conditional probability
distribution in v appropriate for comparisons with experimental
conduction latencies. Fig. 2B shows a plot of the corresponding

cumulative distribution Fy (v|r), integrated as in Eq. (30). Note
that fjx(v|r)— oo for v—¥j, whereas Fj(v|r) is well-behaved

in the limit and hence can be plotted easily. For r<§

1
5(71 — 17\/1-7)&jk:0.3376jk, there is a local maximum of the

distribution at small velocities:

. I ¢ ¢ P\ .
vmaXZE —+ cosg—\/gsmg — | +6| V%, (34)

Ok Ojk

2 4
3\/§\/8—71(~L) +4(~L)
3 Ojic
r r 3 .
%)
Ojic Ojic

For very small r this maximum even formally becomes dominant,
but at such distances the MFM loses validity. Thus the global
maximum is in practice always determined by the cut-off

¢ = arctan

(35)

Vmax = Vjk. The position of the maxima of ]?jk(v\r) is indicated in
Fig. 2B by two solid black lines on the surface of Fj(v|r). The
corresponding marginal velocity distribution, which can be related
to measurements of axonal diameters, is given by

, (36)

and its statistical characteristics also are collected in Tab. 1. We see
that this distribution is very sharp, with a coeflicient of variation
0,/<{v)=0.284, and skewed to lower velocities. Indeed, high
velocities are cut off at Vy. Note that the mode of the marginal
distribution is the same Vj as the maximum velocity between
distant brain regions of the distance-dependent distribution. Thus
here we would predict that fibre diameter and latency measure-
ments derive roughly the same conduction velocity. Basically the
long-wavelength approximation retains the original sharply
peaked velocity distribution of fibres with a single conduction
velocity Vj. If the comparison between conduction velocities
derived from diameter measurements and latencies can achieve
sufficient statistical significance, then this would allow an
experimental distinction between the dispersive and long-wave-
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length propagators. We consider investigating inter-hemispheric
connectivity between contra-lateral brain regions as promising,
because it is heavily dominated by just one fibre type (myelinated
fibres), with fairly homogeneous regional expression across large
distances. This adds particular significance to our fit of diameter
data of myelinated axons from human corpus callosum performed
below.

Incorporating anisotropy and inhomogeneity. In our
presentation of the dispersive propagator, and the subsequent
derivation of the conditional and marginal velocity distributions,
we have assumed both isotropy and homogeneity of the
corresponding connectivities. It is fortunate that these restrictions
can be relaxed, given that neither homogeneity nor isotropy would
be expected to hold fully in real brains, particularly not so for long-
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Table 1. Statistical characteristics of the dispersive, long-wavelength, and difference marginal velocity distributions.

/v G,/ Yy Vmode/ ¥ Vmedian/ ¥

Sgn)_ 6g(n),
n—3/2 n—1
n=1 ~1.571 i A ~0.5774 1
n=2 ~0.7854 ~0.6190 ~4.086 ~0.4472 ~0.6436
n=3 ~0.5890 ~0.3912 ~1.909 ~0.3780 ~0.5098
n=4 ~0.4909 ~0.3039 ~1.432 ~0.3333 ~0.4350
n=>5 ~0.4295 ~(.2560 ~1.218 ~0.3015 ~(.3856
n=6 ~0.3866 ~(0.2249 ~1.094 ~0.2774 ~0.3499
n=17 ~(.3543 ~(.2027 ~1.014 ~(.2582 ~(.3226
n=38 ~0.3290 ~(.1860 ~0.9580 ~0.2425 ~0.3008
n>1 LVEL ~ oL L VHr=3) ~ 1L ~Vinz-L
2 Vn B 4yn 4 (1 _ z)% V2yn vn
4

08862 04633 ~0.6311 _0.7071 08326

R R R R
I(?Ef:;:)ave g ~0.7854 % B £20-2232 n(nzgo'l-;]) i =Ll ? =0-8660
difference (v=v) ﬁg(nl)wa W P s [ng3(n1)w3 numerical numerical

