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INTRODUCTION

"The objectives of comparative physiology are: (1) to describe the diverse ways 
which different kinds of animals meet their functional requirements; (2) to elucidate
evolutionary relationships of animals by comparing physiological and biochemical
characteristics; (3) to provide the physiological basis of ecology . . . ; (4) to 
attention to animal preparations particularly suitable for demonstrating specific
functions; and (5) to lead to broad biological generalizations arising from the use
of kind of animal as one experimental variable." (337, p. v)
"Physiological ecology is concerned with the way that physiological traits fit
organisms for the ecological circumstances in which they live, so there is
always, by definition, an implicit evolutionary component to it." (67, back
cover)
"The field of physiological ecology...is...fundamentally evolutionary to the extent
that it considers how organisms came to be the way they are and how they
might change in the future." (39, p. 251)

The 1950 volume edited by Prosser outlined a broad agenda for comparative
physiology (337). The purpose of the present paper is to alert physiologists
to the development of a new subdiscipline, evolutionary physiology, which
incorporates much of what is contained in Prosser’s five objectives (see
above) and a substantial fraction of what is generally termed physiological
ecology (39, 61, 62, 67, 68, 135, 136, 155, 391, 421, 422). Following
this introductory section, we highlight several crosscutting themes in evo-
lutionary physiology, then describe and illustrate five major approaches for
addressing such questions (ranging from quantitative genetics to interspecific
comparison), and close with some ideas for integrating these approaches.
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580 GARLAND & CARTER

Our paper is selective in its coverage, and we devote little space to Prosser’s
third objective, i.e. ecological implications of physiological and biophysical
variation and evolution (see 1, 11, 24, 25, 65, 78, 81, 113, 114, 119, 137,
153, 189, 205, 209, 212, 220, 223, 229, 232, 236, 240, 241, 274, 283,
284, 310, 313, 320, 327, 329, 330, 346, 352, 377, 394, 405, 407, 422,
423, 428, 432, 431, 444).

Modern evolutionary physiology seems to have its origins in the late
1970’s, which witnessed debates concerning the metabolic and thermoreg-
ulatory status of dinosaurs and mammal-like reptiles (35, 42, 43, 101, 102,
303,368,383,417). The next major impetus came from attempts to integrate
quantitative genetic perspectives into behavioral and physiological ecology
(9-11). These efforts were reflected in explicit attempts to document the
magnitude and causes of physiological variation among individuals within
populations (14, 15, 28, 30, 31, 33, 56, 58, 114, 143, 148, 149, 160,
161, 166, 167, 171, 189, 190, 216, 217, 226, 228, 256, 257, 311, 329,
376, 377, 401, 405, 426, 431, 462, 463), and whether this individual
variation was correlated with behavior, life history traits, or ecology (56,
81, 143, 161, 190, 227, 249, 306, 311, 329, 332, 377, 401, 405, 435,
439, 447, 462, 463). Other studies tested whether individual variation in
physiological traits had any genetic basis (55, 57, 58, 150, 154, 157, 158,
226, 260, 278-281,402, 410, 424, 427), or could be molded by laboratory
selective-breeding studies (37, 40, 41, 87, 179, 215, 218, 219, 278, 279,
360-362). Most recently, phylogenetically-based comparative studies have
come to the fore (27, 50, 88, 164, 165, 213, 218, 265-267, 274, 336,406,
437). Interestingly, the use of physiological information for reconstructing
evolutionary relationships is not presently receiving much attention (but see
21, 289, and compare 106, 364).

Thinking about evolution is not new to physiologists (95, 135, 155,
242-245,290, 316, 337, 371,383,456, 457,460, 464; references therein).
Nonetheless, at the risk of failing to appreciate sufficiently the accomplish-
ments of past evolutionary-thinking physiologists, we see contemporary
evolutionary physiology as fundamentally different from most of what came
before. Many current practitioners began their studies as evolutionary biol-
ogists, or were formally trained in both evolutionary biology and physiology.
Others represent physiologists who have moved forcefully in an evolutionary
direction, often taking up formal collaborations with evolutionary biologists.
Whatever their genesis, today’s evolutionary physiologists try to do state-
of-the-art physiology and state-of-the-art evolutionary biology; the evolu-
tionary interpretation is no longer an afterthought. As in behavioral ecology
(345), part of this increase in evolutionary rigor came in response to Gould
& Lewontin’s (175) criticisms of "the adaptationist programme" (36, 135,
262). Evolutionary physiologists now use a range of tools to test a priori
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hypotheses. Previously, evolutionary conclusions usually were inductive and
followed the accumulation of considerable data (e.g. the basal metabolic
rates of many species); such an "encyclopedic" approach (135) has been
criticized as "stamp collecting." The switch from an inductive to a hypo-
thetico-deductive model of analysis reflects some maturity in the field (61,
62, 135, 364); it is difficult to phrase non-trivial a priori hypotheses about
processes until patterns have been thoroughly documented.

The 1987 publication of the results of a National Science Foundation-spon-
sored workshop on "New Directions in Ecological Physiology" (135), with 
emphasis more evolutionary than ecological (e.g. 134), heralded the field (see
also 34, 35, 39, 61,62,155,214). The "Evolutionary Physiology" symposium
held at the 1993 meetings of the Society for the Study of Evolution helped to
advertise the field to nonphysiologists, and the formation in 1992 of a National
Science Foundation panel in "Functional and Physiological Ecology," now
renamed "Ecological and Evolutionary Physiology," will help to maintain this
marriage (cf 135, 136, 237). Although current practitioners have various
origins, many of the next generation will begin their graduate careers aspiring
towards becoming evolutionary physiologists.

EVOLUTION FROM A PHYSIOLOGICAL PERSPECTIVE
AND VICE VER-SA

Physiologists are interested in how organisms work (231, 380). A subset
of physiologists also wants to know why organisms are designed to work
in particular ways. Unless one assumes special creation of all organisms,
an understanding of such why questions requires an evolutionary perspective
(134, 299,308,460). In this section we briefly review some of the recurring
evolutionary questions and related principles that have been considered in
the physiological literature. The following five sections cover complementary
approaches to studying physiological evolution.

How Do Different Kinds of Organisms Work?
Physiologists have always sought to discover general principles of organismal
function, such as homeostasis, or the scaling of metabolic rate with body
mass (25, 32, 100, 134, 290, 337, 339, 456, 457). Faced with the
tremendous diversity of living organisms, both in terms of numbers of
species and their behavioral and ecological variation, physiologists have
asked what general principles apply to all or most organisms, how common
are exceptions to the rules, and whether there exist multiple solutions to a
given adaptive problem, such as life in hot, arid environments (24, 25).
Because all organisms on this planet are descended from common ancestors
(and perhaps from a single common ancestor), general biological principles
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(e.g. use of DNA as a genetic material; structure of eukaryotic cell mem-
branes; responses to changes in ambient temperature by mammals) are likely
to occur in a strongly hierarchical--that is, phylogenetic--pattern.

Extremes of Adaptation, Model Species, and the August
Krogh Principle

Identification of similarities among species allows the possibility that certain
species may be able to serve as model systems for studying basic physio-
logical processes (33, 62, 100, 456, 457). Krogh noted that for any
physiological principle there exists an organism especially well suited for
its study [259: e.g. giant axons of squid, ’gas windows’ of crab legs (288);
scallop muscles (292); rattlesnake tail muscles (375)]. Similarly, physiolo-
gists (including plant physiologists, 310) have long been aware that organ-
isms living in extreme environments are especially likely to exhibit clear
examples of evolutionary adaptation because of the presumably intense past
selective pressures (24, 25, 155, 380). Organisms adapted to extreme
environments can serve to illustrate the range of evolutionary possibilities
(62, 456, 457), but we must be mindful that the organisms alive today--and
hence available for physiological study--are but a small fraction of what
has existed. Thus there is no guarantee that we can observe the range of
possibilities even among the most extreme of living species. For example,
the largest terrestrial mammal that ever lived (Baluchitherium) was much
larger than living elephants, or mammoths, or mastodons (references in
165). Although the proposition is seductively appealing, little evidence exists
that today’s species are any better adapted than those of a million or 100
million years ago (174, 224, 225). We must also remember that behavioral
adaptation can go a long way towards ameliorating the need for physiological
evolution (24, 25, 52, 209). In any case, species displaying extreme
development of a particular physiological property can also prove useful as
model systems (e.g. locomotor abilities: 153, 231).

