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Abstract

Simultaneous pre- and postsynaptic cell recordings are used to calculate gap junction conductance based on an equivalent electrical

circuit of an electrically coupled pair of cells. This calculation is imprecise when recording from a cell pair that is coupled to neighboring

cells providing indirect conductance paths between the recorded cells. Despite this imprecision, junctional conductance has been

calculated for coupled cell networks during the past 40 years since a more accurate method was lacking. The present study simulated a

three-dimensional network of electrically coupled heterogeneous neurons and used mathematical modeling to reduce the complexity to

the simplest equations that could more accurately estimate the electrical properties of dual-recorded cells in the network. Analyses of the

simulations showed that knowledge of the number of unrecorded cells directly linked to the recorded cells and of the voltage responses of

these recorded cells were largely sufficient to accurately predict the direct junctional resistance linking the recorded cells as well as the

input resistance of the recorded cells that would exist in the absence of junctional coupling. All model parameters could be obtained from

real dual-intracellular penetrations which allow electrophysiological recordings and intracellular staining.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A gap junction is an intercellular channel allowing the
exchange of ions and molecules less than 16 Å in diameter
for communication between cells (Elenes et al., 2001;
Rozental et al., 2000; Simon and Goodenough, 1998). Gap
junctions are normally clustered forming plaques consist-
ing of just a few to several thousand junctions (Rouach et
al., 2002). The electrotonic coupling of neurons by gap
junctions confers properties for communication in nervous
tissues beyond that provided by chemical synapses. These
properties include greater speed of synaptic relay, trans-
mission of subthreshold potentials, reciprocal communica-
tion, coincidence detection, synchronization of neurons,
and oscillation (Bennett, 1997; Marder, 1998).
e front matter r 2005 Elsevier Ltd. All rights reserved.
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The most direct and arguably the only convincing
experiments to show the existence of functional electrical
synapses involve simultaneous recordings from pairs of
connected cells (Bennett, 1997; Galarreta and Hestrin,
2001, 2002). The equations to quantify the electrical
coupling during current-clamp recordings were derived
about 40 years ago by Bennett (Bennett, 1966, 1977) using
an equivalent circuit model of two coupled cells. These
equations provide accurate estimates of electrical coupling
during dual-recordings from isolated pairs of real cells
(Clapham et al., 1980; Spray et al., 1981; Veenstra, 2001)
because these conditions are equivalent to those of the
model used in deriving the equations for electrical
coupling. The limitations of these equations were partially
described in the original paper but, for lack of a better
method, they have been used since then to calculate the
electrical properties of gap junctions linking pairs of
recorded cells even though many of these cells form part
of highly interconnected networks (Galarreta and Hestrin,
2001; Neyton and Trautmann, 1985). In such networks of
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coupled cells, the electrical properties obtained from dual-
cell recordings would not only reflect the recorded cell pair
but also that of the unrecorded surrounding cells to which
they are connected by gap junctions.

A recent study (Amitai et al., 2002) used a system of
steady-state equations to evaluate coupling among simu-
lated neurons with homogeneous electrical properties in
simple networks (one- and two-dimensional architectures
possibly representing a column and a layer of electrically
coupled neurons) whose architectures were suggested from
in vitro results of cell density and coupling coefficients for a
sample of cell pairs in a network. Their overall objective
was to estimate the average summed coupling conductance
that each cell receives from all of its neighbors but as an
aside they provided a rough estimate of the conductance
linking dual-recorded cells which lay somewhere within
0.36–2 nS or 500–2800MO for a specific test case. These
conductance parameters are difficult to estimate accurately
and a practical solution to this problem would be
welcomed by electrophysiologists.

The overall objective of the present study was to provide a
simple and accurate estimate of the conductance linking
dual-recorded cells within biologically relevant architectures
of coupled cells. This was done using a simulation program
with integrated circuit emphasis (SPICE) to create a three-
dimensional (3D, representing several cell layers) network of
neurons with heterogeneous electrical properties that were
fully randomized within known biological values. Mathe-
matical modeling was then used to reduce the complexity to
the simplest equations, based only on parameters available
during dual-cell recordings, that could accurately quantify
the direct conductances between cell-pairs recorded from the
simulated networks. Equations were also derived to extract
the resistance of a recorded neuron from its input resistance
which comprised both neuron and junctional resistances.
These derivations extend Bennett’s approach (Bennett, 1966,
1977) beyond its limitations for dual-recorded cells em-
bedded in a network of coupled cells. Our equations
provided relatively accurate estimates of membrane proper-
ties using only data that are available from real dual-
intracellular penetrations which allow both electrophysiolo-
gical recordings and intracellular staining with dyes that
diffuse through gap junctions to reveal connectivity.

