

PowerPoint[®] Lecture Slides prepared by Barbara Heard, Atlantic Cape Community College

The Immune System: Innate and Adaptive Body

Immunity

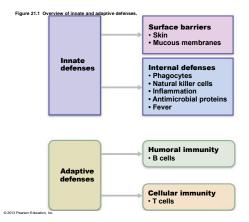
- · Resistance to disease
- · Immune system
 - Two intrinsic systems
 - Innate (nonspecific) defense system
 - · Adaptive (specific) defense system

Immune System

- Functional system rather than organ system
- · Innate and adaptive defenses intertwined
- Release and recognize many of same defensive molecules
- Innate defenses do have specific pathways for certain substances
- Innate responses release proteins that alert cells of adaptive system to foreign molecules

© 2013 Pearson Education, Inc.

Immunity


© 2013 Pearson Education, Inc

- Innate defense system has two lines of defense
 - First external body membranes (skin and mucosae)
 - Second antimicrobial proteins, phagocytes, and other cells
 - · Inhibit spread of invaders
 - Inflammation most important mechanism

© 2013 Pearson Education, Inc

Immunity

- · Adaptive defense system
 - Third line of defense attacks *particular* foreign substances
 - · Takes longer to react than innate system

Innate Defenses

- Surface barriers ward off invading pathogens
 - Skin, mucous membranes, and their secretions
 - Physical barrier to most microorganisms
 - Keratin resistant to weak acids and bases, bacterial enzymes, and toxins
 - Mucosae provide similar mechanical barriers

© 2013 Pearson Education. Inc.

Surface Barriers

- Protective chemicals inhibit or destroy microorganisms
 - Acidity of skin and secretions acid mantle inhibits growth
 - Enzymes lysozyme of saliva, respiratory mucus, and lacrimal fluid – kill many microorganisms
 - Defensins antimicrobial peptides inhibit growth
 - Other chemicals lipids in sebum, dermcidin in sweat – toxic

© 2013 Pearson Education, Inc

Surface Barriers

- Respiratory system modifications
 - Mucus-coated hairs in nose
 - Cilia of upper respiratory tract sweep dustand bacteria-laden mucus toward mouth
- Surface barriers breached by nicks or cuts
 second line of defense must protect deeper tissues

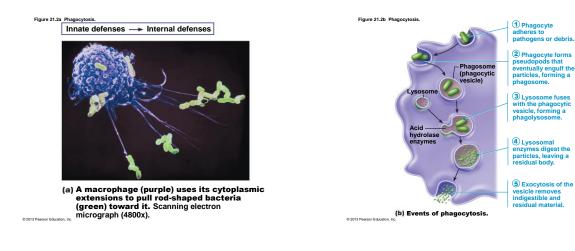
Internal Defenses: Cells and Chemicals

- Necessary if microorganisms invade deeper tissues
 - Phagocytes
 - Natural killer (NK) cells
 - Antimicrobial proteins (interferons and complement proteins)
 - Fever
 - Inflammatory response (macrophages, mast cells, WBCs, and inflammatory chemicals)

© 2013 Pearson Education, Inc.

© 2013 Pearson Education. Inc

Phagocytes


© 2013 Pearson Education, Inc

- Neutrophils most abundant but die fighting
 - Become phagocytic on exposure to infectious material
- Macrophages develop from monocytes chief phagocytic cells – robust cells
 - Free macrophages wander through tissue spaces, e.g., alveolar macrophages
 - Fixed macrophages permanent residents of some organs; e.g., stellate macrophages (liver) and microglia (brain)

Mechanism of Phagocytosis

- Phagocyte must adhere to particle
 - Some microorganisms evade adherence with capsule
 - **Opsonization** marks pathogens—coating by complement proteins or antibodies
- Cytoplasmic extensions bind to and engulf particle in vesicle called phagosome
- Phagosome fuses with lysosome → phagolysosome

Slide

Mechanism of Phagocytosis

- Pathogens killed by acidifying and digesting with lysosomal enzymes
- Helper T cells cause release of enzymes of respiratory burst, which kill pathogens resistant to lysosomal enzymes by
 - Releasing cell-killing free radicals
 - Producing oxidizing chemicals (e.g., H₂O₂)
 - Increasing pH and osmolarity of phagolysosome
- · Defensins (in neutrophils) pierce membrane

© 2013 Pearson Education, Inc.

© 2013 Pearson Education. Inc

Natural Killer (NK) Cells

- Nonphagocytic large granular lymphocytes
- Attack cells that lack "self" cell-surface receptors
 - Induce apoptosis in cancer cells and virusinfected cells
- Secrete potent chemicals that enhance inflammatory response

© 2013 Pearson Education, Inc.