Are Species Differences in Physiology Adaptive?

"Four legs may be optimal, but we have them by conservative inheritance, not
selected design." (173, p. 44)

The neo-Darwinian synthesis (77b, 144, 350), including its emphasis 
natural selection as the major driving force in evolution, led inevitably to
the view that virtually all features of organisms are adaptive. Comparative
physiologists have routinely viewed any differences among species as
adaptations to their different life styles (60, 118, 126, 133, 172, 202, 290,
337-339, 382, 425,449, 455,467), and have provided many examples that
clearly represent strong evidence for adaptation (32, 95, 371; see also 6).
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Nonetheless, not all features of organisms represent adaptations to current
environmental conditions (26, 36, 59, 175, 187,272, 275,454, 455,460).
Some, for example, represent simple inheritance from ancestors. A current
thrust in evolutionary biology aims to develop rigorous methods for studying
adaptation (see below), including ways to formally test hypotheses about
the adaptive nature of organismal features (1, 6, 26, 50, 51, 59, 175, 182,
187, 239, 263, 265-267, 274, 275, 278, 307, 345, 349, 350, 394, 459).

The operational definition of evolutionary adaptation is quite controversial
(36, 182, 345), but revolves mainly around the distinction between origin
and maintenance of a trait. Some traits are maintained by current selection,
but did not originate in response to the same selective pressures. For
example, as noted by Darwin, the sutures between bones in the mammalian
skull may now be adaptive for allowing the birth of relatively large-brained
offspring in some species (humans), but they arose long ago in evolutionary
history (144, p. 257). Other traits arose because of natural selection, but
are now present for other reasons, such as "phylogenetic inertia," which
may be attributable to developmental or genetic constraints in addition to
selection (e.g. see 187). Thus the origin (evolutionary history) and/or 
current maintenance (phenotype existence sensu 345) of a trait may 
adaptive, and both are worthy topics of study. Phylogenetic comparative
studies of interspecific variation can address historical origins, and mea-
surement of selection within populations can address current maintenance
(see below).

Imprecise usage of the term adaptation (36, 345, 454, 455) has led 
many confusions in the physiological literature:

"Physiologists have used the term ’adaptation’ in two entirely different ways.
First, adaptation is used to describe compensatory, short-term changes to
environmental or organismic disturbance. Such control systems are phenotypic
and reveal the plasticity of physiological systems generally. Second, adaptation
is used in the genetic and evolutionary sense of describing a trait or feature
that has been cemented into the genotype through the pressure of natural
selection. Comparing the acclimatory changes in erythrocyte phosphates of fish
or humans with traits like the high-affinity Hb systems of the high-altitude-
dwelling llamas, amphibians, and so on is clearly a category mistake." (454,
p. 244)

Regardless of methodological or semantic debates, studies of adaptation will
continue their prominence in both evolutionary biology and comparative
physiology. Physiology can contribute something special to the study of
adaptation: an understanding of mechanism (50, 70, 95, 239, 367, 371).
An understanding of biochemical and biophysical mechanisms can help to
define what is theoretically possible for organisms to achieve (the pheno-
type-set sensu 345), if selection were to favor it, and thus aid in the
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identification of constraints on evolution [30, 71, 72, 100, 342 (but see
302); 367, 388, 396, 459, 465].

Are Organisms Optimally Designed?

"We do not think a functional explanation complete until we can show that a
structure or movement is optimal (by some plausible criterion) for the proposed
ft~nction." (5, p. 237)

In addition to presuming that most if not all features of organisms represent
adaptations, a common perspective in comparative physiology is to view
organisms as more-or-less optimally designed (3-5, 363). Reasons why
organisms may not be optimally designed and why optimality perspectives
in general may not be the best way to study evolution have been discussed
at length elsewhere (24, 25, 36, 77a, 79, 92, 124, 175, 182, 321, 361,
459; but see 241, 354, 390). With regard to this debate, we emphasize two
points. First, a fundamental reason for a lack of optimal solutions to adaptive
problems is that natural selection--the only known mechanism for adaptive
phenotypic evolution---can only work on existing phenotypic variation that
is at least partly heritable; thus some possible solutions to selective problems
will most likely never be accessible within a given lineage (36, 175, 222).
Second, a major problem with testing optimality predictions is the lack of
a suitable null model (see 182); using the optimal solution, e.g. perfect
matching, as a null model (see 109 on symmorphosis), is counter to the
way most biological and statistical inference is performed, e.g. no matching
as a null model.

The concept of symmorphosis is a recent example of an optimal design
perspective on animal morphology and physiology (451, 452). Favorable
discussions and criticisms of symmorphosis have appeared elsewhere (35,
p. 13; 65, 108-110, 117, 163,231, 273, 381, 392), and casual references
appear frequently (35, 93, 134, 209). Qualitatively, the likelihood of 
match between biological structures and their functional requirements is
intuitively obvious; exactly how good this match should be is less obvious.
Moreover, adequacy or sufficiency, rather than optimality, is the most likely
evolutionary outcome (11, 24, 25, 145, 147, 460, p. 17) because natural
selection tends to maximize relative, not absolute, fitness.

Trade-offs and Constraints: Why Do Traits Evolve in a
Correlated Fashion?

Constraints or trade-offs can be identified and studied at several different
levels of biological organization (12, 30, 67, 173, 218, 302, 374, 396,
459). The environment and its associated selective regime (26, 275) impose
constraints on what types of physiological variants and on what kinds of
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organisms can survive and reproduce, both within populations at the level
of individual variation, and over long term evolutionary time (258). Although
selection sets ultimate limits on the dimensions of an allowable multidimen-
sional phenotypic space, organisms will not necessarily ever reach those
limits. Instead, fundamental properties of biological systems can preclude
some variants, such as titanium in tortoise shells. Constraints set by inherent
organismal properties can be elucidated through biochemistry and physiology
[30, 71, 72, 342 (but see 302), 374, 388, 396], or through developmental
(465) biology. Alternatively, they can be evidenced as a lack of genetic
variation in certain phenotypic dimensions. For example, non-zero genetic
correlations are often interpreted as indicating evolutionary constraints (12),
but genetic correlations (see below) can sometimes facilitate response 
natural selection (154, 279) and can themselves be molded by selection
(55-58); moreover, their interpretation can be very complicated (77a, 354).
Wherever a constraint is identified, a fundamental question is whether it is
absolute or could possibly be overcome (e.g. by a new mutation); physiology
should address such questions.

What is the Origin of Allometric Relationships?

Allometric patterns and equations describing them have long fascinated
physiologists (65, 66, 149, 187, 196, 274, 313, 320, 346, 351, 381,414,
419, 450). Within a clade, and on a log-log scale, variation in body mass
can explain more than 90% of the variation in a variety of physiological
traits, such as basal metabolic or heart rate. Even with such a high coefficient
of determination (r2)~ variation of individual points about a linear regression
can be substantial, both among individuals within species (38, 148, 160,
226) and among species (151, 304, 342, 399, 400). However, not 
physiological traits vary strongly with body mass; examples include hema-
tocrit, blood oxygen carrying capacity, and normal body temperatures of
birds and mammals (160, 336, 381).

