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The Respiratory 

System:

Part A

22

Exchanging Materials

• Every organism must 

exchange materials 

with its environment.

– This exchange 

ultimately occurs at 

the cellular level.

Circulatory Systems Reflect 

Phylogeny
• Transport systems functionally connect the 

organs of exchange with the body cells.
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Sea level

PO2 =760*0.2094 = 159 mmHg

PO2 =(760-18)*0.2094 = 155 mmHg
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The Respiratory System

• Major function-respiration

– Supply body with O2 for cellular respiration;

dispose of CO2, a waste product of cellular 

respiration

– Its four processes involve both respiratory and 

circulatory systems

• Also functions in olfaction and speech
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• Pulmonary ventilation (breathing)-

movement of air into and out

of lungs

• External respiration-O2 and CO2

exchange between lungs and blood

• Transport-O2 and CO2 in blood

• Internal respiration-O2 and CO2

exchange between systemic blood

vessels and tissues

Respiratory

system

Circulatory

system

Processes of Respiration
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Bronchi and Subdivisions

• Air passages undergo 23 orders of 

branching  bronchial (respiratory) tree

• From tips of bronchial tree  conducting 

zone structures  respiratory zone 

structures
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Conducting Zone Structures

• Trachea  right and left main (primary) 
bronchi

• Each main bronchus enters hilum of one 
lung

– Right main bronchus wider, shorter, more 
vertical than left

• Each main bronchus branches into lobar
(secondary) bronchi (three on right, two 
on left)

– Each lobar bronchus supplies one lobe 
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Conducting Zone Structures

• Each lobar bronchus branches into 

segmental (tertiary) bronchi

– Segmental bronchi divide repeatedly

• Branches become smaller and smaller 

– Bronchioles-less than 1 mm in diameter

– Terminal bronchioles-smallest-less than 

0.5 mm diameter
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Figure 22.7  Conducting zone passages.
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Conducting Zone Structures

• From bronchi through bronchioles, 

structural changes occur

– Cartilage rings become irregular plates; in 

bronchioles elastic fibers replace cartilage

– Epithelium changes from pseudostratified 

columnar to cuboidal; cilia and goblet cells 

become sparse

– Relative amount of smooth muscle increases

• Allows constriction

© 2013 Pearson Education, Inc.

Respiratory Zone

• Begins as terminal bronchioles 

respiratory bronchioles  alveolar 

ducts  alveolar sacs 

– Alveolar sacs contain clusters of alveoli

• ~300 million alveoli make up most of lung volume

• Sites of gas exchange
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Figure 22.8a  Respiratory zone structures.
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Figure 22.8b  Respiratory zone structures.
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Respiratory Membrane

• Alveolar and capillary walls and their fused 

basement membranes

– ~0.5-µm-thick; gas exchange across 

membrane by simple diffusion

• Alveolar walls

– Single layer of squamous epithelium (type I 

alveolar cells)

• Scattered cuboidal type II alveolar cells

secrete surfactant and antimicrobial 

proteins
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Figure 22.9a  Alveoli and the respiratory membrane.
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Figure 22.9b  Alveoli and the respiratory membrane.
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Alveoli

• Surrounded by fine elastic fibers and 

pulmonary capillaries

• Alveolar pores connect adjacent alveoli
• Equalize air pressure throughout lung

• Alveolar macrophages keep alveolar 

surfaces sterile

– 2 million dead macrophages/hour carried by 

cilia  throat  swallowed
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Figure 22.9c  Alveoli and the respiratory membrane.
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Lungs

• Apex-superior tip; deep to clavicle

• Base-inferior surface; rests on diaphragm

• Hilum-on mediastinal surface; site for 
entry/exit of blood vessels, bronchi, 
lymphatic vessels, and nerves 

• Left lung smaller than right

– Cardiac notch-concavity for heart

– Separated into superior and inferior lobes by 
oblique fissure
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Figure 22.10a  Anatomical relationships of organs in the thoracic cavity.
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Mechanics of Breathing

• Pulmonary ventilation consists of two 

phases

– Inspiration-gases flow into lungs

– Expiration-gases exit lungs

© 2013 Pearson Education, Inc.