2. Methods

2.1. Notation

The notation used in this study is based on Bennett’s
classic papers (Bennett, 1966, 1977) defining a circuit model
of coupled cells. I is current, V is voltage, and R is
resistance. Injection of current into one of two coupled cells
will be affected by the resistance of each cell and the gap
junction resistance linking the pair of cells. To distinguish
between these components, a one-letter subscript indicates
the location among a recorded pair of electrotonically
coupled cells: R1 is the resistance of cell 1, R2 is the
resistance of cell 2, Rj is the junctional resistance linking
cells 1 and 2, I1 is the current injected into cell 1, and I2 is
the current injected into cell 2. The first letter of a two-
letter subscript indicates where the current was applied:
V11 is the voltage in cell 1 due to stimulation in cell 1, V 12

is the voltage in cell 2 due to stimulation of cell 1, V 22 is the
voltage in cell 2 due to stimulation in cell 2, V21 is the
voltage in cell 1 due to stimulation of cell 2, R11 is the input
resistance of cell 1 measured during stimulation of cell 1,
and R22 is the input resistance of cell 2 measured during
stimulation of cell 2.
The equations used to derive the gap junction and

neuron resistances were based on the simultaneous record-
ing of 2 coupled cells in a network. The subscript ‘‘p’’ was
used to indicate the contribution of neighboring cells
coupled in parallel as described here for the junctional
resistance: Rj is the junctional resistance resulting from the
direct connection between the recorded-cell pair and Rjp is
the parallel junctional resistance resulting from both the
direct connection between the recorded-cell pair and the
indirect parallel connections through neighboring cells.
Other less commonly used variables are defined where they
first appear in the text.

2.2. Simulations using SPICE

The implementation of SPICE used in this study was from
OrCad Inc. (Beaverton, Oregon). This simulation software
allowed us to define an equivalent circuit of electrotonically
coupled cells and then to view the voltage changes and
current flow in response to intracellular current injections.
Values from published data were used for the neuron
resistances (Pare et al., 1998), junctional resistances (Ga-
larreta and Hestrin, 2001), and injected currents (Galarreta
and Hestrin, 1999; Gibson et al., 1999; Pare et al., 1998;
Tamas et al., 2000) that were simulated in SPICE. The
resting potential of cells was assumed to be 0mV in order to
simplify calculation of the voltage response to current
injection. The responses of these simulated neurons and
their network architecture were used to develop equations
that could be applied to intracellular studies in real neurons
in order to estimate the junctional resistance between dual-
recorded neurons as well as the resistance contributed by
each of these neurons. The steps in the derivation of all
equations were verified using Maple software which is a
symbolic computation system (Waterloo Maple Inc., Water-
loo, Ontario, Canada) and the accuracy of these equations
were estimated from their ability to reveal the known
resistances used in the simulated 3D neural networks of
electrically coupled heterogeneous cells.

3. Results

3.1. Three-dimensional simulation of coupling

The basic architecture of the simulated 3D network is
shown in Fig. 1 using cuboidal-shaped cells to simplify the
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Fig. 1. Architecture of a 3D network of coupled cells with direct and

indirect pathways for current flow between neighboring cells. (a) A 3D

view showing the direct connection between dual-recorded cells (yellow

and green) and indirect connections via a single interposed blue cell or via

several transparent and blue cells. For clarity, the transparent cells to the

left and right of the recorded cells are not drawn in this illustration of one

layer of cells surrounding the dual-recorded cells. (b) A vertical section

through the network to reveal the underlying circuitry formed of neuron

and junctional resistances. Only resistances of the cell leading to the

extracellular space (represented by the ground) and of the gap junctions

leading to the intracellular spaces of connected cells were simulated.

Membrane capacitance, which delays reaching steady-state, was not

simulated since only steady-state values were recorded. (c) The circuitry is

redrawn as a simplified equivalent circuit with the junctional resistance

between the dual-recorded cells identified by Rj . The blue and black

numbers represent the corresponding blue and transparent cells which

form primary and secondary loops for current flow between the dual-

recorded cells.