Ignoring variation about a regression line, an obvious question is whether
the slope of the line itself (the allometric scaling exponent), or its intercept
(196), represent general physical and biochemical constraints placed 
organisms as opposed to adaptive evolutionary responses. For example,
Weibel et al (452) categorize variation among species as "allometric...re-
flect(ing) intrinsic properties of the organism, particularly the size depen-
dence of rate constants, such as stride frequency, heart rate, etc" or as
"adaptive...relat(ing) to behavioral traits and to the ecological conditions 
which the species are adapted by evolutionary selection..."

The dichotomy between allometric and adaptive variation is imprecise
(and analogous to the quantitative genetic problem of trying to separate
genetic from environmental effects when genotype-by-environment interac-
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tion exists). Interspecific allometric patterns can themselves be adaptive in
the sense that they are maintained by natural selection. In some cases, the
adaptiveness of allometric relationships is subject to experimental evolution-
ary tests. For example, Weber (448) observed a fairly tight allometric
relationship between wing proportions and body size anaong populations and
species of Drosophila. Did this represent an ineluctable con- straint on the
shapes of fruit flies that could be produced? Did the existing phenotypic
diversity indicate what was possible? To test this, Weber artificially selected
on wing proportions and succeeded in producing lines of flies that exceeded
the limits seen in nature (GS Wilkinson, personal communication, has done
similar experiments with another species of fly). Thus the allometric pattern
seen in nature did not reflect an unconditional genetic or developmental
constraint on the shape of flies. Instead, it must have been maintained by
natural selection.

Artificial selection experiments (see below) will not be practical for
studying most examples of allometry in physiological traits. Another way
to alter allometric relationships, one that relies on proximate rather than
ultimate mechanisms, is "allometric engineering," as applied by Sinervo
and colleagues to lizard eggs to alter characteristics of hatchling lizards
(393-396). Alternatively, an understanding of physiological mechanisms can
help in determining whether a particular pattern of phenotypic variation or
covariation (e.g. an allometric relationship) represents what could possibly
exist or just what selection has allowed.

QUANTITATIVE GENETIC ANALYSES

"...species represent the product of evolution, whereas the process can only be
studied within specics....For the physiological ecologist, heritability is the most
useful piece of genetic !nformation since it is both descriptive and predictive."
(278, p. 497)

Most traits studied by physiologists show continuous variation (body tem-
perature, metabolic rate, blood pressure, blood hemoglobin levels, enzyme
activites). Quantitative genetics was developed early in this century for
studying the genetic basis of traits that showed more-or-less continuous, as
opposed to discrete, variation (references in 9, 10, 13, 51, 58, 127, 132,
180, 183, 261, 262, 297, 323, 453). The general assumption is that such
traits are affected by alleles segregating at many loci and that each locus
has a relatively small effect on the phenotype. Quantitative genetics has a
long history of application in plant and animal breeding, but a recent revival
for application to problems in evolutionary biology began in about 1980
(14, 260-262, 357, 402).
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Quantitative genetics uses observed phenotypic variation among individ-
uals of known relationship (e.g. parents and their offspring, full- and
half-sibs) to estimate the relative magnitudes of genetic and environmental
effects on the phenotypic variation observed within a population (i.e.
variation among individuals). Thus it traditionally does not attempt to identify
the effects of variation at single gene loci. Instead, it allows estimation of
summary statistics, such as heritability, that are both descriptive and pre-
dictive. When more than one trait is studied, estimates of shared genetic
and environmental effects are available. Quantitative genetics is actually a
broad collection of tools that can address topics including whether the
phenotypic variation in a single trait (e.g. differences in resting blood
pressure among individuals within a population) is to any extent genetically
based; whether selection on a trait could lead to improvement; whether
different traits are genetically coupled such that selection on one would
necessarily produce a correlated response in another (including the nature
of allometric relationships, e.g. 448); how many genes are responsible for
the phenotypic differences between populations of the same or of closely
related species; whether one or more "major genes" are segregating within
a population; whether gene action is entirely additive or includes dominance
or epistasis; and the direction and magnitude of past natural selection. Recent
marriages of quantitative genetics with molecular marker techniques are
allowing the actual identification of specific loci with relatively large effects,
termed quantitative trait loci (230, 324).

Only if a trait under selection is to some extent genetically based will
natural selection result in evolution. The equation, R = he s, is used to
describe the evolutionary response of the mean value of a single phenotypic
trait to natural (or artificial) selection, where R = the genetic response 
selection, s = the selection differential (difference in means of selected and
unselected individuals), and a =the narrow-sense heritability (r atio of
additive genetic variance to total phenotypic variance, ranging between zero
and one). Narrow-sense heritability can be estimated by measuring the
phenotypes of related individuals, such as offspring and their parents (13,
51, 58, 132, 180, 297, 323, 410, 453), or through artificial selection
experiments. A multivariate version of the foregoing equation substitutes a
matrix of additive genetic variances and covariances for h2 (13, 51, 56-58,
261, 262).

Physiological traits are highly susceptible to a variety of environmental
effects, both acute and chronic (e.g. acclimation and acclimatization): "Much
of the intraspecific physiological variation encountered by physiologists is
a result of short-term physiological acclimation..." (62, p. 203). Therefore,
one might expect that physiological traits would often exhibit low or even
zero narrow-sense heritabilities. Until recently, comparative physiologists
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simply did not address such questions empirically (e.g. discussion following
Reference 25). However, available empirical studies indicate that physio-
logical traits often do show substantial heritabilities (37, 40, 41, 58, 127,
132, 158, 178-180, 203-205, 215, 219, 260, 278-281; 312, 328, 355,
360-362, 402, 410, 420, 461). Some measures of locomotor performance
in lizards and snakes (55, 57, 150, 226, 424, 427) and even maximal
oxygen consumption in garter snakes (157) seem to show very high
heritabilities (0.5~3.9) based on comparisons of families of full-siblings.
Unfortunately, these estimates can be inflated by non-additive genetic effects
or maternal effects, and more sophisticated breeding designs are required
to estimate narrow-sense heritabilities. Other physiological traits, such as
basal metabolic rate in house micc (278, 279; T Garland, Jr et al, unpub-
lished), show very low (< 0.05) narrow-sense heritabilities.

Genetic correlations are the two-trait analogue of heritabilities; they
indicate the extent to which the phenotypic covarianee of two traits is
genetically based. Although genetic correlations can be caused by linkage
disequilibrium (for example, from physical linkage of genes), pleiotropy 
a more typical cause. Pleiotropy simply refers to one gene affecting more
than one trait. Shared biochemical, physiological, or developmental path-
ways are likely to be reflected as pleiotropic gene action. Thus genetic
correlations may be particularly interesting to physiologists because of what
they can suggest about physiological mechanisms (10, 279, 360). Con-
versely, knowledge of physiological mechanisms can be used to predict
genetic correlations (154, 318). For example, Garland (150) predicted 
necessary trade-off between speed and stamina, based on the fast-twitch,
slow-twitch dichotomy (an oversimplification) of muscle fiber types. 
contrast, the genetic correlation estimated from measurements of full-sibling
families of garter snakes was actually positive (for possible explanations,
see 154, 436). Rather than constrain, this positive correlation could facilitate
genetic response if natural selection favored increased overall locomotor
abilities (150, 154, 166; cf 279, 360). Dohm & Garland (115) looked 
differences in developmental timing to predict genetic correlations between
numbers of scales in different regions of a snake’s body; empirically, this
prediction was only partially supported. In D. melanogaster, artificial
selection on desiccation resistance increased longevity and depressed early
fecundity both in stocks that were originally selected for delayed reproduction
and in control lines (360, 362). Other physiological performance characters
also responded to these selection regimes, including flight duration and
ethanol tolerance (increased by desiccation but not by starvation selection).
Graves et al (179) studied the underlying mechanisms and found that
desiccation tolerance was reduced substantially in flies depleted of glycogen
reserves by flight in both selected and control lines; thus variation in the
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amount of glycogen reserves was at least partly responsible for the correlation
between seemingly unrelated physiological traits. This is an example of how
antagonistic pleiotropy between genes that have differential effects on early
fitness can create physiological correlations observed during selection.

