

Exchanging Materials

- Every organism must exchange materials with its environment.
 - This exchange ultimately occurs at the cellular level.

Circulatory Systems Reflect Phylogeny

• Transport systems functionally connect the organs of exchange with the body cells.

Solubility of Gases in Distilled Water							
°C	Oxygen	Carbon Dioxide	Nitrogen	Helium			
0	21.7	767.5					
10	16.9	531.2	_				
20	13.7	386.8	6.82				
30	11.6	294.9	_				
37	10.6	250.5	5.61	3 75			
40	10.2	234.8		5.75			

°C	Salinity	Office	10%	20%	1011	
1,25			THE REAL OWN		30 %	40%a
0		21.7	20.2	18.9	17.7	16.6
10		16.9	15.8	14.8	13.9	13.1
20		13.7	12.9	12.2	11.5	10.8
30		11.6	11.0	10.4	9.86	9.31
40		10.2	9.71	9.26	8.73	8 24

Altitude	P.	Ambient nO.	p.O.	p _A CO ₂
	~ 0	rimorene poz	PA-2	
0	101	21.1	13.8	5.3
3100	70.6	14.6	8.9	4.8
4340	61.9	12.8	6.0	
6200	46	9.7	5.3	3.2
7100		normal "cei	ling'' V	
8848	33	6.9	4.0	1.5
9200	30	6.3	2.8	-
12300	19	3.9	1.1	-
14460	punning	"ceiling" with	pure O ₂	
15400	12	2.4	0.1	-
20000	6	1.3	0	0

liter ⁻¹ kPa ⁻¹ disso in equilibrium with as a function of de	blved N_2) for h the ambi epth of div	or a hum ent hydr ing.	an scuba ostatic p	diver
Partial pressures ((kPa) for o	xygen an	and nitrogenerative colar card	en (dry,
CO_2 -free values for	or ambient	air), alvo	$I O_2 \text{ per } I$	bon
dioxide, and plasm	na-dissolve	ed O_2 (mi	$O_2 \text{ is } O_2$	iter
plasma; assuming	plasma so	lubility o	$N_2 \text{ per } I$	209 ml
liter ⁻¹ kPa ⁻¹) and	fat N ₂ con	tent (ml	$N_2 \text{ per } I$	ter
body fat; assuming	g fat solub	ility of N	$N_2 \text{ is } 0.67$	ml

Ambient Pressure	101	202	1111	5151
pO ₂	21.1	42.4	233.5	1082.6
pN ₂	79.8	159.7	878.3	4072.5
Alveolar pCO ₂	5.32	5.32	5.32	5.32
Plasma O ₂	4.4	8.8	48.3	223.9
Fat N ₂	53	106	582	2700

Sea level

 $P_{O2} = 760 * 0.2094 = 159 \text{ mmHg}$

 $P_{O2} = (760-18)*0.2094 = 155 \text{ mmHg}$

The Respiratory System

- Major function-respiration
 - Supply body with O₂ for cellular respiration; dispose of CO₂, a waste product of cellular respiration
 - Its four processes involve both respiratory and circulatory systems
- · Also functions in olfaction and speech

© 2013 Pearson Education, Inc.

Processes of Respiration

- Pulmonary ventilation (breathing)movement of air into and out of lungs
- External respiration-O₂ and CO₂ exchange between lungs and blood
- Transport-O₂ and CO₂ in blood
- Internal respiration-O₂ and CO₂ exchange between systemic blood vessels and tissues

© 2013 Pearson Education. Inc

system

Bronchi and Subdivisions

- Air passages undergo 23 orders of branching → bronchial (respiratory) tree
- From tips of bronchial tree → conducting zone structures → respiratory zone structures

Conducting Zone Structures

- Trachea → right and left main (primary) bronchi
- Each main bronchus enters hilum of one lung
 - Right main bronchus wider, shorter, more vertical than left
- Each main bronchus branches into lobar (secondary) bronchi (three on right, two on left)
 - Each lobar bronchus supplies one lobe

© 2013 Pearson Education, Inc

Figure 22.7 Conducting zone passages

Conducting Zone Structures

- Each lobar bronchus branches into segmental (tertiary) bronchi
 - Segmental bronchi divide repeatedly
- Branches become smaller and smaller →
 - Bronchioles-less than 1 mm in diameter
 - Terminal bronchioles-smallest-less than 0.5 mm diameter

Superior lobe of right lung birding lobe of right lung **Conducting Zone Structures**

- From bronchi through bronchioles, structural changes occur
 - Cartilage rings become irregular plates; in bronchioles elastic fibers replace cartilage
 - Epithelium changes from pseudostratified columnar to cuboidal; cilia and goblet cells become sparse
 - Relative amount of smooth muscle increases
 Allows constriction

© 2013 Pearson Education, Inc.