Pressure Relationships in the Thoracic 

Cavity

• Atmospheric pressure (Patm)

– Pressure exerted by air surrounding body 

– 760 mm Hg at sea level = 1 atmosphere

• Respiratory pressures described relative 

to Patm

– Negative respiratory pressure-less than Patm

– Positive respiratory pressure-greater than Patm

– Zero respiratory pressure = Patm
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Intrapulmonary Pressure

• Intrapulmonary (intra-alveolar) pressure

(Ppul)

– Pressure in alveoli

– Fluctuates with breathing

– Always eventually equalizes with Patm

© 2013 Pearson Education, Inc.

Intrapleural Pressure

• Intrapleural pressure (Pip)

– Pressure in pleural cavity

– Fluctuates with breathing

– Always a negative pressure (<Patm and <Ppul)

– Fluid level must be minimal

• Pumped out by lymphatics

• If accumulates  positive Pip pressure  lung 

collapse 



10/9/2014

6

© 2013 Pearson Education, Inc.

Intrapleural Pressure

• Negative Pip caused by opposing forces

– Two inward forces promote lung collapse

• Elastic recoil of lungs decreases lung size

• Surface tension of alveolar fluid reduces alveolar 

size

– One outward force tends to enlarge lungs

• Elasticity of chest wall pulls thorax outward
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Pressure Relationships

• If Pip = Ppul or Patm  lungs collapse

• (Ppul – Pip) = transpulmonary pressure

– Keeps airways open

– Greater transpulmonary pressure  larger 

lungs

© 2013 Pearson Education, Inc.

Figure 22.12  Intrapulmonary and intrapleural pressure relationships.
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Homeostatic Imbalance

• Atelectasis (lung collapse) due to

– Plugged bronchioles  collapse of alveoli

– Pneumothorax-air in pleural cavity

• From either wound in parietal or rupture of visceral 

pleura

• Treated by removing air with chest tubes; pleurae 

heal  lung reinflates
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Pulmonary Ventilation

• Inspiration and expiration

• Mechanical processes that depend on 

volume changes in thoracic cavity

– Volume changes  pressure changes

– Pressure changes  gases flow to equalize 

pressure

© 2013 Pearson Education, Inc.

Boyle's Law

• Relationship between pressure and 

volume of a gas

– Gases fill container; if container size reduced 

 increased pressure

• Pressure (P) varies inversely with volume 

(V): 

– P1V1 = P2V2
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Inspiration

• Active process

– Inspiratory muscles (diaphragm and external 

intercostals) contract 

– Thoracic volume increases  intrapulmonary 

pressure drops (to 1 mm Hg)

– Lungs stretched and intrapulmonary volume 

increases

– Air flows into lungs, down its pressure 

gradient, until Ppul = Patm

© 2013 Pearson Education, Inc.

Forced Inspiration

• Vigorous exercise, COPD  accessory 

muscles (scalenes, sternocleidomastoid, 

pectoralis minor)  further increase in 

thoracic cage size

© 2013 Pearson Education, Inc.

Figure 22.13  Changes in thoracic volume and sequence of events during inspiration and expiration. (1 of 2) Slide 1
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Expiration

• Quiet expiration normally passive process

– Inspiratory muscles relax 

– Thoracic cavity volume decreases

– Elastic lungs recoil and intrapulmonary 
volume decreases  pressure increases (Ppul

rises to +1 mm Hg) 

– Air flows out of lungs down its pressure 
gradient until Ppul = 0

• Note: forced expiration-active process; 
uses abdominal (oblique and transverse) 
and internal intercostal muscles

© 2013 Pearson Education, Inc.

Figure 22.13  Changes in thoracic volume and sequence of events during inspiration and expiration. (2 of 2) Slide 1
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Figure 22.14  Changes in intrapulmonary and intrapleural pressures during inspiration and expiration.
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Physical Factors Influencing Pulmonary 

Ventilation

• Three physical factors influence the ease 

of air passage and the amount of energy 

required for ventilation.

– Airway resistance

– Alveolar surface tension

– Lung compliance

© 2013 Pearson Education, Inc.

Airway Resistance

• Friction-major nonelastic source of 

resistance to gas flow; occurs in airways

• Relationship between flow (F), pressure 

(P), and resistance (R) is:

– ∆P - pressure gradient between atmosphere 

and alveoli (2 mm Hg or less during normal 

quiet breathing)

– Gas flow changes inversely with resistance

© 2013 Pearson Education, Inc.