Both heritabilities and genetic correlations can be used to predict responses
to selection, although the number of generations over which such predictions
will be accurate depends on the constancy of the genetic parameters (12,
51, 132, 261). Traits with low heritabilities are often inferred to have been
subject to intense past selection, although a number of tenuous assumptions
are involved (51, 158). The presence of dominance or epistasis can also 
used to draw inferences about how past selection has acted on a trait (54,
132, 158,193,197,279,297). To investigate the nature of genetic variation,
such as whether it is entirely additive or includes dominance or epistasis,
crosses of selected lines, inbred lines, subspecies, or even~closely related
species can be used (278, 279, 297, 347). Such crosses also form the basis
for estimating the minimum number of independently segregating genetic
factors required to account for a difference in phenotypic mean (469).

ARTIFICIAL SELECTION EXPERIMENTS

Selection experiments are one form of genetic manipulation (51, 127, 132,
180, 183, 200, 201, 297, 323, 353, 453) that has intuitive appeal for
evolutionary physiologists. They are in some sense more natural than are
more modern alternatives such as the production of transgenic organisms
(136, 263; J Breslow, this volume; M Paul et al, this volume). Of course,
selection in the laboratory cannot entirely mimic selection in nature because
the former generally involves much more specific targets of selection (single
characters), higher selection intensities (and often truncation selection),
smaller populations, and much shorter time scales (360, 361,397), although
these limitations do not necessarily apply to study organisms such as
microorganisms.

Two general kinds of selection experiments can be distinguished (360).
Traditional artificial selection involves laboratory or barnyard populations
in which each individual in each generation is scored for some phenotypic
trait (or combination of traits) of interest. Some top or bottom percentage
of individuals from the distribution of phenotypic scores is then selected as
the parents for the next generation; this is termed truncation selection (for
physiological examples, see 74, 90, 91,203-205,215,378). Variations on
this theme are used routinely in plant and animal breeding, such as taking
at least one male and female from each family to reduce inbreeding (132,
200, 201, 297, 353: e.g. 278, 279). In laboratory natural selection, freely
breeding populations are exposed to intentionally altered environmental
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conditions, such as different temperatures, or to a laboratory or other
environment that is novel as compared with nature (22, 23, 37, 40, 41,
219, 269, 362, 420; references therein), or to husbandry conditions changed
so as to favor altered demographic schedules, such as delayed reproduction
(179, 360-362; references therein).

Artificial selection can be a sharper experimental instrument because it
is more precise and allows one to select a particular physiological trait (cf
36, 218, 219, 360). It is also useful for estimating realized heritabilities
and genetic correlations (132, 200, 201, 261, 278, 279, 297, 323, 353).
Laboratory natural selection, on the other hand, may allow clearer insight
as to what might occur in nature; only the environment is specified, and
the adaptive solution is left up to the organism (36). In theory, either
protocol can yield multiple solutions; in practice, the number of ways in
which a selective problem will be solved in a particular organism is an
empirical issue that has been little studied.

Selection experiments will reveal traits that evolve as correlated responses,
thus indicating the interdependence of aspects of the phenotype (51, 278,
279). For example, artificial selection on maximal sprint running speed
might divulge that leg length evolved as a correlated response. Such a result
would suggest that leg length was causally related to speed (6). Our
laboratory is currently conducting artificial selection for voluntary wheel-
running behavior in mice and will monitor correlated changes in physiolog-
ical and hormonal traits.

Mechanistic inferences derived from correlated responses to selection can
be greatly strengthened by subsequently doing the converse experiment; for
example, selecting directly on leg length to see if sprint speed evolves as
a correlated response. Experiments of this nature have been done on aging
and its correlates in D. melanogaster (179, 358, 360-362, 384), and this
genetic model species has served as subject for a number of other long-term
selection experiments involving physiological characteristics (128, for 250-
300 generations: some bacterial selection experiments have exceeded 2,000
generations, 269). In these selection experiments, replicate control and
selected lines are required (i.e. at least two of each) in order to make
inferences about correlated responses (194, 279,362). In general, the design
of selection experiments is complicated (see references cited herein).

Some physiological traits are too difficult to measure on hundreds of
individual organisms each generation. Some measurements may not be
sufficiently reproducible to allow effective artificial selection. Others require
sacrifice of the organism (e.g. heart size, although even this might be
accomplished nondestructively with ultrasonic imaging techniques). For traits
that require destructive sampling (e.g. brain mass: references in 261),
artificial selection is still possible, for example, through the use of sibling
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selection (see 132, 297). But many physiological measurements can 
automated (215), or are relatively simple; mice, for example, have been
successfully selected for hematocrit (378) and for thyroid function (74).

An interesting question for physiologists is whether selection yields
repeatable results at the level of physiological mechanism. If selection to
increase some organismal trait is imposed on several different replicate Dines
drawn from the same homogeneous base population, does the trait increase
via the same physiological or morphological mechanism? For example,
would all lines of mice selected for higher sprint speed respond with an
increase in leg length, or an increase in the percentage of fast twitch muscle
fibers, or an increase in muscle mass? Alternatively, would different solu-
tions appear in each line? The optimality perspective on physiological
evolution might suggest a single solution (but see 408), as appears to have
occurred in early comparisons between stocks of D. melanogaster selected
for delayed reproduction (276, 357). Most geneticists and evolutionary
biologists, on the other hand, would not be surprised to see multiple solutions
and unpredictable responses (82, 90, 91, 179, 203, 204, 269, 299, 319,
362); in the jargon of quantitative genetics, the answer will depend on
whether genetic correlations between the trait being selected and other traits
remain the same in all replicate selection lines. If several lower-level traits
change in response to organismal selection, then another intriguing question
is whether they all change in parallel (as symmorphosis would suggest: cf
134), or one at a time (suggesting a sequential series of limiting factors).
A third question of interest is whether evolution follows the principle of
"last hired, first fired." That is, if one selects for improved performance,
then relaxes or reverses selection, do the mechanistic components decrease
in the same order as they increased?

Evidence from D. melanogaster can address the foregoing questions.
Service et al (385) utilized reverse selection to examine the nature of genetic
and phenotypic correlations in stocks produced by selection for delayed
reproduction. In reverse-selected lines (selected for early reproduction from
delayed regime), longevity fell while early reproduction increased; starvation
resistance also fell, while ethanol and desiccation tolerance remained unal-
tered during the first 20 generations of reverse selection. Graves et al (179)
reexamined these same stocks after 100 generations of reversed selection,
and found that starvation, desiccation, and ethanol resistance had dropped
further than at generation 20. Leroi et al (270) have now found a shifting
of the nature of the original genetic correlations uncovered in the Rose
postponed-aging stocks [e.g. (357); early fecundity B > O]. After ten years
of laboratory evolution, the pattern of early fecundity observed in the
standard assay environment now favors the O lines. The B lines still preserve
their early fecundity advantage in the B culture regime, which is slightly
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different from that used to maintain the O stocks. In addition, in the standard
environment, the development time of the delayed reproduction vs early
reproduced control group now favors the early reproduced line, such that
the early fitness trade-off now resides in the development time component
as opposed to early fecundity. These results seem to indicate that although
life history trade-offs may be inevitable, the nature of the genetic correlations
that control them are plastic, such that selection may have more leeway
than we imagine to create solutions to adaptive problems.

In most laboratory experiments, selection operates on pre.existing genetic
variation. However, for those experiments (e.g. involving microorganisms)
that extend hundreds or thousands of generations and/or involve very large
population sizes, new mutations can also be important. Changes in the
frequencies of preexisting genes can lead to changes in genetic correlations
(and heritabilities), but where new mutations are possible, changes in genetic
correlations are particularly likely.