0 1 2 3 4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Layers

N
or

m
al

iz
ed

 V
ol

ta
ge

 R
es

po
ns

e

Rn=15 Rj=200
Rn=15 Rj=4000
Rn=60 Rj=200
Rn=60 Rj=4000

Fig. 2. Effects of adding layers of cells, around the recorded cell pair, on

the voltage responses to �1:0 nA current injection. Voltage responses were

normalized to the values obtained with 0 layers (i.e. isolated pair of

coupled neurons). All cells had the same neuron resistance ðRnÞ and

junctional resistance ðRjÞ, so the voltage responses were identical for

current injections into either of the two recorded neurons. Four extreme

conditions were tested (1) Rn ¼ 15 and Rj ¼ 200MO, (2) Rn ¼ 15 and

Rj ¼ 4000MO, (3) Rn ¼ 60 and Rj ¼ 200MO, and (4) Rn ¼ 60 and

Rj ¼ 4000MO.
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illustration of dual-recorded cells surrounded by one layer
(a layer represents all the cells forming a single cell thick
envelope) of cells. All neighboring cells were coupled by
gap junctions. Although the blue cells appear to be
independent from one another, they become linked by a
single intermediate cell when another layer of cells is added.
Less than four layers of cells surrounding the centrally
located recorded pair of cells (yellow and green) were
simulated because the voltage responses to injection of
hyperpolarizing currents were mostly affected by adding
the first layer of cells but changed little with networks of up
to three layers and were completely unaffected by addi-
tional layers (Fig. 2). The four lines in Fig. 2 represent four
conditions which covered all combinations of the extreme
ranges of neuron and junctional resistances (Galarreta and
Hestrin, 1999; Gibson et al., 1999; Pare et al., 1998; Tamas
et al., 2000). It can be seen that adding one layer produced
a decrease in the voltage responses for all four conditions
but the largest relative voltage drops occurred for the
lowest junctional resistance ðRj ¼ 200MOÞ because current
was more easily lost into the neuronal network. Adding
more layers had very small effects on the responses, so only
examination of the raw data could reveal the conditions
when stable responses were achieved. The two conditions
with Rj ¼ 4000MO showed stable responses at one or
more layers. The condition with Rj ¼ 200 and Rn ¼ 15MO
(Rn is defined as the resistance of a neuron which would
correspond to the input resistance when there is no
electrical coupling to other cells) showed stable responses
at two or more layers. Finally, the condition with Rj ¼ 200
and Rn ¼ 60MO showed stable responses at three or more
layers. Thus simulations of less than four layers were
sufficient to completely reveal the range of voltage
responses in coupled cell networks. A total of 1000
networks were simulated with the number of layers
uniformly distributed between 1 and 3.
The individual resistances of neurons and gap junctions

in these networks were randomized within ranges observed
in animal experiments. Published data on nonpyramidal
input resistances cannot be used as estimates of neuron
resistance because of potential contamination by the effects
of junctional coupling between cells which tends to lower
input resistance. The input resistances of pyramidal
neurons were used as estimates of neuron resistance since
these cortical projection neurons do not tend to exhibit
coupling to neighboring cells (Deans et al., 2001; Galarreta
and Hestrin, 2001; Theis et al., 2003) and therefore the
voltage response to current injection reflects the resistance
of a single neuron. This is appropriate for the pyramidal
neurons and non-pyramidal cells (such as inhibitory

interneurons) of similar sizes since neuron resistance is
inversely proportional to cell size. However, there are some
pyramidal neurons which are larger and some nonpyrami-
dal neurons which are smaller (such as excitatory granule
cells) such that simulating only pyramidal cell data could
include lower neuron resistances and potentially exclude
some higher neuron resistances but electrical coupling in
the cortex appears to be selective for distinct populations of
inhibitory interneurons (Alonso, 2002; Miller, 2003). To
compensate for the potential exclusion of higher resis-
tances, our simulations included pyramidal cell input
resistances during in vitro experiments which express
values about twice that observed during in vivo recordings
because of reduced synaptic activity. The mean� SD input
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resistances of neocortical pyramidal neurons range from
28:6� 4:2MO for in vivo recordings during ketamine
anesthesia to 37:3� 3:9MO for in vivo recordings during
barbiturate anesthesia and to 66:14� 1:3MO for in vitro
recordings (Pare et al., 1998). By plotting these values, it was
observed that the SD values were linearly related to their
corresponding mean input resistances, so the following linear
regression equation was derived: SDRn ¼ 6:720:08MeanRn,
where Rn represents resistance of the neuron. A uniformly
distributed random number generator was used to select a
mean neuron resistance between 24.5 and 55:5MO and
then a normally distributed random number generator
(Press et al., 1988) was used to set the resistances for all
neurons in the simulation of one network such that the SD
of these resistances agreed with the equation for SDRn. This
was repeated 1000 times in order to simulate 1000 networks
reflecting a wide range of neuron resistances. Similarly, the
mean junctional resistances of these 1000 networks were
uniformly distributed between 200 and 4000MO and then
the SD of a mean junctional resistance in a single network
was set according to SDRj ¼ 0:12MeanRj þ 80:7 since the
reported SD values were found to be linearly related to the
mean (Galarreta and Hestrin, 1999; Gibson et al., 1999;
Tamas et al., 2000).

The wide range of parameters chosen for the simulated
networks would be expected to overlap those of a real
network of coupled neurons. The degree of overlap is
unknown since accurate data that are not contaminated by
the effects of indirect coupling are lacking (i.e. available
estimates of both neuron and junctional resistances in
networks of coupled cells are contaminated by conductance
through neighboring cells). Fortunately, an exact replica-
tion is not necessary because the aim is to derive equations
that will reveal the junctional and neuron resistances
defined in the simulation. Once validated for the simulation
data, it should then apply to real intracellular studies of
coupled-cells which conform to the architecture of our
simulated networks.