2 | 2 403 a
3g(n)we 6g(n1)waWb]
n—3/2 n—1

ny,m=2,1 ~0.8625 ~0.6276 ~4.270 ~0.5214 ~0.7163
ny,m=2,3 ~0.8394 ~0.6239 ~4.217 ~0.5040 ~0.6951
ni,m=4,1 ~0.5265 ~0.2970 ~1.521 ~0.3593 ~0.4683
ny,m=4,3 ~0.5174 ~0.2984 ~1.501 ~0.3503 ~0.4596
np,m==6,1 ~(.4141 ~(.2175 ~1.177 ~0.2947 ~(.3755
ny,m=06,3 ~0.4079 ~0.2189 ~1.162 ~0.2884 ~0.3695
n,m=7,1 ~(0.3796 ~(.1955 ~1.096 ~(0.2734 ~(.3460
n,m=7,3 ~(.3742 ~0.1967 ~1.082 ~0.2678 ~0.3408
n;,m=38,1 ~0.3526 ~(.1789 ~1.040 ~(.2562 ~(.3226
ny,m=38,3 ~(.3478 ~(0.1801 ~1.027 ~0.2511 ~0.3179
Statistics are shown for the following marginal velocity distributions: dispersive Eq. (32), long-wavelength Eq. (36), and difference Eq. (51). The characteristic velocities ¥
for these three distributions are vj, ¥, and v, respectively. (v}, ,, and y; , are the mean, standard deviation, and skewness in v, respectively. In order to achieve a
compact notation, we have defined g(n)=T (n— })/T(n), where g(n)~1/\/n for n>> 1. Further, we use w, = % with r=a,b,c and J, = :‘ngZz;, = %
and A.= % For w, =0 one finds w, =1, as the difference propagator turns into the dispersive o]ne. V%le have not found a closedlg;nailytic for‘;Yl1 ’fzérthe
mode vmodle aad medig;n Vmedian Of the difference distribution, but they can be computed numerically. Further definitions needed for the evaluation of the difference
distribution statistics are collected in Eqgns. (43) and (52).
doi:10.1371/journal.pcbi.1000653.t001

range connectivity. First, inhomogeneities will be described well by
our equations in an average sense, as long as they are relatively
small and random according to some unimodal distribution, e.g., a
normal distribution. This fits well with the general MFM approach
of describing only the “mean fields” of cortex. Further, the
parameters may vary in an arbitrary inhomogeneous fashion over
distances farther away than a few times the characteristic scale of
synaptic connectivity o, without causing local complications.
Conducted over these distances a local pulse will have mostly
decayed away, hence the PDEs remain valid. This suggests a
separation of cortex into regions of “homogeneous enough”
conduction properties. If the inhomogeneous variation of
conduction properties across cortex is nevertheless smooth, then
even a single PDE with matching spatial variation of parameters
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could be used as model. Otherwise one would have to take special
care at the boundaries.

Second, to describe anisotropic conduction a generalization to
“patchy” propagators is possible. Work by Robinson [37] has
shown that one can generate basically arbitrary angular
modifications of conduction properties at the price of introducing
more PDEs. Basically this technique relies on a spatial Fourier
decomposition of long range connectivity. Hence the sharper the
anisotropy one wishes to describe, the more PDEs one has to
employ. See for example Ref. [30], where sinusoidal variations in
two principal directions required the solution of four coupled
complex PDEs, instead of one real PDE. In practice a compromise
between biological fidelity and numerical complexity has to be
made. Consider then the following “patchy” Green’s function

g]]'lkl(x’x,’t):gjk(')‘*xm[)ijk(xfx,) > (37)

which is homogeneous but anisotropic. It allows the specification
of anisotropic connectivity through a decomposition into an
isotropic Green’s function g,k and an anisotropic, but time-
independent, modifier M. Now we can use Eq. (3) for g}}{ and
integrate over the Dirac J-distribution, as for Eqns. (27) and (28),
but without any assumption of isotropy. The synaptic footprint is
again the integration over time of Q/AI;I , like in Eq. (19). Thus the
conditional velocity distribution becomes here

B |x—x’|9f‘k4(x,x’,t=|x—x’|/v)
v [ /’-‘,f(x,x’,t)dt

fil (r]xx')
(38)
_ |X_X/|gjk(|x—x,|’[) » »

- szgjk(|X—X/|,t)d[ = jk(V||X X)),

i.e., the anisotropic modifier Mj; cancels out and the conditional
velocity distribution f/,]y is found to be isotropic, and identical with

the fjx of the isotropic Green’s function Gy. Thus an isotropic
conditional velocity distribution is entirely compatible with
anisotropic connectivity.