Figure 22.8a Respiratory zone structures

© 2013 Pearson Education Inc.

Respiratory Zone

© 2013 Pearson Education. Inc

- Begins as terminal bronchioles → respiratory bronchioles → alveolar ducts → alveolar sacs
 - Alveolar sacs contain clusters of alveoli
 - ~300 million alveoli make up most of lung volume
 - · Sites of gas exchange

Aveolar duct reminate bronchides tronchides tronch

Figure 22.8b Respiratory zone structures.

© 2013 Pearson Education, Inc.

Respiratory Membrane

- Alveolar and capillary walls and their fused basement membranes
 - ~0.5-µm-thick; gas exchange across membrane by simple diffusion
- · Alveolar walls
 - Single layer of squamous epithelium (type I alveolar cells)
- Scattered cuboidal type II alveolar cells secrete surfactant and antimicrobial proteins

© 2013 Pearson Education, Inc

(a) Diagrammatic view of capillary-alveoli relationships

Figure 22.9b Alveoli and the respiratory memb

(b) Scanning electron micrograph of pulmonary capillary casts (70x) 9 2013 Feason Educator, Inc.

Alveoli

© 2013 Pearson Education. Inc

- Surrounded by fine elastic fibers and pulmonary capillaries
- Alveolar pores connect adjacent alveoli
 Equalize air pressure throughout lung
- Alveolar macrophages keep alveolar surfaces sterile
 - 2 million dead macrophages/hour carried by cilia \rightarrow throat \rightarrow swallowed

Figure 22.9c Alveoli and the respiratory membrane.

(c) Detailed anatomy of the respiratory membrane

© 2013 Pearson Education, Inc.

4

Lungs

- · Apex-superior tip; deep to clavicle
- · Base-inferior surface; rests on diaphragm
- **Hilum**-on mediastinal surface; site for entry/exit of blood vessels, bronchi, lymphatic vessels, and nerves
- Left lung smaller than right
 - Cardiac notch-concavity for heart
 - Separated into *superior* and *inferior* **lobes** by *oblique fissure*

© 2013 Pearson Education, Inc.

© 2013 Pearson Education, Inc

© 2013 Pearson Education. Inc

(a) Anterior view. The lungs flank mediastinal structures laterally.

Mechanics of Breathing

- Pulmonary ventilation consists of two phases
 - Inspiration-gases flow into lungs
 - Expiration-gases exit lungs

Pressure Relationships in the Thoracic Cavity

- Atmospheric pressure (P_{atm})
 - Pressure exerted by air surrounding body
 - 760 mm Hg at sea level = 1 atmosphere
- Respiratory pressures described relative to $\mathsf{P}_{\mathsf{atm}}$
 - Negative respiratory pressure-less than Patm
 - Positive respiratory pressure-greater than Patm
 - Zero respiratory pressure = P_{atm}

© 2013 Pearson Education, Inc.

Intrapulmonary Pressure

- Intrapulmonary (intra-alveolar) pressure (P_{pul})
 - Pressure in alveoli
 - Fluctuates with breathing
 - Always eventually equalizes with Patm

Intrapleural Pressure

- Intrapleural pressure (P_{ip})
 - Pressure in pleural cavity
 - Fluctuates with breathing
 - Always a negative pressure (<P_{atm} and <P_{pul})
 - Fluid level must be minimal
 - Pumped out by lymphatics
 - If accumulates \rightarrow positive P_{ip} pressure \rightarrow lung collapse

Intrapleural Pressure

© 2013 Pearson Education, Inc

Negative P_{ip} caused by opposing forces

- Two inward forces promote lung collapse
 - · Elastic recoil of lungs decreases lung size
 - · Surface tension of alveolar fluid reduces alveolar size
- One outward force tends to enlarge lungs
 - · Elasticity of chest wall pulls thorax outward

Pressure Relationships

- If $P_{ip} = P_{pul}$ or $P_{atm} \rightarrow$ lungs collapse
- (P_{pul} P_{ip}) = transpulmonary pressure - Keeps airways open
 - Greater transpulmonary pressure → larger lungs

Homeostatic Imbalance

- · Atelectasis (lung collapse) due to
 - Plugged bronchioles \rightarrow collapse of alveoli
 - Pneumothorax-air in pleural cavity
 - · From either wound in parietal or rupture of visceral pleura
 - · Treated by removing air with chest tubes; pleurae heal → lung reinflates

© 2013 Pearson Education, Inc

Pulmonary Ventilation

© 2013 Pearson Education. Inc

- Inspiration and expiration
- · Mechanical processes that depend on volume changes in thoracic cavity
 - Volume changes \rightarrow pressure changes
 - Pressure changes \rightarrow gases flow to equalize pressure