3.2. Estimating junctional conductance

The voltage responses to hyperpolarizing stimuli applied
successively to either neuron of the pair of recorded
neurons embedded within each of the 1000 simulated
networks were collected for analyses. The plan was to
analyse individual and combined experimental parameters
only available from the dual-recorded neurons in order to
identify predictors of junctional conductance. Potential
combinations of parameters were sought by studying the
architecture of networks. It was discovered that a
wye–delta circuit conversion (Robbins and Miller, 2000)
could be used to simplify the 3D network (Fig. 1) into an
equivalent two cell circuit as shown in Fig. 3. This figure
shows the simplest network structure (Fig. 3a) which
contains all the components of the more complicated 3D
network (Fig. 1). This network contains one primary loop
(representing a blue cell in Fig. 1) and one secondary loop
(representing a transparent cell in Fig. 1) which can be
converted using the wye–delta circuit equations (Fig. 3f)
into an electrical equivalent pair of coupled cells (Fig. 3e).
The resistances of this simplified two cell circuit (Fig. 3e)
can be derived from voltage responses to current injection.
The derivation is identical whether the two cell circuit
represents single cells (i.e. not coupled to surrounding cells)
or the summed effects of coupling with neighboring cells.
For simplicity, the derivation for single cells will be
described (Fig. 4) and then the subscript ‘‘p’’ will be added
to the final equations in order to reflect the case where the
resistances are the summation of parallel resistances
including neighboring cells (Fig. 3e).
A typical experiment involves injecting current into one

neuron and recording the voltage changes produced in
both neurons (Fig. 4a). A current of I1 injected into cell 1
will divide to flow along the two existing parallel paths: one
through the resistance of cell 1 ðR1Þ directly to ground and
another through the junctional resistance ðRjÞ and then
through the resistance of cell 2 ðR2Þ to ground (Fig. 4b).
The voltage change in cell 1 produced by current injection
into this cell ðV 11Þ can be derived from Ohm’s Law ðV ¼
IRÞ with I as the injected current ðI1Þ and R as the sum of
all resistances arranged in series and parallel along the two
paths to ground ð1=R11 ¼ 1=ðRj þ R2Þ þ 1=R1 so
R11 ¼ R1ðRj þ R2Þ=ðR1 þ Rj þ R2ÞÞ:

V11 ¼ I1
R1ðRj þ R2Þ

R1 þ Rj þ R2
¼ I1R11. (1)

The voltage change in the postsynaptic cell ðV12Þ can also
be calculated using Ohm’s law with I as the junctional
current resulting from current injection into cell 1 and R as
the resistance of cell 2 ðV 12 ¼ I1jR2Þ. The value of I1j can
be calculated from the division of current I1 to pass
through both the resistance of cell 1 and the resistance
through the gap junction and cell 2 ðI1j ¼ I1ðR1=ðR1þ

Rj þ R2ÞÞÞ. Replacing I1j in the equation for V 12 above
yields

V12 ¼ I1
R1R2

R1 þ Rj þ R2
¼ I1R12. (2)

The same procedures are used to calculate the voltage
responses to current injection into cell 2. This yields the
following:

V22 ¼ I2
ðR1 þ RjÞR2

R1 þ Rj þ R2
¼ I2R22, ð3Þ

V21 ¼ I2
R1R2

R1 þ Rj þ R2
¼ I2R21. ð4Þ

The three resistances of the electrotonically coupled cell
pair (R1, R2 and Rj) are obtained from the simultaneous
solution of the three equations derived above (Eqs. (1)–(3)).
Eq. (4) can be used instead of Eq. (2) since they are equal
during the present conditions. Solving these three simulta-
neous equations and adding the subscript ‘‘p’’ to indicate
that each neuron of the simplified two cell circuit represents
the summed contribution of neighboring cells (Fig. 3e)
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yields

Rjp ¼
V 11V22I1 � V2

12I2

I1I2V12
, ð5Þ

R1p ¼
V 2

12I2 � V 11V22I1

I1ðI2V 12 � I1V 22Þ
, ð6Þ

R2p ¼
V 2

12I2 � V 11V22I1

I1I2ðV12 � V11Þ
. ð7Þ

For the sake of completeness, we include the coupling
coefficient (K) which is calculated as the postjunctional
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voltage divided by the prejunctional voltage resulting from
prejunctional current injection (K12 ¼ V12=V 11 and
K21 ¼ V21=V 22). Unlike the neuron or junctional resis-
tance, this unit-less quantity does not identify a circuit
component of coupled cells, so its calculation remains the
same whether dual-recorded cells are isolated from other
cells or embedded in a network of coupled cells.
To reveal the exact junctional conductance directly

linking dual-recorded cells in a network, one would need
information from intracellular recordings of surrounding
cells. This would be technically challenging. Since electro-
physiological studies of coupled cells typically involve dual-
cell recordings, our aim was to derive a model using this
limited information. To derive a mathematical model of the
coupled cell networks simulated with SPICE, we took into
consideration the results of previous work (Galarreta and
Hestrin, 2001; Rela and Szczupak, 2003) indicating that
coupling coefficients between directly coupled pairs are at
most 0.2, so indirect coupling would be 0.04 via one
intermediate cell and indirect coupling via two intermediate
cells would be an insignificant value of 0.008. In order to
justify ignoring such higher-order coupling, one needs to
show that the drop in coupling is not offset by an increased
number of higher-order coupling arranged in parallel. This
was shown in Fig. 2 where the voltage responses to current
injection were largely due to the addition of the first layer
of cells covering the dual-recorded cells. Minimal changes
occurred by adding 2 more layers (representing a total of 3
layers formed of 392 neurons and 1603 gap junctions) and
undetectable changes occurred with further increases in
layers. Therefore, we only considered indirect coupling via
single interposed cells (blue cells in Fig. 1a or primary loop
in Fig. 3) when modeling the network. The simulations
included four of these interposed cells (Fig. 1a) forming
four parallel loops that could be summed to produce a
single loop as shown in Fig. 3c.
Since we do not have access to electrophysiological