Rewriting Eq. (3) in polar coordinates, [x —X’| and 6, one finds
that in general

Gie([x=x[.0,r=[x—x'|/v)

2 ] ) ] ) (39)
—mﬁk(ﬂ X=X wi (0,[x=x7)
and thus the potential anisotropy of propagation velocities is
independent of any evidence or assumptions regarding the
anisotropy of synaptic connectivity. In other words, how fast the
fibres connecting two regions are is a different question to the
number of fibres that connect these two regions. Hence even for
real brains one can start with the parsimonious isotropic
assumption  for  the  conditional  velocity  distribution
Se(v]0,]x—X'|) =fx(v||x—X'|), and assume that anisotropies
are due only to wi (0,|x —x'|). Then the fibre system is potentially
anisotropic, but where fibres grow their distribution of conduction
velocities is not dependent on the direction in which they are
growing. Further, define the “angular average”

21
wi (x—x')= 21?]0 dOwy(0,[x—x']) . (40)

Then the generalization of Eq. (32), which assumes that the
conditional velocity distribution is isotropic but allows for
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anisotropy in the connectivity, can be written as

Oymvy

)= JM”’M , (41)
Vik

W]Qk = J dr27rrw;k0>(r) , (42)

where we have set r=|x| again. This clearly depends only on
Wfk{»(r), and may very well be practically indistinguishable from
isotropic conditions. For example, a fibre system with one strongly
dominant direction Wi (0,r) = wjx(r)0(0 — 0p), which is roughly the
case within corpus callosum, yields the same isotropic fjx(v) through
the renormalization of w?k. For these reasons we will continue with
the assumption of isotropy for fits of the marginal velocity
distributions to data. However, more precise data on both
connectivity and conduction latencies may well make possible in
future to disentangle anisotropies further, potentially showing that
our parsimonious assumption of an isotropic conditional velocity
distribution was incorrect. One also needs to keep in mind that for
simulations of cortex the introduction of inhomogeneous regions
and “patchy” propagators will likely be required to achieve good
biological fidelity, even if one assumes isotropic velocity distribu-
tions. In this regard the methods of Daunizeau et al. [38] may prove
particularly useful, which systematically map conduction PDEs to
heterogeneous cortico-cortical connectivity in the human brain.

Difference propagator

Finally, there appears to be a general trend in experimental data
that higher mammals have a larger proportion of small diameter
fibres, see for example the discussion in the section “Species
differences” of [31]. We will encounter this phenomenon when
trying to fit human [31] and rat data [36]. Small fibre diameters
correspond to low conduction velocities, as we will see in detail
below. Unfortunately the dispersive propagator predicts too much
low velocity conduction, and thus a too large fraction of small
diameter fibres, to fit the rat data well. Whereas the long-
wavelength approximation fails entirely to describe either human
or rat data, but because of high, not low, velocity conduction: its
marginal velocity distribution is sharply peaked close to an upper
velocity limit, while all data require a broad, unimodal velocity
distribution. We have been unable to find another single
propagator equation, which both yields the polynomial Fourier
structure leading to a PDE and describes the data from lower
mammals better.

A constructive approach for dealing with this problem posed by
animal data has however proven successtul. The basic idea is to
subtract two dispersive propagators ¢, =¢; —@,, where the
second dispersive propagator conducts activity more slowly, so that
the resulting distribution is reduced at small velocities. This
construction we will then call the difference propagator. Before we
provide further mathematical details, we wish to justify this
method with regards to the actual biology it is supposed to
describe. Clearly there are no ““anti-fibres” in the brain, hence ¢,
and therefore also ¢; lack any direct biological meaning taken
separately. But the biological meaning of the constructive solution
$ot 1s not necessarily compromised, since in the end it is actually
¢ which is compared with empirical measurements. The
dispersive and long-wavelength propagators we have investigated
so far are biologically meaningful and appropriate because of the
following characteristics: First, they correspond to a Green’s
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function non-negative for all positive times and distances. This
implies that a positive local pulse also leads to positive pulses
arriving at distant synaptic terminals. The impact of these pulses
may be “negative”, if they excite inhibitory populations, but the
action potentials themselves do not somehow change sign. Second,
synaptic connectivity has a roughly exponential decay with
distance, as is appropriate for describing background connectivity
in the brain. Third, the distance-dependent velocity distribution
has a dominant mode, i.c., there is a preferred conduction velocity
leading to typical latencies between brain regions. Fourth, the
marginal velocity distribution has a shape which compares
favourably with fibre diameter distributions. We will construct
our difference propagator so that it shows all these characteristics.
Hence while it may be less intuitive, and requires more
computational effort, ¢, will be as valid in terms of biology as
the dispersive and long-wavelength propagators.