Airway Resistance

• Resistance usually insignificant

– Large airway diameters in first part of 

conducting zone

– Progressive branching of airways as get 

smaller, increasing total cross-sectional area

– Resistance greatest in medium-sized bronchi

• Resistance disappears at terminal 

bronchioles where diffusion drives gas 

movement 

© 2013 Pearson Education, Inc.

Homeostatic Imbalance

• As airway resistance rises, breathing 

movements become more strenuous

• Severe constriction or obstruction of 

bronchioles

– Can prevent life-sustaining ventilation

– Can occur during acute asthma attacks; stops 

ventilation

• Epinephrine dilates bronchioles, reduces 

air resistance

© 2013 Pearson Education, Inc.

Alveolar Surface Tension

• Surface tension

– Attracts liquid molecules to one another at 

gas-liquid interface 

– Resists any force that tends to increase 

surface area of liquid

– Water–high surface tension; coats alveolar 

walls  reduces them to smallest size

© 2013 Pearson Education, Inc.

Alveolar Surface Tension

• Surfactant

– Detergent-like lipid and protein complex 

produced by type II alveolar cells

– Reduces surface tension of alveolar fluid and 

discourages alveolar collapse

– Insufficient quantity in premature infants 

causes infant respiratory distress 

syndrome

•  alveoli collapse after each breath
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Lung Compliance

• Measure of change in lung volume that 

occurs with given change in 

transpulmonary pressure

• Higher lung compliance  easier to 

expand lungs

• Normally high due to

– Distensibility of lung tissue 

– Surfactant, which decreases alveolar surface 

tension 

© 2013 Pearson Education, Inc.

Lung Compliance

• Diminished by

– Nonelastic scar tissue replacing lung tissue 

(fibrosis) 

– Reduced production of surfactant

– Decreased flexibility of thoracic cage

© 2013 Pearson Education, Inc.

Total Respiratory Compliance

• The total compliance of the respiratory 

system is also influenced by compliance 

(distensibility) of the thoracic wall, which 

is decreased by:

– Deformities of thorax

– Ossification of costal cartilage

– Paralysis of intercostal muscles

© 2013 Pearson Education, Inc.

Respiratory Volumes

• Used to assess respiratory status

– Tidal volume (TV) 

– Inspiratory reserve volume (IRV) 

– Expiratory reserve volume (ERV) 

– Residual volume (RV)

© 2013 Pearson Education, Inc.

Figure 22.16b  Respiratory volumes and capacities.
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Figure 22.16a  Respiratory volumes and capacities.
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Dead Space

• Anatomical dead space

– No contribution to gas exchange

– Air remaining in passageways; ~150 ml

• Alveolar dead space–non-functional 

alveoli due to collapse or obstruction

• Total dead space-sum of anatomical and 

alveolar dead space
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Pulmonary Function Tests

• Spirometer-instrument for measuring 

respiratory volumes and capacities

• Spirometry can distinguish between

– Obstructive pulmonary disease—increased 

airway resistance (e.g., bronchitis)

• TLC, FRC, RV may increase

– Restrictive disorders—reduced TLC due to 

disease or fibrosis

• VC, TLC, FRC, RV decline

© 2013 Pearson Education, Inc.

Pulmonary Function Tests

• To measure rate of gas movement

– Forced vital capacity (FVC)—gas forcibly 

expelled after taking deep breath

– Forced expiratory volume (FEV)—amount 

of gas expelled during specific time intervals 

of FVC

© 2013 Pearson Education, Inc.

Alveolar Ventilation

• Minute ventilation—total amount of gas 

flow into or out of respiratory tract in one 

minute

– Normal at rest = ~ 6 L/min

– Normal with exercise = up to 200 L/min 

– Only rough estimate of respiratory efficiency

© 2013 Pearson Education, Inc.

Table 22.2  Effects of Breathing Rate and Depth on Alveolar ventilation of Three Hypothetical Patients

© 2013 Pearson Education, Inc.