BIOCHEMICAL AND PHYSIOLOGICAL STUDIES OF
ALLOZYME VARIATION

"Metabolic control theory, including both experimental and theoretical exten-
sions, provides a ’glue’ to hold physiology and genetics together." (86, p. 193)

Following the advent of protein electrophoresis in the mid-1960’s, numerous
studies demonstrated correlations between genotypc or allele frequencies
(actually, protein phenotypes representing alternative alleles) and environ-
mental or ecological factors, such as habitat temperature, seasonality,
latitude, or altitude (271). Many workers interpreted such correlations 
indicating the action of natural selection. These interpretations were criticized
for being based on correlational data and for not assigning a more important
role to random mutation and genetic drift (169, 175, 271). Several research
groups, therefore, developed a biochemical and physiological approach to
studying the evolutionary significance of genetic variation at specific loci
(89, 137, 247-250, 331,334,439,441,443,444). Examples include work
by Powers and colleagues on killifish lactate dehydrogenase (Ldh) (98, 111,
112,322, 332-334); Watt and colleagues on sulfur butterfly phosphoglucose
isomerase (Pgi) (439, 440, 445--447); Koehn and colleagues on mussel
leucine aminopeptidase (Lap) (29, 199, 248, 251-254); van Delden 
many others on Drosophila alcohol dehydrogenase (Adh) (2, 8, 48, 73, 
268, 315,429); Hartl, Dykhuizen, and Dean on several loci in E. coli (103,
104, 121, 123, 124, 185, 186); Burton and colleagues on copepod gluta-
mate-pyruvate transaminase (Gpt) (63, 64); Hoffman on sea anemone 
(206-208); and Snyder and colleagues on Peromyscus hemoglobins (75, 76,
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402-404). Many other studies have correlated multi-locus heterozygosity

with measures of physiological performance in an attempt to explain levels
of genetic variation, without considering functional differences among al-
lozymes; these have been reviewed elsewhere (169). Here we attempt 
clarify several issues concerning the rationale, assumptions, and empirical
measures involved in functional studies of variation at single loci.

For genotypic variation to affect fitness, two requirements must be met.
First, the allozymes produced by the different genotypes must exhibit
functional differences; second, the functional differences among allozymes
must cause biochemical or physiological differences that are detectable at
the organismal level (Figure 1). Thus a convincing research program must

Genotype

Biochemistry

Physiology

Morphology

determine Organismal limit acts Natural¯ . Performance = Behavior ~on SelectionAbilities ~~ /,’ /

Environment .... -=’-’- .................

Figure 1 The centrality of organismal performance paradigm, much of which was developed in
relation to studies of locomotor performance (see 9, 39, 154, 166,210,220, 431). Both genetic
and environmental effects act through development and ontogeny to determine an organism’s
primary phenotypic characteristics, which often are categorized as biochemical, physiological or
morphological. Acting in concert, these traits determine whole-organism performance abilities,
such as maximal sprint running speed or stamina (153, 166, 231) or perhaps ability to raise
offspring (110). In practice, behavior, e.g. motivation, can also affect measurements 
performance, which are typically obtained in the laboratory by forcing the organism to perform
at its maximum capacity for the trait of interest (6, 34, 137, 231). Performance defines the extent
or limits of an organism’s capabilities, whereas behavior indicates how an organism actually uses
(or fails to use) these capacities. Selection acts most directly on behavior, but behavior is limited
by performance. Thus, genotypic or biochemical variation (e.g. allozyme variants identified by
protein electrophoresis) should only be subject to selection if they have effects at the level of
organismal performance and hence behavior (89,248). It is absolutely critical that the appropriate
ecological context of the organism be considered when determining a performance to measure in
the laboratory; the performance must relate to behavior in the field to have any relevance to
natural selection (9, 14, 34, 35, 113, 114, 137,153, 154, 158, 166, 220, 227,439,442). Natural
selection is defined operationally as a correlation between fitness and phenotype. Dashed arrows
indicate the possibility of direct environmental etf~cts on perlbrmance (e.g. the effects of substrate
on sprinting ability) or behavior (e.g. temperature-dependent switches in antipredator behavior)
(references in 58, 154, 166). The inseparability of physiology, behavior, and environment has
long been a central tenant of physiological ecology (1, 24, 25, 52, 78, 81,205,209,210, 212,
223,241,258,284, 291,313,327,329, 330,380, 382, 421,422,432, 435).
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first measure the appropriate characteristics of enzyme function and then
relate the observed variation to whole-organism performance and/or behavior.

Functional Differences Among Allozymes

Three measures of enzyme function are common, each of which can be
influenced by structural differences among allozymes. The Michaelis con-
stant, Kin, is the substrate concentration that yields a reaction velocity equal
to one half of the maximum reaction velocity, Vmax. Km is generally
considered to be a measure of substrate binding affinity (202, but see 140).
The catalytic rate constant, Kcat, is a measure of the amount of product
produced per active site on an enzyme per unit time. Thus it is a measure
of the speed with which an enzyme functions, standardized to the number
of active sites contained by the enzyme. The third measure, Vmax, is the
product of Kcat and enzyme concentration, |E], and is the maximum reaction
velocity at saturating levels of substrate. Values of these enzymatic param-
eters are specific to the reaction conditions used; thus in vitro reaction
conditions must be chosen that match or approximate the ecological context
indicated by ,field studies. For example, it was vital to Powers’ work on
Ldh in killifish (see references above) that the biochemical studies 
conducted at the temperatures suggested by his field studies: as it turned
out, no differences in Ldh function existed at temperatures convenient for
biochemical work (25°C), but significant differences existed at temperatures
relevant to the natural environment of killifish (5 and 30°C)!

For selection to act on allozymes, they must differ in at least one of the
foregoing functional parameters. For a given set of reaction conditions,
differences among allozymes in Km or in Kcat can only be caused by
differences in structure; therefore, if selection acts on either one of these
functional properties, it also acts on the locus that produces the allozymes.
However, two different factors can influence Vmax-

First, Vmax can be affected by differences in allozyme structure. As noted
above, allozyme differences in Kcat are caused by differences in allozyme
structure; any such changes in Kcat would result in a change in Vmax (332).
Vmax can also differ among allozymes because of allozyme-specific differ-
ences in [E] caused by differential stability of the allozymes [an enzyme’s
stability is a function of its structure (202)]; any such changes in [E] would
also result in a change in Vmax (440). In both instances, selection acting
on Vmax would be acting directly on the locus of interest.

Second, V ..... can be affected by changes in [E] caused by genetic factors
unrelated to allozyme structure. Allozyme-specific differences in [E] can be
the result of a control locus that differentially affects the allozymes. Laurie
et al (268) demonstrated that some activity differences among Adh allozymes
in Drosophila are caused not by the Adh alleles themselves, but by linked
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variants of controlling regions of the chromosome. In this example, selection
on Vmax might actually be acting on the controlling gene(s) rather than 
the Adh locus.

Despite such potential complexities in interpreting the origins of variation
in Vmax, it is a most useful measure of enzymatic activity. First, Vmax, as
compared to Kcat, is the better measure of enzymatic activity with regard
to the whole-organism phenotype simply because it measures maximal
activity, not just substrate turnover/active site. (The converse of this is also
true; Kcat is a better measure of activity at the level of the enzyme molecule
itself because it does not include [E].) Second, the ratio of Vmax tO Km is
a good approximation of enzyme velocity at low substrate concentrations,
which are usually the physiologically-relevant conditions (440). In fact,
Vmax/Km ratios have typically been used as the measure of enzymatic
effectiveness (332, 440). Finally, questions about the origins of variation
in Vmax can be addressed by measuring K~at (440); in this way, differences
in Vm~x among allozymes can be ascribed to differences in either Kcat or

[E]. Determination of Kcat requires a completely purified enzyme, which is
a non-trivial task. In any case, gmax is an enzymatic measure of potentially
great functional and hence evolutionary significance. Vmax has routinely
been measured by physiological ecologists (and by exercise physiologists)
as a simple indicator of biochemical functional capacities (83, 84, 87, 88,
148, 158, 160, 171, 184, 202, 228, 257, 291, 293, 329, 330, 339, 467).