Boyle's Law

- · Relationship between pressure and volume of a gas
 - Gases fill container; if container size reduced → increased pressure
- Pressure (P) varies inversely with volume (V):

 $-P_1V_1 = P_2V_2$

Inspiration

© 2013 Pearson Education, Inc

- · Active process
 - Inspiratory muscles (diaphragm and external intercostals) contract
 - Thoracic volume increases → intrapulmonary pressure drops (to –1 mm Hg)
 - Lungs stretched and intrapulmonary volume increases
 - Air flows into lungs, down its pressure gradient, until $P_{pul} = P_{atm}$

Forced Inspiration

 Vigorous exercise, COPD → accessory muscles (scalenes, sternocleidomastoid, pectoralis minor) → further increase in thoracic cage size

Figure 22.13 Changes in thoracic volume and sequence of events during inspiration and expiration. (1 of 2) Slide

© 2013 Pearson Education, Inc.

© 2013 Pearson Education. Inc

Expiration

© 2013 Pearson Education, Inc

- Quiet expiration normally passive process
 Inspiratory muscles relax

 - Thoracic cavity volume decreases
 - Elastic lungs recoil and intrapulmonary volume decreases → pressure increases (P_{pul} rises to +1 mm Hg) →
 - Air flows out of lungs down its pressure gradient until $P_{pul} = 0$
- Note: forced expiration-active process; uses abdominal (oblique and transverse) and internal intercostal muscles

© 2013 Pearson Education, Inc.

Figure 22.13 Changes in thoracic volume and sequence of events during inspiration and expiration. (2 of 2) Slide 1

© 2013 Pearson Education, Inc

Figure 22.14 Changes in intrapulmonary and intrapleural pressures during inspiration and expiration

Physical Factors Influencing Pulmonary Ventilation

- Three physical factors influence the ease of air passage and the amount of energy required for ventilation.
 - Airway resistance
 - Alveolar surface tension
 - Lung compliance

Airway Resistance

- Friction-major nonelastic source of resistance to gas flow; occurs in airways
- Relationship between flow (F), pressure (P), and resistance (R) is:

$$F = \frac{\Delta P}{R}$$

- $-\Delta P$ pressure gradient between atmosphere and alveoli (2 mm Hg or less during normal quiet breathing)
- Gas flow changes inversely with resistance

Airway Resistance

© 2013 Pearson Education, Inc

- · Resistance usually insignificant
 - Large airway diameters in first part of conducting zone
 - Progressive branching of airways as get smaller, increasing total cross-sectional area
 - Resistance greatest in medium-sized bronchi
- Resistance disappears at terminal bronchioles where diffusion drives gas movement

© 2013 Pearson Education, Inc.

© 2013 Pearson Education. Inc

Homeostatic Imbalance

- As airway resistance rises, breathing movements become more strenuous
- Severe constriction or obstruction of bronchioles
 - Can prevent life-sustaining ventilation
 - Can occur during acute asthma attacks; stops ventilation
- Epinephrine dilates bronchioles, reduces air resistance

© 2013 Pearson Education, Inc.

© 2013 Pearson Education, Inc

Alveolar Surface Tension

Surface tension

- Attracts liquid molecules to one another at gas-liquid interface
- Resists any force that tends to increase surface area of liquid
- Water–high surface tension; coats alveolar walls → reduces them to smallest size

Alveolar Surface Tension

- Surfactant
 - Detergent-like lipid and protein complex produced by type II alveolar cells
 - Reduces surface tension of alveolar fluid and discourages alveolar collapse
 - Insufficient quantity in premature infants causes infant respiratory distress syndrome
 - $\boldsymbol{\cdot} \rightarrow \text{alveoli collapse after each breath}$

Lung Compliance

- Measure of change in lung volume that occurs with given change in transpulmonary pressure
- Higher lung compliance → easier to expand lungs
- Normally high due to
 - Distensibility of lung tissue
 - Surfactant, which decreases alveolar surface tension

Lung Compliance

• Diminished by

© 2013 Pearson Education, Inc

© 2013 Pearson Education, Inc.

- Nonelastic scar tissue replacing lung tissue (fibrosis)
- Reduced production of surfactant
- Decreased flexibility of thoracic cage

© 2013 Pearson Education, Inc

© 2013 Pearson Education, Inc

Total Respiratory Compliance

- The total compliance of the respiratory system is also influenced by compliance (distensibility) of the thoracic wall, which is decreased by:
 - Deformities of thorax
 - Ossification of costal cartilage
 - Paralysis of intercostal muscles

Respiratory Volumes

- Used to assess respiratory status – Tidal volume (TV)

 - Inspiratory reserve volume (IRV)
 - Expiratory reserve volume (ERV)
 - Residual volume (RV)

Figure 22.16b Respiratory volumes and capacities.