parameters from unrecorded neighboring cells during real
biological experiments, it was postulated that for equation
Rb (Fig. 3f), the junctional resistances could be represented
by values Rx ¼ Rz ¼ Rj=i and the membrane resistance
Fig. 3. Method of simplifying a 3D network to an equivalent circuit

model of a pair of electrically coupled cells. (a) Sample network

configuration based on a subset of the circuit in Fig. 1c containing only

one primary and one secondary loop (the secondary loop, identified by Rx,

Ry, and Rz, is to be reduced to an equivalent circuit). The dual-recorded

neurons are each represented by their individual resistances (R1 and R2)

and by their junctional resistance ðRjÞ. (b) The result of converting Rx, Ry,

and Rz into the parallel resistances Ra, Rb, and Rc using the wye–delta

conversion shown in panel (f) below. (c) The summation of parallel

resistances in panel (b) to produce the reduced circuit with one primary

loop containing new resistances re-labeled Rx, Ry, and Rz. (d) The result of

again converting Rx, Ry, and Rz into the new parallel resistances re-labeled

Ra, Rb, and Rc. (e) The summation of parallel resistances in panel (d) to

produce an equivalent circuit to a pair of coupled cells with resistances

R1p , Rjp , and R2p where the subscript ‘‘p’’ indicates that the resistances

result from the summation of parallel resistances. (f) The wye–delta

conversion equations (Robbins and Miller, 2000).
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Fig. 5. Estimating junctional resistance between dual-recorded cells

embedded in a 3D network of coupled cells. Each dot represents a single

data point from the 1000 simulations of networks with randomization of

one to three cell layers, neuron resistances from 24.5–55:5MO, and

junctional resistances from 200–4000MO. The x-axis contains the

estimated junctional resistances using the mathematical model (Eq. (9)).

The y-axis contains the true values of the junctional resistances ðRjÞ

defined for the dual-recorded neurons in the simulations.
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Fig. 4. Basic model of electrotonic coupling via a gap junction linking a

pair of recorded cells. (a) Outline of two electrotonically coupled cells each

with an intracellular electrode and an overlay of the equivalent circuit

model. Note the closed circuit from the electrode tip in the cell to its base

representing the ground of the electronic device which is isopotential with

the extracellular fluid. (b) Circuit representing coupled-cell model at

steady-state which does not require capacitance. This circuit is used for

deriving equations. C1 is the membrane capacitance of cell 1, R1 is the

membrane resistance of cell 1, I1 is the current injected into cell 1, V11 is

the voltage in cell 1 in response to current injection into cell 1. These

parameters are also defined with respect to cell 2. Rj is the resistance of the

gap junction linking the recorded pair of cells.
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could be represented by the value Ry ¼ Rn=i, where Rj is
the junctional resistance directly linking the dual-recorded
neurons, Rn is the resistance of a neuron and i ¼ 4
interposed neurons forming four parallel primary loops
(corresponding to blue cells in Fig. 1a) in the present
simulations. Given that the simplification of the 3D
network (Fig. 3d,e) produces

1=Rjp ¼ 1=Rj þ 1=Rb (8)

(according to summation of parallel resistances), then
expanding Rb in Eq. (8) and solving for Rj yields

Rj ¼ 1=2Rjp � Rn þ 1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

jp
þ 4Rjp Rn þ 4R2

n þ 4Rjp iRn

q
,

(9)

where the value of Rjp is obtained from Eq. (5) and the
value of Rn is estimated from the mean of R1p and R2p

obtained using Eqs. (6) and (7) (these two parameters are
used as estimates of Rn because they most closely reflect
properties of recorded cells that are coupled to surrounding
cells).
The accuracy of this mathematical model can be assessed
by applying it to recordings from the simulated 3D
networks of heterogeneous coupled cells. It can be seen
from Fig. 5 that the mathematical model accurately
estimated the junctional resistance between dual-recorded
cells defined in the 3D networks. Consequently, the
mathematical model (Eq. (9)) can be applied to real
network dual-cell recordings in order to estimate the
junctional resistance or conductance ð1=RjÞ between
recorded neurons even though they are embedded in a
network of coupled cells. The value of i in Eq. (9) must be
determined from anatomical analyses (Bahrey and Moody,
2003; Stewart, 1981) since electrophysiological recordings
cannot identify the number of neighboring cells providing
parallel primary loops for current flow between the dual-
recorded cells (corresponding to i ¼ 4 blue cells in Fig. 1a).
The error obtained by not accounting for the value of i is
shown in Fig. 6 by the exponential decline in Rjp with an
increasing number of these parallel primary loops. Re-
member that the calculations of junctional resistance in
previous studies of coupled cell networks, in fact, represent
Rjp (Fig. 3) since the calculations are based on the coupling
between a pair of cells without taking into account parallel
conductances through neighboring cells. Thus previous
studies provide accurate values of Rjp but how closely this
reflects Rj largely depends on the number of interposed
cells (i) forming primary loops.
Once the value of Rj is obtained then the junctional

current is simply obtained from the equation
I j ¼ ðVpost � VpreÞ=Rj , where V post ¼ V12 and Vpre ¼ V 11

during stimulation of cell 1 and V post ¼ V21 and V pre ¼

V22 during stimulation of cell 2.