Gas Exchanges Between Blood, Lungs, and 

Tissues

• External respiration–diffusion of gases in 

lungs

• Internal respiration–diffusion of gases at 

body tissues

• Both involve

– Physical properties of gases 

– Composition of alveolar gas
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Basic Properties of Gases: Dalton's Law of 

Partial Pressures

• Total pressure exerted by mixture of gases 

= sum of pressures exerted by each gas 

• Partial pressure

– Pressure exerted by each gas in mixture

– Directly proportional to its percentage in 

mixture

© 2013 Pearson Education, Inc.

Basic Properties of Gases: Henry's Law

• Gas mixtures in contact with liquid

– Each gas dissolves in proportion to its partial 

pressure

– At equilibrium, partial pressures in two phases 

will be equal

– Amount of each gas that will dissolve 

depends on 

• Solubility–CO2 20 times more soluble in water than 

O2; little N2 dissolves in water

• Temperature–as temperature rises, solubility 

decreases

© 2013 Pearson Education, Inc.

Composition of Alveolar Gas

• Alveoli contain more CO2 and water vapor 

than atmospheric air

– Gas exchanges in lungs

– Humidification of air 

– Mixing of alveolar gas with each breath 

© 2013 Pearson Education, Inc.

Table 22.4  Comparison of Gas Partial Pressures and Approximate Percentages in the Atmosphere and in the Alveoli

© 2013 Pearson Education, Inc.

External Respiration

• Exchange of O2 and CO2 across 

respiratory membrane

• Influenced by

– Thickness and surface area of respiratory 

membrane

– Partial pressure gradients and gas solubilities

– Ventilation-perfusion coupling

© 2013 Pearson Education, Inc.

Thickness and Surface Area of the 

Respiratory Membrane

• Respiratory membranes

– 0.5 to 1  m thick

– Large total surface area (40 times that of skin) 

for gas exchange

• Thicken if lungs become waterlogged and 

edematous  gas exchange inadequate 

• Reduced surface area in emphysema 

(walls of adjacent alveoli break down), 

tumors, inflammation, mucus
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Partial Pressure Gradients and Gas 

Solubilities

• Steep partial pressure gradient for O2 in 

lungs

– Venous blood Po2 = 40 mm Hg

– Alveolar Po2 = 104 mm Hg

• Drives oxygen flow to blood

• Equilibrium reached across respiratory membrane 

in ~0.25 seconds, about 1/3 time a red blood cell in 

pulmonary capillary 

– Adequate oxygenation even if blood flow increases 3X

© 2013 Pearson Education, Inc.

Figure 22.18  Oxygenation of blood in the pulmonary capillaries at rest.
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Partial Pressure Gradients and Gas 

Solubilities

• Partial pressure gradient for CO2 in lungs 

less steep

– Venous blood Pco2 = 45 mm Hg

– Alveolar Pco2 = 40 mm Hg

• Though gradient not as steep, CO2

diffuses in equal amounts with oxygen 

– CO2 20 times more soluble in plasma than 

oxygen

© 2013 Pearson Education, Inc.

Figure 22.17  Partial pressure gradients promoting gas movements in the body.
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Ventilation-Perfusion Coupling

• Perfusion-blood flow reaching alveoli

• Ventilation-amount of gas reaching 

alveoli

• Ventilation and perfusion matched 

(coupled) for efficient gas exchange

– Never balanced for all alveoli due to

• Regional variations due to effect of gravity on 

blood and air flow

• Some alveolar ducts plugged with mucus

© 2013 Pearson Education, Inc.

Ventilation-Perfusion Coupling

• Perfusion

– Changes in Po2 in alveoli cause changes in 

diameters of arterioles

• Where alveolar O2 is high, arterioles dilate

• Where alveolar O2 is low, arterioles constrict

• Directs most blood where alveolar oxygen high
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Ventilation-Perfusion Coupling

• Changes in Pco2 in alveoli cause changes 

in diameters of bronchioles

– Where alveolar CO2 is high, bronchioles dilate

– Where alveolar CO2 is low, bronchioles 

constrict

– Allows elimination of CO2 more rapidly

© 2013 Pearson Education, Inc.

Figure 22.19  Ventilation-perfusion coupling.
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Transport of Respiratory Gases by Blood

• Oxygen (O2) transport

• Carbon dioxide (CO2) transport

© 2013 Pearson Education, Inc.

O2 Transport

• Molecular O2 carried in blood 

– 1.5% dissolved in plasma

– 98.5% loosely bound to each Fe of 

hemoglobin (Hb) in RBCs

• 4 O2 per Hb 

© 2013 Pearson Education, Inc.