Inflammatory Response

- · Triggered whenever body tissues injured
- · Prevents spread of damaging agents
- · Disposes of cell debris and pathogens
- Alerts adaptive immune system
- · Sets the stage for repair

Inflammatory Response

- · Cardinal signs of acute inflammation:
 - 1. Redness
 - 2. Heat
 - 3. Swelling
 - 4. Pain
 - (Sometimes 5. Impairment of function)

Inflammatory Response

- Begins with chemicals released into ECF by injured tissues, immune cells, blood proteins
- Macrophages and epithelial cells of boundary tissues bear Toll-like receptors (TLRs)
- 11 types of TLRs recognize specific classes of infecting microbes
- Activated TLRs trigger release of cytokines that promote inflammation

© 2013 Pearson Education, Inc.

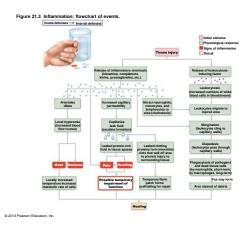
Inflammatory Response

- Inflammatory mediators
 - Kinins, prostaglandins (PGs), and complement
 - Dilate local arterioles (hyperemia)
 Causes redness and heat of inflamed region
 - Make capillaries leaky
 - Make capillaties leaky
 - Many attract leukocytes to area
 - Some have inflammatory roles

Inflammatory Response: Edema

- ↑ Capillary permeability → exudate to tissues
 - Fluid containing clotting factors and antibodies
 - Causes local swelling (edema)
 - Swelling pushes on nerve endings \rightarrow pain
 - Pain also from bacterial toxins, prostaglandins, and kinins
 - Moves foreign material into lymphatic vessels
 - Delivers clotting proteins and complement

© 2013 Pearson Education, Inc.

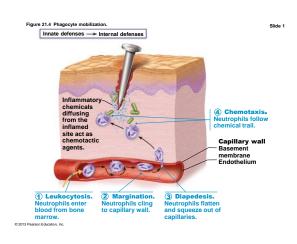


- Clotting factors form fibrin mesh
 Scaffold for repair
 - Isolates injured area so invaders cannot spread

© 2013 Pearson Education, Inc.

© 2013 Pearson Education. Inc

© 2013 Pearson Education Inc.


Phagocyte Mobilization

- Neutrophils lead; macrophages follow
 - As attack continues, monocytes arrive
 - 12 hours after leaving bloodstream → macrophages
 - These "late-arrivers" replace dying neutrophils and remain for clean up prior to repair
- If inflammation due to pathogens, complement activated; adaptive immunity elements arrive

Phagocyte Mobilization

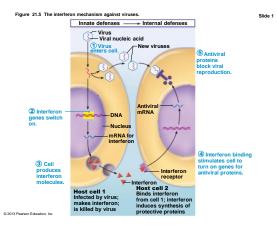
- · Steps for phagocyte mobilization
 - 1. Leukocytosis: release of neutrophils from bone marrow in response to leukocytosisinducing factors from injured cells
 - 2. Margination: neutrophils cling to walls of capillaries in inflamed area in response to CAMs
 - 3. Diapedesis of neutrophils
 - 4. Chemotaxis: inflammatory chemicals (chemotactic agent) promote positive chemotaxis of neutrophils

© 2013 Pearson Education, Inc.

Antimicrobial Proteins

- Include interferons and complement proteins
- · Some attack microorganisms directly
- Some hinder microorganisms' ability to reproduce

Interferons


- Family of immune modulating proteins – Have slightly different physiological effects
- Viral-infected cells secrete IFNs (e.g., IFN alpha and beta) to "warn" neighboring cells
 - IFNs enter neighboring cells → produce proteins that block viral reproduction and degrade viral RNA
 - IFN alpha and beta also activate NK cells

© 2013 Pearson Education, Inc.

Interferons

© 2013 Pearson Education, Inc

- IFN gamma (immune interferon)
 - Secreted by lymphocytes
 - Widespread immune mobilizing effects
 - Activates macrophages
- Since IFNs activate NK cells and macrophages, indirectly & directly fight cancer. HOW- Neighboring cells make anitiviral when IF stimulated ..after formed IF can activate NK cells to attack cancer cells.
- Artificial IFNs used to treat hepatitis C, genital warts, multiple sclerosis, hairy cell leukemia

Complement System (Complement)

- ~20 blood proteins that circulate in inactive form
- Include C1–C9, factors B, D, and P, and regulatory proteins
- Major mechanism for destroying foreign substances
- Our cells contain complement activation inhibitors

Complement

- Unleashes inflammatory chemicals that amplify all aspects of inflammatory response
- Kills bacteria and certain other cell types by cell lysis
- Enhances both innate and adaptive defenses

Complement Activation

© 2013 Pearson Education, Inc

© 2013 Pearson Education, Inc

© 2013 Pearson Education. Inc

· Three pathways to activation

- Classical pathway

- Antibodies bind to invading organisms and to complement components
- Called complement fixation
- · First step in activation; more details later

Complement

© 2013 Pearson Education Inc.