3.3. Estimating membrane conductance

A similar procedure can be used to derive the resistance
of a recorded neuron which would equal the input
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Fig. 7. Estimating resistance of a recorded neuron embedded in a 3D

network of coupled cells. (a) Estimation of R1 using Eq. (10). (b)

Estimation of R2 using Eq. (11). The x-axes contain the estimated neuron

resistances and the y-axes contain the true neuron resistances defined for

the recorded neurons in the simulations. Each dot represents a single data

point from the 1000 simulations of networks with randomization of one to

three cell layers, neuron resistances from 24.5–55:5MO, and junctional

resistances from 200–4000MO.
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Fig. 6. Effects of increasing the number of primary loops (i) on the

combined direct and indirect resistance measured between the dual-

recorded cells (Rjp , dotted line) while the direct resistance (Rj , dashed line)

remained constant. The shaded area represents the error in calculating

junctional resistance when ignoring parallel primary conductance paths

through neighboring cells. The relationship between i and Rjp is based on

the circuit in Fig. 3c containing one primary loop with resistances Rx, Ry,

and Rz. According to the summation of parallel resistances, adding i

primary loops is equivalent to a single primary loop with resistances Rx=i,

Ry=i, and Rz=i. This primary loop can be simplified such that 1=Rjp ¼

1=Rj þ 1=Rb (Fig. 3d,e) where Rb is defined by the wye–delta conversion

equation in Fig. 3f. Given all primary loops have values Rx ¼ Rz ¼ Rj ¼

2000MO and Ry ¼ 40MO then the value of Rjp could be calculated for

i40 (when i ¼ 0 then Rjp ¼ Rj).
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resistance in the absence of coupling to neighboring cells.
By considering only those neighboring cells directly
connected to recorded cell 1 (yellow cell in Fig. 1), current
injected into cell 1 would flow to ground directly through
the resistance of cell 1 and indirectly through the combined
gap junction and neuron resistance of each neighboring
cell. Thus the input resistance of the recorded cell would be
the sum of the parallel resistances according to the
following relation: 1=R11 ¼ 1=R1 þ f ð1=ðRj þ RnÞÞ, where
R11 is the input resistance of cell 1 measured as the voltage
response divided by the injected current ðV 11=I1Þ, R1 is the
resistance of cell 1 which is sought, f is the number of cells
flanking or directly connected to cell 1 (there are 10 such
cells for the network in Fig. 1), Rj is the junctional
resistance between the recorded cells measured using
Eq. (9), and Rn is the resistance of each neighboring cell
which is again estimated from the mean of R1p and R2p

obtained using Eqs. (6) and (7). The value of R1 can be
calculated since all other variables are known. The same
procedure would be used to calculate the membrane
resistance of cell 2 ðR2Þ, so solving for the membrane
resistances of cells 1 and 2 yields

R1 ¼ R11ðRj þ RnÞ=ððRj þ RnÞ � fR11Þ, ð10Þ

R2 ¼ R22ðRj þ RnÞ=ððRj þ RnÞ � fR22Þ. ð11Þ

The accuracy of Eqs. (10) and (11) in predicting the true
membrane resistances of cells 1 and 2 in each of the 1000
simulated networks is displayed in Fig. 7. The estimates
were very accurate except for a few cases of higher neuron
resistances. Inspection of the network data revealed that
the lower accuracy occurred mostly for networks of one
layer of cells and for the combined conditions of high
neuron resistances and low gap junction resistances. Such
conditions would not be expected to be common in real
neural networks of coupled cells.

4. Discussion

This study showed that mathematical modeling could be
used to reduce the complexity of a biologically plausible
heterogeneous network of coupled neurons to equations
that provide relatively accurate estimates of the conduc-
tance directly between simultaneously recorded pairs of
neurons even though they are embedded in a network of
neurons electrotonically coupled by gap junctions. Further-
more, it was possible to extract the resistance provided by
an impaled neuron from the input resistance which reflects
the sum of parallel resistances through the neuron and
neighboring cells. The parameters of these equations only
require information available from real dual-intracellular
penetrations which allow electrophysiological recordings
and intracellular staining. It is expected that more accurate
equations could have been derived if one could go beyond
the typical limitation of dual-cell recordings and use
information from intracellular recordings of neighboring
cells with methods derived for inverse problems in electrical
networks (Curtis and Morrow, 2000; Strang, 1991).
A critical concept is that input resistance, measured by