O2 and Hemoglobin

• Oxyhemoglobin (HbO2)-hemoglobin-O2

combination 

• Reduced hemoglobin

(deoxyhemoglobin) (HHb)-hemoglobin 

that has released O2

© 2013 Pearson Education, Inc.

O2 and Hemoglobin

• Loading and unloading of O2 facilitated by 

change in shape of Hb 

– As O2 binds, Hb affinity for O2 increases

– As O2 is released, Hb affinity for O2 decreases

• Fully saturated (100%) if all four heme 

groups carry O2

• Partially saturated when one to three 

hemes carry O2
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Figure 22.20  The amount of oxygen carried by hemoglobin depends on the PO2
(the amount of oxygen) available 

locally. (1 of 3)
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Influence of Po2 on Hemoglobin Saturation

• In arterial blood

– Po2 = 100 mm Hg

– Contains 20 ml oxygen per 100 ml blood 

(20 vol %)

– Hb is 98% saturated

• Further increases in Po2 (e.g., breathing 

deeply) produce minimal increases in O2

binding
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Influence of Po2 on Hemoglobin Saturation

• In venous blood

– Po2 = 40 mm Hg

– Contains 15 vol % oxygen 

– Hb is 75% saturated

– Venous reserve

• Oxygen remaining in venous blood
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Figure 22.20  The amount of oxygen carried by hemoglobin depends on the PO2
(the amount of oxygen) available 

locally. (2 of 3)
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Other Factors Influencing Hemoglobin 

Saturation

• Increases in temperature, H+, Pco2, and 
BPG

– Modify structure of hemoglobin; decrease its 
affinity for O2

– Occur in systemic capillaries

– Enhance O2 unloading from blood 

– Shift O2-hemoglobin dissociation curve to right

• Decreases in these factors shift curve to 
left

– Decreases oxygen unloading from blood
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Figure 22.21  Effect of temperature, PCO2
, and blood pH on the oxygen-hemoglobin dissociation curve.
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Factors that Increase Release of O2 by 

Hemoglobin

• As cells metabolize glucose and use O2

– Pco2 and H+ increase in capillary blood 

– Declining blood pH and increasing Pco2 

• Bohr effect - Hb-O2 bond weakens  oxygen 

unloading where needed most

– Heat production increases  directly and 

indirectly decreases Hb affinity for O2 

increased oxygen unloading to active tissues
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Homeostatic Imbalance

• Hypoxia

– Inadequate O2 delivery to tissues  cyanosis

– Anemic hypoxia–too few RBCs; abnormal or too little 

Hb

– Ischemic hypoxia–impaired/blocked circulation

– Histotoxic hypoxia–cells unable to use O2, as in 

metabolic poisons

– Hypoxemic hypoxia–abnormal ventilation; 

pulmonary disease

– Carbon monoxide poisoning–especially from fire; 

200X greater affinity for Hb than oxygen
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CO2 Transport

• CO2 transported in blood in three forms

– 7 to 10% dissolved in plasma 

– 20% bound to globin of hemoglobin 

(carbaminohemoglobin)

– 70% transported as bicarbonate ions

(HCO3
–) in plasma
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Transport and Exchange of CO2

• CO2 combines with water to form carbonic 

acid (H2CO3), which quickly dissociates

• Occurs primarily in RBCs, where carbonic 

anhydrase reversibly and rapidly 

catalyzes reaction
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Transport and Exchange of CO2

• In systemic capillaries

– HCO3
– quickly diffuses from RBCs into 

plasma

• Chloride shift occurs

– Outrush of HCO3
– from RBCs balanced as Cl– moves 

into RBCs from plasma 
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Figure 22.22a  Transport and exchange of CO2 and O2.
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Transport and Exchange of CO2

• In pulmonary capillaries

– HCO3
– moves into RBCs (while Cl- move out); 

binds with H+ to form H2CO3

– H2CO3 split by carbonic anhydrase into CO2

and water

– CO2 diffuses into alveoli
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Figure 22.22b  Transport and exchange of CO2 and O2.
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Control of Respiration