We first compute the ratio of two dispersive Green’s functions
Gix(r,1) from Eq. (11), which have different parameters

Gi(rn)n=n1 v =vi,on =01,W) =w

Gi(r1) _
G0 Gy(r.t)

@ O
n=ny=n;+m,vy=vy= %fvl O =02= %fal ,w?k

o 1=2 02 n 2 2
:eﬁr+ 2T, <ﬂ> Fma)f~ > ¢ L) /- =1,
n) T'(m) z ny I'(ny) z

=wy=2zw

(43)

with normed spatial variables t=v;¢/(20,) and Y =r/(201). The
inequality is valid for powers n1,meN|, and thus ny >ny, as well as
factor 0<f <1, and we have set

o1 D)

ny? T(ny)

2 with 0<z<f?’<land lim z= 2@.44
f f f\/n—z( )

nl,n2—ow

If we now define

¢1*2(X’I)EJ dt’J dx' Gio(|x—xX|,t—1)S(X, 1), (45)
—® C

¢tol(xst)E¢1(X>Z)_¢2(x7t)
x (46)
=J dt’J dx' Gior(Ix—X'|,t =) S(X',1) ,
c

— o0

then it is clear that for ¢ local firing S will be propagated with a
combined Green’s function G (r,t)=G1(r,0)—G2(r,t)>0. By
construction we have made certain that no unbiological “negative
pulses” can arise here in spite of the subtraction. Thanks to the
linear combination, the distributions are computed trivially, e.g.,
synaptic connectivity is

Wiot(r) = i P\
O oy nF(nl)a% o]
r W PG r @7
K, i|—]|————(— K,_1l—],
m—l (()’1) 2”27tr(n2)0% (O’z) et (()‘2)
w?ot =w;—wr=wi(1—2). (48)

Note that as integral over Gior, see Eq. (19), wiot(r) and hence w
must be positive, since Gior >0 and not zero in the entire
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Integration range. In practice W?ot is the biological quantity and

determines w; via Eqns. (48) and (44). We can again compute how
this connectivity compares to an assumed exponential decay, as
explained at Eq. (25). The sum to be minimized becomes now

imax,

N exey i 7(?’”ﬁ7’1“7% ey e/ 49
Z{(a e ) 72""1"(:7)5 k(exiexivn) zmn”f%k(f”\/rfo”f\/n—]X'“>]} ( )

i=0 5

2

where /a1 =¢x. For different powers 1 we obtain here scaling
factors 0 and & which are similar to those of the dispersive
propagator:

n={1, 2, 3, 4, 5 6, 7},
o ={0.5438, 1.266, 1.380, 1422, 1443, 1457, 14661}, (50)
e ={0.6631, 1.667, 2.262, 2.732, 3.129, 3.483, 3.804 }.

In Fig. 3A the corresponding difference connectivity is shown. We
see that it may become feasible to measure experimentally the
deviation to an exponential decay in particular for small x and
high powers n, though overall the shape is still roughly
exponential. The distance-dependent velocity —distribution
Jot(V| 1) =rGiot(rit=r/v)/ [V2W101(V)] and the distance-dependent
connectivity Wy (V1) =rGior(r,t=r/v)/v* are of course also
positive. It is straightforward to show that for r/a;>1 the
conditional distribution fiot(v|7) is indeed unimodal, with the
maximum given by Eq. (29) upon replacing n—ny, oy —0o1, and
Vik—Vv1. At r=201 the mode velocities of the dispersive and
difference propagators already differ by less than 10% for n; > 1.
Finally we can compute the marginal velocity distribution