dividing the voltage response by the injected current,
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derives from different components when measured in an
isolated neuron as opposed to a coupled neuron. In an
isolated neuron, the input resistance is due to the neuron
itself whose cell membrane provides resistance to current
flow. In a coupled neuron, the input resistance not only
reflects the resistance of the impaled neuron but also the
sum of the parallel resistances provided by the neighboring
cells to which it is electrotonically coupled. Consequently,
the steady-state electrical properties during dual-recordings
reflect the coupling of either two individual neurons or two
populations of neurons. The same equivalent circuit
(Fig. 4) and equations (Eqs. (5)–(7)) apply to both
situations but the meaning of the results are different.
The subscript ‘‘p’’ was added to the equations for
representing the coupling of two populations of neurons
rather than two individual neurons.

The problem was to reveal the individual neuron
properties from dual-recorded neurons embedded in a
network of coupled cells which provide indirect conduc-
tance via one or more neighboring neurons. A solution to
this problem was derived after discovering how the
circuitry of the network could be collapsed into an
equivalent two cell circuit (Fig. 3). By implementing the
reverse process, that is, expanding the two cell circuit
(Fig. 3e back to 3d), it was possible to reveal the direct
junctional conductance between the dual-recorded neurons
and derive its measurement using Eq. (9).

The accuracy of this equation was tested against a
simulated 3D network of coupled neurons with hetero-
geneous electrical properties derived from real neurons.
The input resistances of pyramidal cells that were chosen to
represent the resistances of neurons do not appear to be
contaminated by electrotonic coupling to neighboring cells
(Deans et al., 2001; Galarreta and Hestrin, 2001; Theis et
al., 2003). However, the gap junction resistances reported
and used in the present study (Galarreta and Hestrin, 1999;
Gibson et al., 1999; Tamas et al., 2000) represent the
variable 1=Rjp which is contaminated by indirect conduc-
tance through neighboring neurons of the network. The
extent of this contamination in the reported gap junction
resistances is unknown. Based on Eq. (9) it would largely
be dependent on the number of interposed cells (i) forming
parallel primary conductance loops (corresponding to blue
cells in Fig. 1) between the dual-recorded neurons. This
number cannot be revealed from dual-cell recordings and
therefore it must be determined from some other means.
The most practical method would be to inject intracellular
tracers and map its spread through gap junctions into
neighboring cells (Bahrey and Moody, 2003; Stewart, 1981)
in order to reveal the connectivity of the network and
provide an estimate of the number of neurons providing
indirect primary conductance paths between the dual-
recorded cells. Theoretically, multielectrode recordings
could be used to estimate the connectivity of the network
but this is either impractical or impossible at the present
time. It is for this same reason that the validation of our
mathematical models could not be done in live tissue.
Consequently, a simulated 3D network was the best
method available to test the accuracy of Eq. (9) in revealing
the direct junctional conductance between dual-recorded
neurons. As was shown in Fig. 5, this equation provided
very accurate estimates. This high level of accuracy was
obtained from a simple mathematical model using the
voltage responses to current injection in dual-recorded cells
and the number of neighboring cells bridging them to form
parallel primary conductance loops. Since the voltage
responses in neighboring cells are unavailable in dual-cell
recordings, the model assumed that the neuron and
junctional resistances of the recorded and neighboring
cells were a function of the electrical properties of the
recorded cells. Despite its conciseness, the model was very
accurate in estimating the junctional resistance between
recorded cells in networks formed of widely heterogeneous
electrical properties. This primarily resulted from the
overwhelming contribution of the shortest conductance
paths (i.e. parallel primary loops) between the dual-
recorded cells. As described in the results, the contribution
of indirect conductance paths decreased as the number of
constituent cells increased.
A similar modeling approach was used to extract the

resistance of the neuron from the input resistance which
reflects both the resistance of the neuron and the resistance
of the parallel paths through gap junctions leading to
neighboring neurons. Here again we used the simplification
whereby only the cells directly coupled to a recorded
neuron were considered and their resistances were assumed
to be a function of the electrical properties of the recorded
cells. This led to simple models of the dual-recorded cells
(Eqs. (10) and (11)) with a parameter ( f ) representing the
number of flanking neurons (neighboring neurons directly
coupled to a recorded neuron) that could be obtained from
the same histological analyses mentioned earlier. If gap
junction blockers (Jahromi et al., 2002) are very
specific and do not affect other channels, then one would
expect the input resistances under gap channel block to
correspond to the neuron resistances estimated by Eqs. (10)
and (11).
The estimated neuron resistances were less accurate at

the higher values defined in the networks (Fig. 7). Closer
inspection of the networks revealed that the accuracy
decreased mostly with one layer of cells and under the
combined conditions of high neuron resistances and low
gap junction resistances. These combined conditions in the
networks likely represent extreme cases rarely observed in
real tissue. First, real neurons in a network would most
likely be surrounded by more than one layer of cells.
Second, the input resistance of neurons tends to decrease as
the number of layers increases. Third, the reported values
of gap junction resistances, which were used in this study,
underestimate the direct junctional resistance between real
cells because corrections were not made for the effects of
indirect conductance through neighboring cells. Thus the
combined conditions of high neuron resistances and low
gap junction resistances used in our simulations would not
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be expected to be commonly observed in real neural
networks.