	Measurement	Adult male average value	Adult female average value	Description
ſ	Tidal volume (TV)	500 ml	500 ml	Amount of air inhaled or exhaled with each breath under resting conditions
Baurinten	Inspiratory reserve volume (IRV)	3100 ml	1900 ml	Amount of air that can be forcefully inhaled after a normal tidal volume inspiration
volumes	Expiratory reserve volume (ERV)	1200 ml	700 ml	Amount of air that can be forcefully exhaled after a normal tidal volume expiration
	Residual volume (RV)	1200 ml	1100 ml	Amount of air remaining in the lungs after a forced expiration
	Total lung capacity (TLC) 6000 ml	4200 ml	Maximum amount of air contained in lungs after a maximum inspiratory effort: TLC = TV + IRV + ERV + RV
Bausinstan	Vital capacity (VC)	4800 ml	3100 ml	Maximum amount of air that can be expired after a maximum inspiratory effort: VC = TV + IRV + ERV
capacities	Inspiratory capacity (IC)	3600 ml	2400 ml	Maximum amount of air that can be inspired after a normal tidal volume expiration: IC = TV + IRV
	Functional residual capacity (FRC)	2400 ml	1800 ml	Volume of air remaining in the lungs after a normal tidal volume expiration: FRC = ERV + RV

(b) Summary of respiratory volumes and capacities for males and females

Figure 22.16a Respiratory volumes and capacities.

⁽a) Spirographic record for a male

Dead Space

- Anatomical dead space

 No contribution to gas exchange
 Air remaining in passageways; ~150 ml
- Alveolar dead space-non-functional alveoli due to collapse or obstruction
- Total dead space-sum of anatomical and alveolar dead space

Pulmonary Function Tests

- **Spirometer**-instrument for measuring respiratory volumes and capacities
- · Spirometry can distinguish between
 - Obstructive pulmonary disease—increased airway resistance (e.g., bronchitis)
 TLC, FRC, RV may increase
 - Restrictive disorders—reduced TLC due to disease or fibrosis
 - VC, TLC, FRC, RV decline

© 2013 Pearson Education, Inc.

Pulmonary Function Tests

- To measure *rate* of gas movement
 - Forced vital capacity (FVC)—gas forcibly expelled after taking deep breath
 - Forced expiratory volume (FEV)—amount of gas expelled during specific time intervals of FVC

Alveolar Ventilation

© 2013 Pearson Education, Inc

© 2013 Pearson Education, Inc.

- Minute ventilation—total amount of gas flow into or out of respiratory tract in one minute
 - Normal at rest = ~ 6 L/min
 - Normal with exercise = up to 200 L/min
 - Only rough estimate of respiratory efficiency

Table 22.2 Effects of Breathing Rate and Depth on Alveolar ventilation of Three Hypothetical Patients

	Breathing Rate					
BREATHING PATTERN OF HYPOTHETICAL PATIENT	DEAD SPACE VOLUME (DSV)	TIDAL VOLUME (TV)	RESPIRATORY RATE*	MINUTE VENTILATION (MVR)	ALVEOLAR VENTILATION (AVR)	% EFFECTIVE VENTILATION (AVR/MVR)
I-Normal rate and depth	150 ml	500 ml	20/min	10,000 mVmin	7000 ml/min	70%
II-Slow, deep breathing	150 ml	1000 ml	10/min	10,000 ml/min	8500 ml/min	85%
III-Rapid, shallow breathing	150 ml	250 ml	40/min	10,000 ml/min	4000 ml/min	40%

*Respiratory rate values are artificially adjusted to provide equivalent minute ventilation as a baseline for comparing alveolar ventilation

Gas Exchanges Between Blood, Lungs, and Tissues

- External respiration-diffusion of gases in lungs
- Internal respiration-diffusion of gases at body tissues
- · Both involve

© 2013 Pearson Education. Inc

- Physical properties of gases
- Composition of alveolar gas

Basic Properties of Gases: Dalton's Law of Partial Pressures

• Total pressure exerted by mixture of gases = sum of pressures exerted by each gas

· Partial pressure

- Pressure exerted by each gas in mixture
- Directly proportional to its percentage in mixture

Basic Properties of Gases: Henry's Law

- · Gas mixtures in contact with liquid
 - Each gas dissolves in proportion to its partial pressure
 - At equilibrium, partial pressures in two phases will be equal
 - Amount of each gas that will dissolve depends on
 - Solubility–CO $_2$ 20 times more soluble in water than O $_2;$ little N $_2$ dissolves in water
 - Temperature-as temperature rises, solubility decreases

© 2013 Pearson Education, Inc.