Organismal Effects of Differences in Allozyme Function
For selection to "see" differences in functional characteristics of allozymes,
they must cause variation at the level of the whole organism (Figure 1). 
other words, allozymes that differ in function must also cause differences
in the rate of flux, the efficiency of flux, and/or amounts of a given substrate
(86,250). Such differences in metabolic pathway characteristics can directly
or indirectly influence fitness through their impact on energy supply,
availability, and/or use (86, 442, 443).

The traditional view of metabolic pathways suggests that all control of
flux through a pathway resides only with rate limiting regulatory enzymes
(18, 19). However, quantitative theories of metabolic control, in which flux
control potentially resides at all steps in a pathway, have been developed
by Kacser (metabolic control analysis: 233-235; see also 125, 192),
Savageau (biochemical systems theory: 372-374), Crabtree (flux oriented
theory: 96, 97), and their colleagues. Each of these theories has its own
array of assumptions and characteristics, and excellent reviews are available
elsewhere (94, 138).

In metabolic control theory, control of flux through a pathway can be
shared by all enzymes in the pathway; control coefficients can be calculated
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for each enzymatic step in a pathway for any given set of reaction conditions.
The control coefficient of an enzyme actually measures the sensitivity of
the flux through the pathway to any changes in the functional capabilities
of that enzyme, and is inversely proportional to the Vmax/Km ratio. Further-
more, control coefficients of all enzymes in a pathway are interrelated, so
that changing the control coefficient of one enzyme will change the control
coefficients of one, some, or all of the other enzymes in the pathway. But,
a change in the functional characteristics of an enzyme may or may not
result in changes in its own control coefficient; this is a question that must
be answered empirically for each enzyme in a pathway and for every set
of reaction conditions of interest.

Much resistence to metabolic control theory has come from those unwilling
to discard the traditional idea of metabolic control by one or a few key
regulatory enzymes (18, 19). It is important to realize that metabolic control
theory does not necessarily preclude the traditional view of rate limiting
regulatory enzymes (198). Metabolic control theory does, however, provide
a methodology by which control of flux can be empirically measured at the
different steps in a metabolic pathway; the traditional view of metabolic
control is but one possible evolutionary outcome. That metabolic control
theory is tenable and useful is shown by the fact that some of its parameters
have been empirically estimated for a variety of loci in several pathways
in diverse taxa (44, 103, 168, 191, 246, 398, 466) and that it has been
used successfully to develop quantitative genetic analyses of metabolic
pathways (85, 104, 238, 413, 438) (see also 110 on a possible link 
symmorphosis),

Several different, but not exclusive, scenarios describe how selection
might affect flux-dependent measures of organismal performance. Selection
might simply affect the rate of flux through a pathway, and so select for
allozymes that either maximize flux or do not limit it. Empirical measure-
ments in various systems have shown allozyme-dependent rates of flux (103,
122, 446). Selection might also affect the different impact of allozymes on
the efficiency of flux (86, 250); in this untested scenario, the selective
advantage of a high rate of flux in a pathway is tempered by the energetic
cost of the maintenance of enzyme pools used in that pathway. Finally,
selection can affect the differential impact that allozymes can have on pools
of substrates in a pathway; deleterious effects of enzyme deficiency diseases
are usually caused by substrate accumulation (86, 460).

MEASURING SELECTIVE IMPORTANCE IN THE FIELD

"Natural selection acts on phenotypes, regardless of their genetic basis, and
produces immediate phenotypic effects within a generation that can be measured
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without recourse to principles of heredity or evolution. In contrast, evolutionary
response to selection, the genetic change that occurs from one generation to
the next, does depend on genetic variation.... Upon making this critical distinc-
tion...precise methods can be formulated for the measurement of phenotypic
natural selection." (262, p. 1210)

Natural selection has been defined in various and sometimes overly complex
ways (129). The simplest and operationally most useful definition of natural
selection is variation in Darwinian fitness that is correlated with variation
in one or more phenotypic traits. This definition emphasizes that natural
selection is a purely phenotypic phenomenon that occurs and can be measured
within generations (58, 99, 166, 177, 262, 309, 344, 379, 394, 430).
Moreover, it emphasizes that selection acts on phenotypic variation, without
regard to its genetic basis, and thus can be futile in the sense of leading
to no improvement in a population. The realization that repeatable, individual
variation is the most fundamental requirement for natural selection to occur
has stimulated many recent studies of the magnitude and correlates of
individual variation in physiological, performance, and behavioral traits (see
references in Introduction).

Quantifying selection in nature requires measurement of individual dif-
ferences in fitness, e.g. lifetime reproductive success, and in some trait of
interest, e.g. standard metabolic rate. A correlation between fitness and the
phenotypic trait equals selection. Because true fitness is exceedingly difficult
to measure, such components of fitness as survivorship or clutch size are
usually measured as a substitute (129, 262, 345). Incomplete measures 
fitness will limit inferences that can be drawn, but are an important first
step. To date, only a handful of studies have specifically addressed whether
natural selection acts on individual variation in physiological traits in natural
populations. For example, Jayne & Bennett (227) demonstrated a correlation
between survivorship and speed or stamina in garter snakes (see also 56,
229, 232, 352: reviews in 35, 39, 58, 166).

The foregoing approach to quantifying selection in nature is a "black
box" in the following sense. Into the black box goes a known number of
individuals with a known distribution of phenotypes (e.g. sprint speeds of
hatchling lizards) and out comes a smaller number of individuals with 
possibly altered distribution. The alteration of the distribution is attributable
to the effects of natural selection, assuming no differential immigration or
emigration with respect to the phenotypic trait being studied, no ontogenetic
changes in the phenotype, etc (129,262). The nature of the selective agent(s)
is, however, unknowable from such information. For example, if faster
lizards survived longer, it would not be known whether this was because
(a) they were better able to escape from predators, (b) they were better
able to catch insects and hence less likely to starve to death, or (c) maximal

www.annualreviews.org/aronline
Annual Reviews

http://www.annualreviews.org/aronline


598 GARLAND & CARTER

sprint speed was phenotypically correlated with some other trait (stamina?)
that was the actual target of selection. Thus correlational studies of selection
in nature are an important first step, but they are incomplete with respect
to understanding the causes of selection. Elucidation of the causes of
selection requires additional information, such as direct observations of
animals in nature (e.g. observations of predator-prey interactions) (39, 153,
166, 180, 227, 329: see also 24, 25). Once the mechanism of selection is
understood, more coricrete interpretations can be made about the original
field data suggesting selection on genotype-related behaviors (Figure 1).
Furthermore, predictions about other selective effects can be made and tested
(in the case of allozyme variation, see 440, 444, 447).

Correlational studies of selection in the wild (129) can be enhanced 
experimental manipulations (166, 309). Because selection in nature will
often be weak, extremely large sample sizes can be required to detect its
action. This is a problem of statistical power. A standard way to increase
power in correlation or regression analyses is to increase the range of
variation in the independent variable (e.g. maximal sprint speed). Sinervo
and colleagues (393-396) have used this approach, via experimental ma-
nipulation of eggs and dams, to study selection on offspring size and clutch
size in lizards. Artificial selection experiments could also be used to extend
variation beyond the natural range (318), and crossbreeding or direct genetic
manipulation might be used to alter expression of allozymes, followed by
release of manipulated individuals into natural populations. Finally, field
transplants (241) can be performed to determine the relative fitness 
varying phenotypes under different environmental conditions.