Lectin pathway

- Lectins produced by innate system to recognize foreign invaders
- When bound to foreign invaders can also bind and activate complement

Alternative pathway

 Activated spontaneously, lack of inhibitors on microorganism's surface allows process to proceed

© 2013 Pearson Education, Inc.

Complement Activation

- Each pathway involves activation of proteins in an orderly sequence
- · Each step catalyzes the next
- Each pathway converges on C3, which cleaves into C3a and C3b
- Common terminal pathway initiated that

 Enhances inflammation, promotes
 phagocytosis, causes cell lysis

Complement Activation

- · Cell lysis begins when
 - − C3b binds to target cell → insertion of complement proteins called membrane attack complex (MAC) into cell's membrane
 - MAC forms and stabilizes hole in membrane \rightarrow influx of water \rightarrow lysis of cell
- · C3b also causes opsonization
- C3a and other cleavage products amplify inflammation
 - Stimulate mast cells and basophils to release histamine
 - Attract neutrophils and other inflammatory cells

<caption>

Fever

© 2013 Pearson Education, Inc

© 2013 Pearson Education, Inc

- · Abnormally high body temperature
- Systemic response to invading microorganisms
- Leukocytes and macrophages exposed to foreign substances secrete **pyrogens**
- Pyrogens act on body's thermostat in hypothalamus, raising body temperature

Fever

- · Benefits of moderate fever
 - Causes liver and spleen to sequester iron and zinc (needed by microorganisms)
 - Increases metabolic rate \rightarrow faster repair

Adaptive Defenses

- Adaptive immune (specific defense) system
 - Protects against infectious agents and abnormal body cells
 - Amplifies inflammatory response
 - Activates complement
 - Must be primed by initial exposure to specific foreign substance
 - · Priming takes time

© 2013 Pearson Education, Inc.

© 2013 Pearson Education. Inc

Adaptive Defenses

- Specific recognizes and targets specific antigens
- Systemic not restricted to initial site
- Have memory stronger attacks to "known" antigens
- Two separate, overlapping arms
 Humoral (antibody-mediated) immunity
 - Cellular (cell-mediated) immunity

Humoral Immunity

- Antibodies, produced by lymphocytes, circulating freely in body fluids
- · Bind temporarily to target cell
 - Temporarily inactivate
 - Mark for destruction by phagocytes or complement
- Humoral immunity has extracellular targets

Cellular Immunity

- Lymphocytes act against target cell
 - Directly by killing infected cells
 - Indirectly by releasing chemicals that enhance inflammatory response; or activating other lymphocytes or macrophages
- · Cellular immunity has cellular targets

Antigens

© 2013 Pearson Education, Inc

© 2013 Pearson Education, Inc.

© 2013 Pearson Education. Inc.

- Substances that can mobilize adaptive defenses and provoke an immune response
- · Targets of all adaptive immune responses
- Most are large, complex molecules not normally found in body (nonself)

Complete Antigens

© 2013 Pearson Education, Inc

© 2013 Pearson Education, Inc.

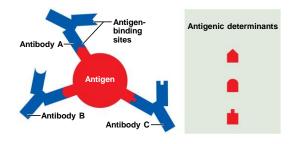
© 2013 Pearson Education. Inc

- · Important functional properties
 - Immunogenicity: ability to stimulate proliferation of specific lymphocytes
 - Reactivity: ability to react with activated lymphocytes and antibodies released by immunogenic reactions
- Examples: foreign protein, polysaccharides, lipids, and nucleic acids

Haptens (Incomplete Antigens)

- Small molecules (haptens) not immunogenic by themselves

 E.g., peptides, nucleotides, some hormones
- May be immunogenic if attached to body proteins and combination is marked foreign
- Cause immune system to mount harmful attack
- Examples: poison ivy, animal dander, detergents, and cosmetics


Antigenic Determinants

- Only certain parts (antigenic determinants) of entire antigen are immunogenic
- Antibodies and lymphocyte receptors bind to them as enzyme binds substrate

Antigenic Determinants

- Most naturally occurring antigens have numerous antigenic determinants that
 - Mobilize several different lymphocyte populations
 - Form different kinds of antibodies against them
- Large, chemically simple molecules (e.g., plastics) have little or no immunogenicity

Figure 21.7 Most antigens have several different antigenic determinants.