20y vy 2y
w1 L — W3 2
+1 +1
(VZ_’_V%)”I (Vz + V%)nz

Jor(v) = (51)

w1y —Wwp
Its statistical characteristics can again be found in Tab. 1. As before
mean {v) only exists for n; >1/2, standard deviation o, only for
ny>1, and skewness y; , only for n; >3/2. No further condition is
required, since 7 >n;. We have not been able to find analytic
expressions for Vmoede and Vmedian for unspecified powers n; and n;.
However, computing them numerically for chosen powers is
straightforward. Since we wish to deplete fio((v) at small v, we
want to maximize positive skewness y; , using the still available
factor f. There is a clear mode of y; , in the range 0 <f <1, but
again it is too difficult to find it analytically. Instead we obtain 225
numerical solutions for ny=2,...,16 and m=n,—n;=1,...,15,

and then obtain a good three parameter fit for maximum skewness:

~ 1
f= erfi‘l y 1,vm(f)} (n1,m)~0.629 <1 4y 270~ Em°-0589> (52)

With Eq. (52) we complete the specification of our difference
propagator. In practice then, the difference propagator can be

computed using two PDEs

0 v m WOy

{E +2—01(1—U%V2)} d1(x.0)= 2,,1—0_7,5}(&0 ,

o n " wiyn (53)
S (=aV)| b= 3 s).

¢t0t(xit) = ¢l (Xat) - ¢2(X»t) .
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Figure 3. Difference propagator: synaptic connectivity and marginal velocity distribution. This figure is like Fig. 1, but for the difference
propagator with m=n; —n; = 1. (A) Synaptic connectivity fit to an exponential decay (thin curve), Eqns. (47) and (49) are used. (B) Marginal velocity
distribution Eq. (51). The dispersive n=3 case is shown as thin curve for comparison.

doi:10.1371/journal.pcbi.1000653.g003

where only four parameters are actually free: ny, o1, vi, and ny. All
the other parameters are dependent, see Eqns. (43), (44) and (52).
Furthermore, 1y >ny is also required. Thus in comparison to the
dispersive propagator only one additional parameter is introduced
here: the chosen power ny of the subtracted dispersive propagator.
While the variables ¢; and ¢, have no independent meaning here
as such, both describe independently propagated activity since
their PDEs are not coupled. Hence one can think of ¢; as
representing a “full” propagator, which one would encounter in
humans, and of ¢, as representing a “‘depletion” propagator,
which then removes activity conduction lacking in lower
mammals.

Comparing dispersive and difference distributions for ny =n in
Tab. 1, we find now that both mean and standard deviation of the
difference distribution are larger, but its coefficient of variation is
smaller. Thus the difference distribution is sharper. Skewness is
indeed more positive for the difference distribution, indicating the
increased preference for higher velocities we aimed for. For m— o0
one finds wp,—0, ie., the difference distribution becomes the
dispersive one again. The m=1 case then also turns out to be least
similar to the dispersive one concerning statistical characteristics.
Our skewness fit cannot be expected to be faithful outside of the fit
range, which however is sufficient for all practical purposes. The
only exception is n; =1 where skewness does not exist, but which
may be of interest. The approximation in Eq. (52) extrapolates
viably in that case with 0<f'<1, and for simplicity’s sake we
adopt here the fit for all 7;. The resulting distribution is shown in
Fig. 3B. In comparison to Fig. 1B we see the clear depletion at low
velocities for powers n>1, which we aimed to achieve. The
extrapolated n=1 case however does not show a significant
depletion. Note that extrapolation of the fit for large powers does
not leave the 0 <f'<1 range tll m>129,082. We conjecture that
the marginal velocity distribution Eq. (51) is unimodal for our choice
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of v, and w,. We have checked the 240 cases obtained by varying
both ny=1,...,16 and m=1,...,15. In every case the derivative
of fiot(v) was zero for just one v>0. Since fiot(v) >0, and zero only
for v=0 and v— 00, this indicates a single maximum for fio((V).