INTERSPECIFIC COMPARATIVE METHODS

"...we must learn to treat comparative data with the same respect as we would
treat experimental results..." (298, p. vii)

Interspecific comparisons are a long-standing tradition in physiology (6, 20,
126, 172, 338, 380, 382, 383,464). For example, broad surveys of data
compiled primarily from the literature, then plotted on log-log axes vs body
mass, have provided a plethora of descriptive and predictive interspecific
allometric equations (see references in What is the Origin of Allometric
Relationships?).

At the opposite extreme in terms of sample size, two species, differing
in behavior or ecology often have been chosen and compared to determine
whether they show phenotypic differences that could be interpreted as
adaptations to the presumably different selective regimes (26, 275) imposed
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by the differences in behavior or ecology. Garland & Adolph (156) have
argued that extreme caution must be used when attempting to infer adaptation
from two-species comparative studies. Any two species are likely to show
differences in almost any phenotypic trait that one might choose to measure.
These differences are almost guaranteed by random mutation and genetic
drift acting independently in the lineages leading to the two study species,
unless counteracted by uniform stabilizing selection. Thus given a sufficient
sample size of individuals from each of the two study species, a statistically
significant difference will probably be found; that is, the null hypothesis of
no difference in physiology will likely be rejected. About 50% of the time
the difference will, by chance, be in the same direction as that predicted
by the alternative hypothesis (adaptation to the environmental factor). Thus
the chance of rejecting the null hypothesis of no adaptive differences in
physiology can be as high as 50%; or, the Type I error rate, may be closer
to 0.50 than to the nominal 0.05!

Garland & Adolph (156) argue that, at a minimum, three species are
required for a comparative study that aims to make inferences about
adaptation, and the more species the better. But multi-species data sets bring
with them numerous statistical complications. In brief, species (and some-
times populations within a species) related by a hierarchical phylogeny
cannot be assumed to represent statistically independent data points (Figure
2). Species inherit both their genome and their environment (unless 
dispersal event or rapid climatic change has occurred) from their immediate
ancestor. Closely related species (i.e. species that diverged relatively re-
cently) will therefore tend to be quite similar with respect to most aspects
of their genotype, environment, and phenotype (139, 176, 187).

The most obvious problem with species non-independence is that it lowers
the degrees of freedom available for hypothesis testing. For example, suppose
one wished to correlate blood hemoglobin level with altitude for a series
of three species. Assume that species mean values were available for both
hemoglobin level and altitude (perhaps we would be dealing with species
that presently exist as only single populations, each with a narrow altitudinal
distribution). The sample size is thus three species’ means, and the null
hypothesis would be no correlation between hemoglobin level and altitude.
The 1-tailed alternative hypothesis would be a positive correlation between
hemoglobin level and altitude. Because altitude is the independent variable
(the presumed selective regime), we could compute a least-squares linear
regression of hemoglobin level on altitude. Assuming we judge statistical
significance at an a priori o~ = 0.05, then with one degree of freedom, the
critical value for the t statistic is 6.314 (from Table 12 of 356) or 39.9 for
the equivalent F statistic (from Table 16 of 356). (In terms of hypothesis
testing, we could equivalently look up the critical value for the Pearson
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What Conventional
Statistics Assumes

What Evolution
Provides

Figure 2 Diagrammatic representation of the statistical problems caused by the hierarchical
nature of evolutionary relationships and descent with modification. Typically, the field of statistics
assumes that data points are independent, as would be the case if we studied 10 species that were
related as shown on the left; here, instantaneous speciation resulted in 10 independent lineages
that led to 10 living species that might be studied by a physiologist. Thus if we were to test for
a correlation between species mean values for two phenotypes (e.g. size-corrected heart mass
and maximal oxygen consumption) of these 10 species, or perhaps between one phenotype and
an environmental factor (e.g. blood hemoglobin concentration and altitude), we could claim the
nominal N-2 = 8 degrees of freedom for hypothesis testing. If, instead, the 10 species were
actually related as shown on the right, we would have something fewer than 8 d.f. available for
hypothesis testing, Although no simple correction factor for degrees of freedom is available,
various methods exist that explicitly use the phylogenetic topology and branch lengths to allow
valid hypothesis testing (see text).

product-moment correlation coefficient with 1 d.f., which is -+0.988 for
the 1-tailed test) (from Table B. 16 of 468).

If our three study species were the result of one ancestral lineage splitting
simultaneously into three daughters, the foregoing procedure would be
perfectly acceptable. If, on the other hand, two of our species were very
close relatives, then we would have something fewer than three independent
data points and hence something less than one degree of freedom. In the
limit, if two of our species had diverged only yesterday, then we would
have only two independent data points and hence no degrees of freedom
for hypothesis testing! In effect, this brings us back to a two-species
comparison and illustrates another perspective on why two-species compar-
isons are inadequate for inferring adaptation-inadequate d.f. (156).

lnterspecific Comparisons in a Phylogenetic Context
"If we assume that the...cladogram...is correct, we can then hypothesize what
the particular common ancestor must have been like." (20, p. 14)

Incorporation of a phylogenetic perspective into comparative studies is
essential from a statistical perspective (see above, below, and Figure 2) and
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moreover allows one to address questions that simply cannot be considered
in the absence of phylogenetic information (59, 187, 2ll, 213, 265-267,
275, 302). For example, if one has data for the mean phenotypes (character
states) of a series of species and some estimate of their evolutionary
relationships, then one can use a parsimony algorithm (59, 142, 213, 274,
285-287, 296, 409, 411, 458) to infer the likely phenotype of ancestors,
that is, nodes on the phylogenetic tree (78, 119,213,465). Thus parsimony
reconstructions allow one to infer where in a clade a particular feature arose
(35, 62, 69, 71, 72, 107, 130, 294, 365, 366, 370), if it has arisen more
than once and, if so, the minimum number of times it has arisen (49, 105,
130, 264, 301, 349, 387), such as how many times air breathing evolved
in fishes (62), toe fringes evolved in lizards (277), or the ability to produce
benzaldehyde arose and/or was lost in tiger beetles (7). Once nodal values
have been estimated, the inferred changes that have occurred along each
branch segment of the phylogenetic tree can be computed, thus allowing
inferences about the directions of past evolutionary change, tests for corre-
lations in the changes of two or more characters (59, 78, 164, 165, 187,
213, 274, 277, 335), elucidation of the sequence of changes that occurred
during the evolution of a complex trait (49, 134, 239, 265-267, 301), and
tests for whether the presence of a particular state in one character or
environmental feature predisposes some other trait to change in a particular
direction (7, 187, 285, 287). If associations between characters and envi-
ronmental factors are established (see 162, pp. 29, 30), then inferences
about adaptation are possible (11, 26, 50, 59, 156, 175, 182, 187, 239,
265-267,274,275,277,302, 307,345,349,350,415,416). If independent
information on divergence times is available, then rates of evolution can
be studied (152, 210, 465: of 408).

Phylogenetically-Based Statistical Methods

The foregoing uses of phylogenetic information to study variation among
species are not statistical in any formal sense; that is, P-values or confidence
intervals are not being assigned to the estimates of ancestral states, inferred
changes, or correlations of inferred changes across traits. But phylogenetic
analyses of character evolution can also be explicitly statistical with formal
estimation and/or hypothesis testing. Since 1985 a number of phylogeneti-
cally-based statistical methods have been proposed. Of the available alter-
natives, Felsenstein’ s (139) method of phylogenetically independent contrasts
is the best understood and is applicable to a wide range of questions,
including correlation, principal components analysis, regression, multiple
regression, ANOVA, and ANCOVA (152, 159, 162, 164, 176, 295, 296,
341). This method was designed for use with traits exhibiting continuous
variation, such as body size or metabolic rate (for applications with phys-
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iological traits see 27, 88, 156, 164, 188, 213, 218, 274, 336, 386, 406,
437). The simplest use of phylogcnetically independent contrasts is to study
correlated evolution, such as the allometry of some trait in relation to body
size (165). Both PC-based (159, 296) and Macintosh-based (162, 
computer programs to conduct independent contrasts analyses and various
other comparative methods are available.