© 2013 Pearson Education Inc

© 2013 Pearson Education Inc.

Self-antigens: MHC Proteins

- Protein molecules (self-antigens) on surface of cells not antigenic to self but antigenic to others in transfusions or grafts
- Example: MHC glycoproteins

 Coded by genes of major histocompatibility complex (MHC) and unique to individual
 - Have groove holding self- or foreign antigen
 - T lymphocytes can only recognize antigens that are presented on MHC proteins

Cells of the Adaptive Immune System

· Three types of cells

- Two types of lymphocytes
 - B lymphocytes (B cells)—humoral immunity
 - T lymphocytes (T cells)—cellular immunity
- Antigen-presenting cells (APCs)
 - · Do not respond to specific antigens
 - · Play essential auxiliary roles in immunity

Lymphocyte Development, Maturation, and Activation

- · Five general steps
 - Origin all originate in red bone marrow
 - Maturation

© 2013 Pearson Education, Inc

- Seeding secondary lymphoid organs and circulation
- Antigen encounter and activation
- Proliferation and differentiation

<page-header><page-header><figure><figure>

Maturation

© 2013 Pearson Education, Inc

© 2013 Pearson Education. Inc

- "Educated" to become mature; B cells in bone marrow, T cells in thymus
 - Immunocompetence lymphocyte can recognize one specific antigen by binding to it
 - B or T cells display only one unique type of antigen receptor on surface when achieve maturity – bind only one antigen
 - Self-tolerance
 - · Lymphocytes unresponsive to own antigens

9

START THURSDAY

© 2013 Pearson Education, Inc

T cells

- T cells mature in thymus under negative and positive selection pressures ("tests")
 - Positive selection
 - Selects T cells capable of recognizing self-MHC proteins (MHC restriction); failures destroyed by apoptosis
 - Negative selection
 - Prompts apoptosis of T cells that bind to selfantigens displayed by self-MHC
 - · Ensures self-tolerance

<section-header><complex-block><complex-block>

B cells

© 2013 Pearson Education, Inc

- · B cells mature in red bone marrow
- Positively selected if successfully make antigen receptors
- Those that are self-reactive
 - Eliminated by apoptosis (clonal deletion)

© 2013 Pearson Education, Inc.

Antigen Encounter and Activation

Clonal selection

© 2013 Pearson Education. Inc

- Naive lymphocyte's first encounter with antigen → selected for further development
- If correct signals present, lymphocyte will complete its differentiation

Table 21.3	Overview of B and T Lymphocytes		
	B LYMPHOCYTES	T LYMPHOCYTES	
Type of immune response	Humoral	Cellular	
Antibody secretion	Yes	No	
Primary targets	Extracellular patho- gens (e.g., bacteria, fungi, parasites, some viruses in extracellular fluid)	Intracellular pathogens (e.g., virus- infected cells) and cancer cells	
Site of origin	Red bone marrow	Red bone marrow	
Site of maturation	Red bone marrow	Thymus	
Effector cells	Plasma cells	Cytotoxic T (T _c) cells	

Memory cell

formation

© 2012 Reamon Educ

Yes

Helper T (T_H) cells Regulatory T (T_{Reg}) cells

Yes

Figure 21.11a Clonal selection of a B cell

Adaptive defenses -> Humoral immunity Primary respo Antigen Antigen binding (initial encounter with antigen) to a receptor on a specific B lymphocytes (B lymphocytes with noncomplementary receptors remain Activated B cells Memory B cell— primed to respond to same antiger Plasma cells (effector B cells) Secreted antibody

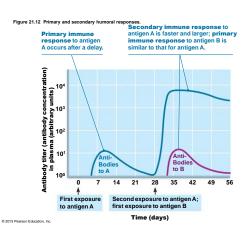
© 2013 Pearson Education Inc

© 2013 Pearson Education, Inc

© 2013 Pearson Education. Inc

Immunological Memory

· Primary immune response


- Cell proliferation and differentiation upon first antigen exposure
- Lag period: three to six days
- Peak levels of plasma antibody are reached in 10 days
- Antibody levels then decline