© 2013 Pearson Education, Inc.

© 2013 Pearson Education. Inc

Composition of Alveolar Gas

- Alveoli contain more CO₂ and water vapor than atmospheric air
 - Gas exchanges in lungs
 - Humidification of air
 - Mixing of alveolar gas with each breath

Table 22.4	and in the Alveoli	al Pressures and Approximate	Percentages in the Atmos		
	ATMOSPHE	RE (SEA LEVEL)	ALVEOLI		
GAS	APPROXIMATE PERCENTAGE	PARTIAL PRESSURE (mm Hg)	APPROXIMATE PERCENTAGE	PARTIAL PRESSURE (mm Hg)	
N2	78.6	597	74.9	569	
01	20.9	159	13.7	104	
CO2	0.04	0.3	5.2	40	
H ₂ O	0.46	3.7	6.2	47	
	100.0%	760	100.0%	760	

Table 22.4 Comparison of Gas Partial Pressures and Approximate Percentages in the Atmosphere and in the Alveoli

© 2013 Pearson Education, Inc.

© 2013 Pearson Education, Inc

External Respiration

- Exchange of O₂ and CO₂ across respiratory membrane
- · Influenced by

© 2013 Pearson Education. Inc

- Thickness and surface area of respiratory membrane
- Partial pressure gradients and gas solubilities
- Ventilation-perfusion coupling

Thickness and Surface Area of the Respiratory Membrane

- Respiratory membranes
 - 0.5 to 1 μ m thick
 - Large total surface area (40 times that of skin) for gas exchange
- Thicken if lungs become waterlogged and edematous → gas exchange inadequate
- Reduced surface area in emphysema (walls of adjacent alveoli break down), tumors, inflammation, mucus

Partial Pressure Gradients and Gas Solubilities

- Steep partial pressure gradient for O₂ in lungs
 - Venous blood $Po_2 = 40 \text{ mm Hg}$
 - Alveolar Po₂ = 104 mm Hg
 - · Drives oxygen flow to blood
 - · Equilibrium reached across respiratory membrane in ~0.25 seconds, about 1/3 time a red blood cell in pulmonary capillary →
 - Adequate oxygenation even if blood flow increases 3X

© 2013 Pearson Education, Inc

Partial Pressure Gradients and Gas Solubilities

- Partial pressure gradient for CO₂ in lungs less steep
 - Venous blood $Pco_2 = 45 \text{ mm Hg}$
 - Alveolar $Pco_2 = 40 \text{ mm Hg}$
- Though gradient not as steep, CO₂ diffuses in equal amounts with oxygen
 - CO₂ 20 times more soluble in plasma than oxygen

Ventilation-Perfusion Coupling

- Perfusion-blood flow reaching alveoli
- · Ventilation-amount of gas reaching alveoli
- Ventilation and perfusion matched (coupled) for efficient gas exchange
 - Never balanced for all alveoli due to
 - · Regional variations due to effect of gravity on blood and air flow
 - · Some alveolar ducts plugged with mucus

Ventilation-Perfusion Coupling

Perfusion

© 2013 Pearson Education. Inc

© 2013 Pearson Education In

- Changes in Po2 in alveoli cause changes in diameters of arterioles
 - Where alveolar O22 is high, arterioles dilate
 - · Where alveolar O2 is low, arterioles constrict
 - · Directs most blood where alveolar oxygen high

© 2013 Pearson Education. Inc

© 2013 Pearson Education Inc.

12

Ventilation-Perfusion Coupling

- Changes in Pco₂ in alveoli cause changes in diameters of bronchioles
 - Where alveolar CO2 is high, bronchioles dilate
 - Where alveolar CO_2 is low, bronchioles constrict
 - Allows elimination of CO₂ more rapidly

Figure 22.19 Ventilation-perfusion coupling.

© 2013 Pearson Education, Inc.

© 2013 Pearson Education Inc.