In many cases, statistical analyses done by a method that allows for
phylogenetic non-independence will indicate that relationships between vari-
ables (as judged by correlation or regression: 164, 187, 188), or differences
among groups [as judged by analysis of variance (ANOVA) or covariance
(ANCOVA): 159], indicate weaker and hence less significant relationships.
Such is not always the case, however (27, 156, 274, 348, 437).

Can one predict whether a phylogenetic statistical analysis will yield an
answer that is different from a conventional, non-phylogenetic method? In
general, if the phenotypic data being analyzed (e.g. basal metabolic rate,
sprint speed) follow the phylogeny--if species strongly resemble their close
relatives for the traits being tested for a correlation--then a statistical method
that allows for phylogenetic relationships will indicate a weaker relationship
than one that assumes all species to be related as by a star (left in Figure
2). In other words, ifit is phylogenetic resemblance of species values that
is driving an apparently significant correlation between traits, then a phy-
logenetically based statistical method, such as independent contrasts, will
indicate a weaker and less statistically significant relationship.

Other phylogenetically based statistical methods, including squared-change
parsimony and some techniques for discrete traits, are discussed elsewhere
(152, 170, 187, 213, 274, 275, 282, 285-287, 296, 307, 335). Estimates
of phylogenetic relationships are becoming more widely available (131,389,
412). Most of the methods can deal with unresolved nodes in phylogenies
(see 159, 170, 176, 187, 341).

INTEGRATING MICRO- AND MACROEVOLUTIONARY
APPROACHES

To understand the hows and whys of evolutionary change at the phenotypic
level (e.g. physiological traits), multiple valid approaches exist that can
converge on the same endpoint. Because microevolutionary (within-species)
phenomena can be studied experimentally, as through artificial selection
experiments, physiologists may find them particularly attractive. But moti-
vation can come from either direction. The senior author, for example,
undertook quantitative genetic analyses of basal metabolic rates of mice in
hopes of better understanding the (in)famous mouse-elephant curve (cf 261).
Similarly, Bennett’s bacterial selection experiments (37, 40, 41) and Huey’s
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Drosophila selection experiments (215, 218, 219) were preceded by studies
of interspecific variation in thermal physiology of lizards (31, 164, 195,
210, 213: cf 39, 213, 214, 218), which are not ideally suited to artificial
selection. Finally, microevolutionary analyses of the correlated evolution of
snake color patterns and antipredator behaviors, including locomotor abili-
ties, were motivated by interspecific patterns (see 55-58).

Comparative approaches focus on the endpoints of evolutionary processes.
Because of the non-independence of species values caused by hierarchical
descent with modification, statistical methods that allow for phylogenetic
relatedness are required to determine whether the (co)variation observed
among species represents more of a pattern than could have arisen simply
by chance processes, such as random mutation and genetic drift. If an
appropriate statistical method confirms that the observed pattern is really
unusual, then--and only then---do the data call for an explanation, such as
adaptation by natural selection.

Given that a statistically significant pattern is observed for among-species
variation (e.g. group differences) or covariation (e.g. correlations between
two physiological traits), then at least three processes (mechanisms) might
account for it: (a) selection acting within species; (b) genetic couplings 
characters; and (c) higher-level phenomena such as species selection 
lineage sorting (references in 77b, 120, 134, 144, 166, 305, 350, 418,
459). Mechanisms (a) and (b) are familiar to physiologists, but (e) covers
phenomena that are less well understood. In some cases biogeographic,
paleoclimatological, and/or fossil information can be used to help construct
scenarios for the evolution of physiological (or other) traits (78, 107, 225,
284, 302, 314, 342, 367, 369).

Some organisms are particularly suitable both for comparative phyloge-
netic analyses [including comparisons of natural populations, subspecies, or
laboratory strains with known relationships (16, 141, 155, 162)] and for
quantitative genetic analyses, including artificial selection experiments [Dro-
sophila (82-85, 87, 88, 128, 179, 184, 203-205,214, 215,218, 219, 255,
317,355,358-362, 384,420,448); and Mus (16, 17, 22, 23, 45-47, 141,
143, 190, 230, 260, 278-281, 300, 324, 325, 410)]. Whatever the choice
as to organism, analytical mode or physiological system, a plurality of
approaches will be necessary to understand any large question in evolutionary
physiology (51, 146, 166, 218, 223, 275, 308, 318, 329, 418, 432, 433,
434, 465). Comparative studies, for example, indicate what did happen
during evolution, but not necessarily what had to happen; similarly, "selec-
tion experiments indicate what might happen in nature, but not necessarily
what will happen" (219, p. 755). Understanding the ultimate causes and
proximate mechanisms of the evolution of endothermy is a good example
of a long-standing problem in evolutionary physiology that calls for multi-
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disciplinary approaches (B Block, this volume; 35, 42, 43, 50, 53, 101,
102, 130, 148, 160, 189, 221, 225, 303, 326, 368, 383, 406, 417, 437;
references therein). For example, our laboratory is currently analyzing the
genetic correlation between minimal and maximal rates of oxygen consump-
tion and beginning selection experiments on voluntary activity levels in Mus
(see also 143, 190, 347).

CONCLUSION AND FUTURE PROSPECTS

Evolution and physiology have much to offer each other (36, 61, 62, 71,
72, 108, 135, 155, 214, 339, 342, 343, 388). Knowledge of physiological
mechanisms can allow much deeper insight into possible reasons for evo-
lutionary correlations and constraints than is possible for many of the traits
typically studied by evolutionary biologists (e.g. morphology). A compar-
ative perspective can even enlighten biomedical and clinical issues (460).
For example, Rose and colleagues have provided clear evidence that an
evolutionary perspective can (or at least should!) alter accepted views 
aging (179, 357-362, 384, 460). Similarly, Kluger’s (242-245) studies 
fever and White’s (456, 457) comparative perspective on acid-base balance
during hypothermia have affected the way physicians view and treat human
patients. "Those who see the body as a machine designed by a careless
engineer are prone to therapeutic hubris. The antidote is a deep understanding
of each organ’s phylogeny and functions, as well as its ontogeny and
structure." (460, p. 18)

We see evolutionary physiology moving forward on many fronts during
the next decade. Which of the several promising areas, such as phyloge-
netically-based comparative studies, artificial selection studies in the labo-
ratory, or physiological analyses of single-gene products will yield the
greatest insights is difficult to predict. Perhaps the most illuminating studies
will be those that apply several complementary approaches (35, 36, 39, 43,
51, 88, 155, 166, 214, 218, 302, 308, 345, 423, 432) to an ecologically
and phylogenetically well-known group of species that is tractable for
physiological studies. Such studies will not be easy, quick, or inexpensive,
but they may yield understanding that is greater than any equivalent series
of piecemeal studies done on several different species.

The tools now exist to permit comprehensive studies of physiological
evolution. Such studies will be greatly facilitated by interactions of physi-
ologists with biochemists, morphologists, ethologists, ecologists, geneticists,
and systematists. We envision studies in which knowledge of biochemistry,
physiology, biomechanics, and/or developmental biology is first used to
predict trade-offs between various physiological functions. These hypothe-
sized constraints are then tested in at least two ways, by quantification of
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genetic correlations within populations and of evolutionary correlations

through interspecific comparative studies. Whatever approaches are used,

the framework (Figure 1) that envisions measures of whole-animal perfor-

mance as central for attempting to link morphological, physiological, or
biochemical variation with behavior, fitness, or ecology should be a guiding

principle for ecological and evolutionary physiologists.
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