Results

Fits to myelinated fibre diameters in human corpus
callosum

How well does the dispersive propagator and its distance-
dependent fj(v|r) and marginal fjx(v) velocity distributions, as
well as the difference propagator and distributions derived from it,
reflect physiological reality? This is a difficult question to answer
since there are surprisingly few studies that have attempted to
experimentally quantify the distribution of cortico-cortical con-
duction velocities in animals or humans. Existing experimental
estimates can be divided into two groups: those based directly on
conduction latencies, for which the distance-dependent velocity
distribution fj(v|r) is appropriate, and those based on the
transformation of histologically determined axon diameters, to
which the marginal velocity distribution fj(v) applies. Estimates of
cortico-cortical conduction velocities obtained using these ap-
proaches cover a wide range, and depend on whether the fibres
are myelinated or unmyelinated. For example, myelinated fibres of
the corpus callosum are found to have an order of magnitude
variation in diameters (0.25—2.25 ym in rat, rabbit, cat and
monkey [42-45]), with conduction velocities expected to vary
roughly linearly with these different calibres. Furthermore, strong
regional differences can occur, for example in monkey callosal
latency measurements yield a median of 7.0 ms~! [46], whereas
in visual cortex one obtains only ~ 3.5 ms~! [47]. In the following
we will concentrate on fibre diameters and hence the marginal
velocity distribution fjx(v), since here some fairly detailed data sets
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are available. Furthermore, the analysis of latency measurements
requires knowledge about the distance between brain areas and
adds uncertainties concerning the precise time when transmitted
impulses actually lead to a measurable response. However, we will
indicate below where latency measurements may solve ambiguities
in our fits to data.

For myelinated axonal fibres conduction velocity is found to be
linearly related to fibre diameter v=xd. The constant of
proportionality k however is not well determined. Below we first
concentrate on the work of Aboitiz ¢t al. [31], since they provide
empirical data for the distribution of callosal axonal diameters in
human brains. That paper uses x=8.7ms~! yum~'. But for
example data summarised in Boyd and Kalu [48] suggest that
for myelinated axonal fibres with diameter <10 wm the linear
scale factor should be rather k=4.5—6.0 ms~! um~'. However,
we will see below that this uncertainty does not influence our data
fit directly, but merely scales its result. Aboitiz et al. [31] obtained
the number of fibres over a given threshold diameter in the corpus
callosum of twenty human brains (10 males and 10 females). To
this purpose saggitally sectioned and stained post-mortem callosal
pieces were examined using light microscopy. In addition electron
micrographs were used for one brain. A summary of their data
suitable for our purposes is given in Tab. 2. Note that in this table
only the last four rows and first two columns contain their directly
measured data. The first row and the last two columns are
estimates based on other approximate measurements also reported
in [31]: On one hand we have subtracted the number of
unmyelinated fibres, and on the other hand we have estimated
the full unthresholded count. For details see the caption of Tab. 2.

Abottiz et al. [31] counted the number of fibres over a given
observed diameter threshold dyp,s. The observed diameters must be
corrected for an estimated 65% tissue shrinkage due to formalin
fixation and paraffin embedding [31]: d =dops/E with &~0.65.
This general shrinkage fortunately maintains the linear relation to
conduction velocity: v=1/&dops. In order to fit this thresholded
data, we calculate

0 2 —n
N‘herJ duM =N|[1+ ”
v (P4 ka ! Vi
(54)
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where N represents the number of all (myelinated) fibres in their
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corpus callosum sample and fj is the marginal velocity
distribution Eq. (32) of our newly proposed dispersive propagator.
N is then the predicted number of fibres having conduction
velocities larger than v. Note that thanks to the linear relationship
of diameter to velocity, we can directly compare this to the
experimental count N of the number of fibres with a diameter
larger than dops. We will then fit the optimal parameters N and
dj, and can relate the latter to the characteristic velocity as
ik =K /& dj.. This means that the substantial uncertainties for the
velocity scale factor x does not directly influence our fit. If x
becomes more precisely known the new v, can be obtained simply
by multiplication. For reporting velocities we will use the factor
k/E=8.7/0.65ms™! um~! in the following. An effect not
covered by the general shrinkage factor ¢ is the possibility of
differential shrinkage of the tissue, 1.c., fibres of different diameters
may have shrunk at different rates in the preparation. Little is
known about such effects. Furthermore, fibres typically have a
somewhat irregular “oval with dents” cross section in practice,
leading to uncertainties in precise determinations of the diameter.
Finally, both observer error in the tedious task of counting
thousands of fibres and equipment limitations (in particular for
small diameters) come into play. For all these reasons it is likely
that the dyps of Tab. 2 should be considered to have some error. In
order to take into account all these uncertainties, in particular the
unknown differential shrinkage error, we repeat the data fit four
times with Udse/dobs = {0(70,2(70,40/0,6%}.