© 2013 Pearson Education. Inc

Transport of Respiratory Gases by Blood

• Oxygen (O₂) transport

© 2013 Pearson Education, Inc

© 2013 Pearson Education, Inc

© 2013 Pearson Education. Inc

Carbon dioxide (CO₂) transport

O₂ Transport

- Molecular O₂ carried in blood
 - 1.5% dissolved in plasma
 - 98.5% loosely bound to each Fe of hemoglobin (Hb) in RBCs
 4 O₂ per Hb

O₂ and Hemoglobin

- **Oxyhemoglobin** (HbO₂)-hemoglobin-O₂ combination
- Reduced hemoglobin (deoxyhemoglobin) (HHb)-hemoglobin that has released O₂

 $\begin{array}{c} \text{Lungs} \\ \text{HHb} + \text{O}_2 & \longleftrightarrow & \text{HbO}_2 + \text{H}^+ \\ & \text{Tissues} \end{array}$

O₂ and Hemoglobin

- Loading and unloading of O_{2} facilitated by change in shape of Hb
 - As O_2 binds, Hb affinity for O_2 increases
 - As O_2 is released, Hb affinity for O_2 decreases
- Fully saturated (100%) if all four heme groups carry O₂
- Partially saturated when one to three hemes carry O₂

Figure 22.20 The amount of oxygen locally. (1 of 3) 89 88 22 88 40 60 PO₂ (mm Hg) © 2013 Pearson Education, In

in depends on the Po, (the amount of oxygen) available

Influence of Po₂ on Hemoglobin Saturation

- · In arterial blood
 - $-Po_2 = 100 \text{ mm Hg}$
 - Contains 20 ml oxygen per 100 ml blood (20 vol %)
 - Hb is 98% saturated
- Further increases in Po₂ (e.g., breathing deeply) produce minimal increases in O₂ binding

Influence of Po₂ on Hemoglobin Saturation

- · In venous blood
 - $-Po_2 = 40 \text{ mm Hg}$
 - Contains 15 vol % oxygen
 - Hb is 75% saturated
 - Venous reserve

© 2013 Pearson Education, Inc

© 2013 Pearson Education. Inc

· Oxygen remaining in venous blood

Figure 22.20 The locally. (2 of 3)

© 2013 Pearson Education, Inc

© 2013 Pearson Education. Inc

Figure 22.21 Effect of temperat

© 2013 Pearson Education, Inc

Other Factors Influencing Hemoglobin Saturation

- Increases in temperature, H+, Pco₂, and BPG
 - Modify structure of hemoglobin; decrease its affinity for O₂
 - Occur in systemic capillaries
 - Enhance O₂ unloading from blood
 - Shift O2-hemoglobin dissociation curve to right
- · Decreases in these factors shift curve to left
 - Decreases oxygen unloading from blood

hemoglobin dissociation cu 40 Po 6

Factors that Increase Release of $\rm O_2$ by Hemoglobin

- As cells metabolize glucose and use O₂ – Pco₂ and H⁺ increase in capillary blood →
 - Declining blood pH and increasing $Pco_2 \rightarrow$
 - Bohr effect Hb-O₂ bond weakens → oxygen unloading where needed most
 - Heat production increases → directly and indirectly decreases Hb affinity for O₂ → increased oxygen unloading to active tissues

Homeostatic Imbalance

• Hypoxia

© 2013 Pearson Education, Inc

- Inadequate O₂ delivery to tissues → cyanosis
- Anemic hypoxia–too few RBCs; abnormal or too little Hb
- Ischemic hypoxia-impaired/blocked circulation
- Histotoxic hypoxia–cells unable to use O₂, as in metabolic poisons
- Hypoxemic hypoxia–abnormal ventilation; pulmonary disease
- Carbon monoxide poisoning–especially from fire; 200X greater affinity for Hb than oxygen

© 2013 Pearson Education, Inc

© 2013 Pearson Education Inc.

© 2013 Pearson Education. Inc

CO₂ Transport

- CO₂ transported in blood in three forms - 7 to 10% dissolved in plasma
 - 20% bound to *globin* of hemoglobin (carbaminohemoglobin)
 - 70% transported as bicarbonate ions (HCO₃⁻) in plasma

Transport and Exchange of CO₂

• CO₂ combines with water to form carbonic acid (H₂CO₃), which quickly dissociates

$CO_2 +$	$-H_2O \equiv$	\Longrightarrow H ₂ CO ₃ \equiv	\rightarrow H ⁺	+ HCO ₃ ⁻
carbon	water	carbonic	hydrogen	bicarbonate
dioxide		acid	ion	ion

 Occurs primarily in RBCs, where carbonic anhydrase reversibly and rapidly catalyzes reaction

© 2013 Pearson Education, Inc

Transport and Exchange of CO₂

- In systemic capillaries
 - HCO₃[–] quickly diffuses from RBCs into plasma
 - · Chloride shift occurs
 - Outrush of HCO₃[−] from RBCs balanced as CI[−] moves into RBCs from plasma

Figure 22.22a Transport and exchange of CO_2 and O_2

(a) Oxygen release and carbon dioxide pickup at the tissues

Transport and Exchange of CO₂

- · In pulmonary capillaries
 - HCO₃⁻ moves into RBCs (while Cl⁻ move out); binds with H⁺ to form H₂CO₃
 - $\rm H_2CO_3$ split by carbonic anhydrase into $\rm CO_2$ and water
 - CO2 diffuses into alveoli