• Involves higher brain centers, 

chemoreceptors, and other reflexes

• Neural controls

– Neurons in reticular formation of medulla and 

pons

– Clustered neurons in medulla important

• Ventral respiratory group

• Dorsal respiratory group
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Medullary Respiratory Centers

• Ventral respiratory group (VRG)

– Rhythm-generating and integrative center

– Sets eupnea (12–15 breaths/minute)

• Normal respiratory rate and rhythm

– Its inspiratory neurons excite inspiratory 

muscles via phrenic (diaphragm) and 

intercostal nerves (external intercostals)

– Expiratory neurons inhibit inspiratory neurons
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Medullary Respiratory Centers

• Dorsal respiratory group (DRG)

– Near root of cranial nerve IX 

– Integrates input from peripheral stretch and 

chemoreceptors; sends information  VRG
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Figure 22.23  Locations of respiratory centers and their postulated connections.
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Generation of the Respiratory Rhythm

• Not well understood

• One hypothesis

– Pacemaker neurons with intrinsic rhythmicity

• Most widely accepted hypothesis

– Reciprocal inhibition of two sets of 

interconnected pacemaker neurons in 

medulla that generate rhythm
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Figure 22.25  Changes in PCO2
and blood pH regulate ventilation by a negative feedback mechanism.
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Figure 22.26  Location and innervation of the peripheral chemoreceptors in the carotid and aortic bodies.
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Inflation Reflex 

• Hering-Breuer Reflex (inflation reflex)

– Stretch receptors in pleurae and airways 

stimulated by lung inflation 

• Inhibitory signals to medullary respiratory centers 

end inhalation and allow expiration

• Acts as protective response more than normal 

regulatory mechanism
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Figure 22.24  Neural and chemical influences on brain stem respiratory centers.
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Respiratory Adjustments: Exercise

• Adjustments geared to both intensity and 

duration of exercise

• Hyperpnea

– Increased ventilation (10 to 20 fold) in 

response to metabolic needs

• Pco2, Po2, and pH remain surprisingly 

constant during exercise
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Respiratory Adjustments: Exercise

• Three neural factors cause increase in 

ventilation as exercise begins

– Psychological stimuli—anticipation of exercise

– Simultaneous cortical motor activation of 

skeletal muscles and respiratory centers

– Excitatory impulses to respiratory centers 

from proprioceptors in moving muscles, 

tendons, joints
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Respiratory Adjustments: High Altitude

• Quick travel to altitudes above 2400 

meters (8000 feet) may  symptoms of 

acute mountain sickness (AMS)

– Atmospheric pressure and Po2 levels lower

– Headaches, shortness of breath, nausea, and 

dizziness

– In severe cases, lethal cerebral and 

pulmonary edema
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Acclimatization to High Altitude

• Acclimatization—respiratory and 

hematopoietic adjustments to long-term 

move to high altitude 

– Chemoreceptors become more responsive to 

Pco2 when Po2 declines

– Substantial decline in Po2 directly stimulates 

peripheral chemoreceptors 

– Result—minute ventilation increases and 

stabilizes in few days to 2–3 L/min higher than 

at sea level
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Homeostatic Imbalances

• Chronic obstructive pulmonary disease 
(COPD)

– Exemplified by chronic bronchitis and 
emphysema

– Irreversible decrease in ability to force air out 
of lungs

– Other common features

• History of smoking in 80% of patients 

• Dyspnea - labored breathing ("air hunger")

• Coughing and frequent pulmonary infections

• Most develop respiratory failure (hypoventilation) 
accompanied by respiratory acidosis, hypoxemia
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Homeostatic Imbalance

• Emphysema

– Permanent enlargement of alveoli; destruction 

of alveolar walls; decreased lung elasticity 

• Accessory muscles necessary for breathing

–  exhaustion from energy usage

• Hyperinflation  flattened diaphragm  reduced 

ventilation efficiency

• Damaged pulmonary capillaries  enlarged right 

ventricle
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Homeostatic Imbalance

• Chronic bronchitis

– Inhaled irritants  chronic excessive mucus 



– Inflamed and fibrosed lower respiratory 

passageways 

– Obstructed airways 

– Impaired lung ventilation and gas exchange 



– Frequent pulmonary infections
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Figure 22.27  The pathogenesis of COPD.
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Homeostatic Imbalances

• Asthma–reversible COPD

– Characterized by coughing, dyspnea, 

wheezing, and chest tightness

– Active inflammation of airways precedes 

bronchospasms

– Airway inflammation is immune response 

caused by release of interleukins, production 

of IgE, and recruitment of inflammatory cells

– Airways thickened with inflammatory exudate 

magnify effect of bronchospasms 

© 2013 Pearson Education, Inc.