In Fig. 4 we show the result of fitting N and dj for powers n
from one to ten. We have repeated the fit in steps of 0.1 in order
to obtain smooth curves, but as discussed above only integer
powers allow easy computation in terms of PDEs. Shown is the
probability of obtaining a y? equal to or greater than the actual
%2, assuming that the data is drawn from the model for a selected
n using best-fit parameters. This we will consider as the
confidence level of the model with this particular n. We use here
and throughout “generalized chi-square-fitting”, which takes into
account errors in both dependent (y) and independent (x)
variables at every i-th data point using o’i2=0'ii+(5y/ (3x)?o'§’i,
to compare our predicted marginal velocity distributions with the
empirically observed data. More advanced approaches, for
example those based on Bayesian inference, could in principle
give statistically more robust and informative estimates of model
parameters. However, the kind of data available to us, from a
purely practical point of view, limits the advantages one could
obtain with more involved statistical analyses. On one hand, we

Table 2. Threshold counts of myelinated fibres in human corpus callosum based on Aboitiz et al. data.

observed threshold diameter d,,, total number of fibres Nt

number unmyelinated number myelinated N

>0.0 um (2.003+0.338)10°
>0.4 ym (1.602+0.250)-10°
>1.0 um (3.770+0.994):107
>3.0 um (1.651+0.858)-10°
>5.0 um (3.517+2.087)-10*

(2.028 +0.225)-107 (1.800+0.355)-10°
(1.622+0.160)107 (1.440 +0.266) 108
= (3.770 +0.994)-107
— (1.651 +0.858)10°
= (3.517+2.087)-10*

unmyelinated and myelinated kinds, respectively.
doi:10.1371/journal.pcbi.1000653.t002
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Light microscopy counts (first two columns) are from Tab. Ill in [31]. The counts for >1—35 um used Loyez stains of only myelinated fibres, but >0.4 yum represents
Holmes stains, which include unmyelinated fibres. Electron microscopy revealed “about 16%"” unmyelinated fibres in the (three segments of the) genu and “usually less
than 5%" in the other parts [31]. Using Fig. 1 in [31], we hence estimate the unmyelinated count as N g, g3 16%+ N9, *5%, with a 1% error on both percentages.

rest

“Approximately 20%" of fibres were not detected with light as compared to electron microscopy [31], hence we estimate the first row from the 0.4 um da by dividing
by 80% with a 1% error. The first row of the table represents estimates of the average number of fibres in human corpus callosum: total, and distinguished into
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Figure 4. Confidence levels obtained from fits to the data in
Tab. 2. The power n of Eq. (54) was varied in steps of 0.1 for four
different uncertainties of the observed threshold diameters
Gdse/ dobs ={0%,2%,4%,6%}. The assumed relative diameter error
reflects mainly differential shrinkage. As confidence level the probability
that »2 is greater than the fitted ? is shown.
doi:10.1371/journal.pcbi.1000653.9004

use here aggregate data from publications, not individual
observations, i.e., counts per area and per individual. On the
other hand, human data is too scarce and we will see below that
the rat data shows systematic deviations from the models.
However, our results are sufficiently clear to exclude the long-
wavelength velocity distribution for all data, and motivate the use
of the dispersive propagator for human and the difference
propagator for rat data.

In Tab. 3 we collect the results for maximum confidence level,
i.c., minimum y?. We sce that depending on whether the
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diameter uncertainty is larger or smaller, integer powers n=3
and n=4 are favoured, respectively. The fitted number of all
myelinated fibres N remains well inside one standard deviation
of the estimate N t>h{).()um in Tab. 2, but is systematically larger and
grows for lar