Figure 22.22b Transport and exchange of CO₂ and O₂

(b) Oxygen pickup and carbon dioxide release in the lungs

© 2013 Pearson Education, Inc

Control of Respiration

- Involves higher brain centers, chemoreceptors, and other reflexes
- · Neural controls

© 2013 Pearson Education, Inc

© 2013 Pearson Education, Inc

© 2013 Pearson Education. Inc

- Neurons in reticular formation of medulla and pons
- Clustered neurons in medulla important
 - Ventral respiratory group
 - Dorsal respiratory group

Medullary Respiratory Centers

- Ventral respiratory group (VRG)
 - Rhythm-generating and integrative center
 - Sets eupnea (12–15 breaths/minute)
 Normal respiratory rate and rhythm
 - Its inspiratory neurons excite inspiratory muscles via phrenic (diaphragm) and intercostal nerves (external intercostals)
 - Expiratory neurons inhibit inspiratory neurons

© 2013 Pearson Education, Inc

Medullary Respiratory Centers

- Dorsal respiratory group (DRG)
 - Near root of cranial nerve IX
 - Integrates input from peripheral stretch and chemoreceptors; sends information → VRG

Generation of the Respiratory Rhythm

· Not well understood

© 2013 Pearson Education, Inc

- One hypothesis – Pacemaker neurons with intrinsic rhythmicity
- Most widely accepted hypothesis
 - Reciprocal inhibition of two sets of interconnected pacemaker neurons in medulla that generate rhythm

Figure 22.26 Location and innervation of the peripheral chemoreceptors in the carotid and aortic bodies.

Inflation Reflex

- Hering-Breuer Reflex (inflation reflex)
 - Stretch receptors in pleurae and airways stimulated by lung inflation
 - Inhibitory signals to medullary respiratory centers end inhalation and allow expiration
 - Acts as protective response more than normal regulatory mechanism

© 2013 Pearson Education, Inc.

Respiratory Adjustments: Exercise

- Adjustments geared to both intensity and duration of exercise
- Hyperpnea

- Increased ventilation (10 to 20 fold) in response to metabolic needs
- Pco₂, Po₂, and pH remain surprisingly constant during exercise

Respiratory Adjustments: Exercise

- Three neural factors cause increase in ventilation as exercise begins
 - Psychological stimuli-anticipation of exercise
 - Simultaneous cortical motor activation of skeletal muscles and respiratory centers
 - Excitatory impulses to respiratory centers from proprioceptors in moving muscles, tendons, joints

Respiratory Adjustments: High Altitude

- Quick travel to altitudes above 2400 meters (8000 feet) may → symptoms of acute mountain sickness (AMS)
 - Atmospheric pressure and Po₂ levels lower
 - Headaches, shortness of breath, nausea, and dizziness
 - In severe cases, lethal cerebral and pulmonary edema

© 2013 Pearson Education, Inc.

Acclimatization to High Altitude

- Acclimatization—respiratory and hematopoietic adjustments to long-term move to high altitude
 - Chemoreceptors become more responsive to Pco_2 when Po_2 declines
 - Substantial decline in Po₂ directly stimulates peripheral chemoreceptors
 - Result—minute ventilation increases and stabilizes in few days to 2–3 L/min higher than at sea level

© 2013 Pearson Education, Inc.

© 2013 Pearson Education. Inc

Homeostatic Imbalances

- Chronic obstructive pulmonary disease (COPD)
 - Exemplified by chronic bronchitis and emphysema
 - Irreversible decrease in ability to force air out of lungs
 - Other common features
 - History of smoking in 80% of patients
 - Dyspnea labored breathing ("air hunger")
 - · Coughing and frequent pulmonary infections
 - Most develop respiratory failure (hypoventilation)
 - accompanied by respiratory acidosis, hypoxemia

© 2013 Pearson Education, Inc.

© 2013 Pearson Education, Inc

Homeostatic Imbalance

- · Emphysema
 - Permanent enlargement of alveoli; destruction of alveolar walls; decreased lung elasticity →
 - Accessory muscles necessary for breathing
 → exhaustion from energy usage
 - Hyperinflation → flattened diaphragm → reduced ventilation efficiency
 - Damaged pulmonary capillaries → enlarged right ventricle

Homeostatic Imbalance

- · Chronic bronchitis
 - Inhaled irritants \rightarrow chronic excessive mucus \rightarrow
 - Inflamed and fibrosed lower respiratory passageways \rightarrow
 - Obstructed airways \rightarrow
 - − Impaired lung ventilation and gas exchange →
 - Frequent pulmonary infections

Homeostatic Imbalances

- Asthma–reversible COPD
 - Characterized by coughing, dyspnea, wheezing, and chest tightness
 - Active inflammation of airways precedes bronchospasms
 - Airway inflammation is immune response caused by release of interleukins, production of IgE, and recruitment of inflammatory cells
 - Airways thickened with inflammatory exudate magnify effect of bronchospasms

© 2013 Pearson Education, Inc.