This mathematical model, which was accurately applied
to simulated neurons, should equally apply to real neurons.
This is because the steady-state properties of neurons were
simulated by their well known electrical equivalents
(Bennett, 1966, 1977) using the reliable SPICE software
to accurately measure the voltage responses to injected
currents. A wide range of biologically relevant parameters
were simulated in 1000 neuronal networks with up to three
layers of cells surrounding the recorded cell-pair. Such a 3
layered network included 392 cells interconnected by 1603
gap junctions. Therefore the electrical properties of the
simulated networks would be expected to overlap the
steady-state responses of a real network of coupled cells as
long as its features do not fundamentally depart from those
in our model. Our model was developed from a 3D mass of
coupled cells where dual-recorded cells were found to be
largely affected by the single layer of cells surrounding
them (Fig. 2) which included the interposed (i) and flanking
( f ) cells that were used to provide relatively accurate
estimates of junctional resistance ðRjÞ and neuron resis-
tances (R1 and R2), respectively. This dominance of the
interposed and flanking cells over more distant unrecorded
neurons would be due to the exponential drop in current
flow through longer cellular paths between the dual-
recorded cells because of the high gap junction resistances.
These junctional resistances would be expected to be even
higher in real neurons than in our simulations which used
the published values contaminated by parallel conduc-
tances and representing Rjp . Since our model ignored
details of the connectivity of other unrecorded cells in a
simulated network, the fundamental features to identify in
real networks would be the interposed and flanking
neurons. Assuming the numbers of interposed (i) and
flanking ( f ) cells do not vary significantly within the same
tissue, these values could be obtained in separate experi-
ments to the ones providing the electrophysiological data.
Otherwise, tracer injections could be made directly into the
recorded neurons. An important assumption of our model
was that all cells of a coupled network were isopotential at
rest. This is reasonable under conditions where there are no
membrane potential changes from pacemaker or synaptic
conductances. Otherwise, the effects of differences in
resting potential are especially important at high gap
junction resistances in isolated pairs of coupled cells
(Veenstra, 2001) and possibly also in coupled cell networks.
Similarly, our model assumed that the hyperpolarizing
stimulus did not trigger voltage-dependent conductances
since these would confound the resistance estimates.
Furthermore, our model assumed that gap junctions were
at their typical location in cell bodies of dual-recorded cells.
The effects of gap junctions in neuron branches on
estimates of junctional resistance has not yet been
examined for dual-recorded cells alone, as defined pre-
viously (Bennett, 1966, 1977), or for cells embedded in a
network of coupled cells. The effects of such fundamental
departures from our model on estimates of the electrical
properties of coupled cell networks are open to future
work.
One interesting future prospect for revealing properties

of coupled cell networks is the evolving technology of
optical mapping of electrical activity in brain slice
preparations (Grinvald and Hildesheim, 2004; Mochida
et al., 2001; Schemann et al., 2002). This imaging is based
on voltage-sensitive dyes which bind to the external surface
of cell membranes and transform changes in membrane
potential into optical signals that provide high spatial and
temporal resolution of electrical activity (Grinvald and
Hildesheim, 2004). From Figs. 1 and 3, it can be seen that
derivation of R1, R2 and Rj required a description of the
resistances in the network. Optical signals provide an
indirect measurement of intracellular voltage but this can
only be converted into resistance if some measurements or
assumptions on current flow are made. Nevertheless,
optical mapping could at least provide some qualitative
measure of the relative accuracy with which our model
could estimate electrical properties of coupled cell net-
works. The range of estimated values for any single true
value in Figs. 5 and 7 is due to the heterogeneous
properties of a simulated network being estimated by a
model which assumes homogeneous properties. If unrec-
orded neurons in the simulations were truly homogeneous
then there would have been a tight match between true and
estimated values. Homogeneity of electrical properties
would be expected to yield optical responses that exhibit
an even drop in amplitude with distance from a stimulated
cell. Whether the distribution of optical responses could
provide a qualitative measure of the relative accuracy of
estimated resistances would depend on the ability of the
optical technology to accurately resolve the intracellular
activity of individual cells in the network. It could be
difficult for a 2-D optical sensor to resolve activity from a
3-D network of cells since there is the theoretical possibility
that the signal derives from the sum of several underlying
cells. Further studies would be required to clarify many of
these uncertainties.
In conclusion, biologically realistic networks were

simulated and used to derive mathematical models that
provided relatively accurate estimates of the resistances of
dual-recorded neurons and of the junctional resistance
directly linking them. The procedure essentially involved
applying Eqs. (5)–(7) and then incorporating the results
into Eqs. (9)–(11). An accompanying browser-based
program (http://slice.med.uottawa.ca/public/
GapA1Pgm) is provided to simplify use of these equations in
estimating neuron and junctional resistances from dual-cell
recording data.
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