Homeostatic Imbalances

• Tuberculosis (TB)

– Infectious disease caused by bacterium 

Mycobacterium tuberculosis

– Symptoms-fever, night sweats, weight loss, 

racking cough, coughing up blood

– Treatment- 12-month course of antibiotics

• Are antibiotic resistant strains 

© 2013 Pearson Education, Inc.

Homeostatic Imbalance

• Cystic fibrosis

– Most common lethal genetic disease in North 

America

– Abnormal, viscous mucus clogs passageways 

 bacterial infections

• Affects lungs, pancreatic ducts, reproductive ducts

– Cause–abnormal gene for Cl- membrane 

channel
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Homeostatic Imbalances

• Lung cancer

– Leading cause of cancer deaths in North America

– 90% of all cases result of smoking

– Three most common types

• Adenocarcinoma (~40% of cases) originates in peripheral 

lung areas - bronchial glands, alveolar cells

• Squamous cell carcinoma (20–40% of cases) in bronchial 

epithelium

• Small cell carcinoma (~20% of cases) contains lymphocyte-

like cells that originate in primary bronchi and subsequently 

metastasize

• Extra content from text
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Figure 22.28  Embryonic development of the respiratory system.
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Developmental Aspects

• By 28th week, premature baby can 

breathe on its own

• During fetal life, lungs filled with fluid and 

blood bypasses lungs

• Gas exchange takes place via placenta
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Homeostatic Imbalance

• Treatments for cystic fibrosis

– Mucus-dissolving drugs; manipulation to 

loosen mucus; antibiotics

– Research into

• Introducing normal genes

• Prodding different protein  Cl- channel

• Freeing patient's abnormal protein from ER to 

Cl- channels

• Inhaling hypertonic saline to thin mucus
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Haldane Effect

• Amount of CO2 transported affected by 

Po2

– Reduced hemoglobin (less oxygen saturation) 

forms carbaminohemoglobin and buffers H+

more easily 

– Lower Po2 and hemoglobin saturation with O2; 

more CO2 carried in blood

• Encourages CO2 exchange in tissues and 

lungs
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Haldane Effect

• At tissues, as more CO2 enters blood

– More oxygen dissociates from hemoglobin 

(Bohr effect)

– As HbO2 releases O2, it more readily forms 

bonds with CO2 to form carbaminohemoglobin
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Influence of CO2 on Blood pH

• Carbonic acid–bicarbonate buffer 

system–resists changes in blood pH

– If H+ concentration in blood rises, excess H+ is 

removed by combining with HCO3
–
 H2CO3

– If H+ concentration begins to drop, H2CO3

dissociates, releasing H+

– HCO3
– is alkaline reserve of carbonic acid-

bicarbonate buffer system



10/9/2014

21

© 2013 Pearson Education, Inc.

Chemical Factors

• Influence of arterial pH

– Can modify respiratory rate and rhythm even 

if CO2 and O2 levels normal

– Mediated by peripheral chemoreceptors

– Decreased pH may reflect

• CO2 retention; accumulation of lactic acid; excess 

ketone bodies

– Respiratory system controls attempt to raise 

pH by increasing respiratory rate and depth
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Summary of Chemical Factors

• Rising CO2 levels most powerful 

respiratory stimulant

• Normally blood Po2 affects breathing only 

indirectly by influencing peripheral 

chemoreceptor sensitivity to changes in 

Pco2
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Summary of Chemical Factors

• When arterial Po2 falls below 60 mm Hg, it 

becomes major stimulus for respiration 

(via peripheral chemoreceptors)

• Changes in arterial pH resulting from CO2

retention or metabolic factors act indirectly 

through peripheral chemoreceptors 
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Acclimatization to High Altitude

• Always lower-than-normal Hb saturation 

levels

– Less O2 available

• Decline in blood O2 stimulates kidneys to 

accelerate production of EPO

• RBC numbers increase slowly to provide 

long-term compensation