© 2013 Pearson Education, Inc

Homeostatic Imbalances

Tuberculosis (TB)

- Infectious disease caused by bacterium Mycobacterium tuberculosis
- Symptoms-fever, night sweats, weight loss, racking cough, coughing up blood
- Treatment- 12-month course of antibiotics
 Are antibiotic resistant strains

Homeostatic Imbalance

- Cystic fibrosis
 - Most common lethal genetic disease in North America
 - Abnormal, viscous mucus clogs passageways
 → bacterial infections
 - Affects lungs, pancreatic ducts, reproductive ducts
 - Cause–abnormal gene for Cl⁻ membrane channel

© 2013 Pearson Education, Inc.

Homeostatic Imbalances

Lung cancer

- Leading cause of cancer deaths in North America
- 90% of all cases result of smoking
- Three most common types
 - Adenocarcinoma (~40% of cases) originates in peripheral lung areas - bronchial glands, alveolar cells
 - Squamous cell carcinoma (20–40% of cases) in bronchial epithelium
 - Small cell carcinoma (~20% of cases) contains lymphocytelike cells that originate in primary bronchi and subsequently metastasize

· Extra content from text

Figure 22.28 Embryonic development of the respiratory system.

Developmental Aspects

- By 28th week, premature baby can breathe on its own
- During fetal life, lungs filled with fluid and blood bypasses lungs
- · Gas exchange takes place via placenta

© 2013 Pearson Education, Inc.

Homeostatic Imbalance

- · Treatments for cystic fibrosis
 - Mucus-dissolving drugs; manipulation to loosen mucus; antibiotics
 - Research into
 - Introducing normal genes
 - Prodding different protein \rightarrow Cl⁻ channel
 - Freeing patient's abnormal protein from ER to \rightarrow Cl $^{\rm c}$ channels
 - · Inhaling hypertonic saline to thin mucus

© 2013 Pearson Education, Inc.

© 2013 Pearson Education. Inc

Haldane Effect

© 2013 Pearson Education, Inc

- Amount of CO_2 transported affected by Po_2
 - Reduced hemoglobin (less oxygen saturation) forms carbaminohemoglobin and buffers H⁺ more easily →
 - Lower Po₂ and hemoglobin saturation with O₂; more CO₂ carried in blood
- Encourages CO₂ exchange in tissues and lungs

© 2013 Pearson Education, Inc.

Haldane Effect

- At tissues, as more CO₂ enters blood
 - More oxygen dissociates from hemoglobin (Bohr effect)
 - As HbO₂ releases O₂, it more readily forms bonds with CO₂ to form carbaminohemoglobin

Influence of CO₂ on Blood pH

- Carbonic acid–bicarbonate buffer system–resists changes in blood pH
 - If H⁺ concentration in blood rises, excess H⁺ is removed by combining with $HCO_3^- \rightarrow H_2CO_3$
 - If H⁺ concentration begins to drop, H_2CO_3 dissociates, releasing H⁺
 - HCO₃⁻ is alkaline reserve of carbonic acidbicarbonate buffer system

Chemical Factors

- · Influence of arterial pH
 - Can modify respiratory rate and rhythm even if CO₂ and O₂ levels normal
 - Mediated by peripheral chemoreceptors
 - Decreased pH may reflect
 - CO₂ retention; accumulation of lactic acid; excess ketone bodies
 - Respiratory system controls attempt to raise pH by increasing respiratory rate and depth

© 2013 Pearson Education, Inc.

Summary of Chemical Factors

- Rising CO₂ levels most powerful respiratory stimulant
- Normally blood Po₂ affects breathing only indirectly by influencing peripheral chemoreceptor sensitivity to changes in Pco₂

Summary of Chemical Factors

- When arterial Po₂ falls below 60 mm Hg, it becomes major stimulus for respiration (via peripheral chemoreceptors)
- Changes in arterial pH resulting from CO₂ retention or metabolic factors act indirectly through peripheral chemoreceptors

Acclimatization to High Altitude

- Always lower-than-normal Hb saturation levels
 - Less O₂ available
- Decline in blood O₂ stimulates kidneys to accelerate production of EPO
- RBC numbers increase slowly to provide long-term compensation

© 2013 Pearson Education, Inc.

© 2013 Pearson Education, Inc.