© 2013 Pearson Education Inc

Immunological Memory

Secondary immune response

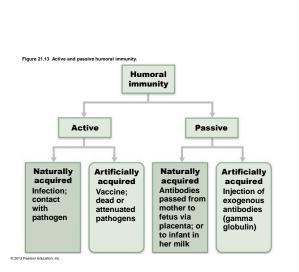
- Re-exposure to same antigen gives faster, more prolonged, more effective response
 - · Sensitized memory cells respond within hours
 - · Antibody levels peak in two to three days at much higher levels
 - · Antibodies bind with greater affinity
 - · Antibody level can remain high for weeks to months

Active Humoral Immunity

- When B cells encounter antigens and produce specific antibodies against them
- · Two types of active humoral immunity:
 - Naturally acquired-response to bacterial or viral infection
 - Artificially acquired-response to vaccine of dead or attenuated pathogens

Active Humoral Immunity

- Vaccines
 - Most of dead or attenuated pathogens
 - Spare us symptoms of primary response
 - Provide antigenic determinants that are immunogenic and reactive


Passive Humoral Immunity

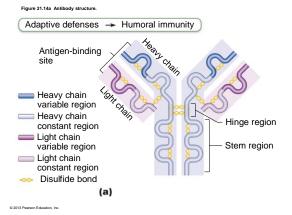
© 2013 Pearson Education, Inc

- Readymade antibodies introduced into body
- B cells are not challenged by antigens
- · Immunological memory does not occur
- · Protection ends when antibodies degrade

Passive Humoral Immunity

- Two types
 - 1. Naturally acquired—antibodies delivered to fetus via placenta or to infant through milk
 - 2. Artificially acquired—injection of serum, such as gamma globulin
 - Protection immediate but ends when antibodies naturally degrade in body

Antibodies


© 2013 Pearson Education In

- Immunoglobulins—gamma globulin portion
 of blood
- · Proteins secreted by plasma cells
- Capable of binding specifically with antigen detected by B cells
- · Grouped into one of five Ig classes

© 2013 Pearson Education, Inc.

Basic Antibody Structure

- · Constant (C) regions of stem
 - Determine antibody class (IgM, IgA, IgD, IgG, or IgE)
 - Serve common functions in all antibodies by dictating
 - Cells and chemicals that antibody can bind
 - How antibody class functions to eliminate antigens

Classes of Antibodies

- IgM
 - Pentamer (larger than others); first antibody released
 - Potent agglutinating agent
 - Readily fixes and activates complement
- IgA (secretory IgA)
 - Monomer or dimer; in mucus and other secretions
 - Helps prevent entry of pathogens

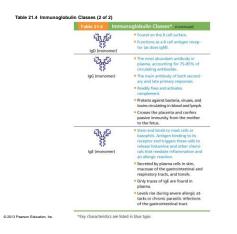
© 2013 Pearson Education, Inc.

Ta		unoglobulin Classes*
27 27 27	JgM (pentamer)	The first immunoglobulin classes creted by plasma cells during the primary response. (This fact is diag- nostically useful because presence of IgM in plasma subly indicates current infection by the pathogen elements of the plasma subly indicates complement activates complement
	A CAR	 The dimer (illustrated), referred to as secretory IgAis found in body secretions such as saliva, sweat, in- testinal juice, and milk.
	IgA (dimer)	 Secretory IgA helps stop pathogens from attaching to epithelial cell sur- faces (including mucous membranes and the epidermis).
		The monomer exists in limited amounts in plasma.

Classes of Antibodies

- IgD
 - Monomer attached to surface of B cells
 - Functions as B cell receptor
- IgG

© 2013 Pearson Education, Inc


- Monomer; 75-85% of antibodies in plasma
- From secondary and late primary responses
- Crosses placental barrier

Classes of Antibodies

- IgE
 - Monomer active in some allergies and parasitic infections (EEEK !)
 - Causes mast cells and basophils to release histamine
- B cells can switch antibody classes but retain antigen specificity
 - IgM at first; then IgG
 - Almost all secondary responses are IgG

© 2013 Pearson Education, Inc.

© 2013 Pearson Education. Inc

Antibody Targets and Functions

- Antibodies inactivate and tag antigens; do not destroy them
 - Form antigen-antibody (immune) complexes
- · Defensive mechanisms used by antibodies
 - Neutralization and agglutination (the two most important)
 - Precipitation and complement fixation

Fact 15. Machanism of antibody action.

T cell Activation: Proliferation and Differentiation

- · Primary T cell response peaks within a week
- T cell apoptosis occurs between days 7 and 30
 - Benefit of apoptosis: activated T cells are a hazard produce large amount inflammatory cytokines → hyperplasia, cancer
- Effector activity wanes as amount of antigen declines
- Memory T cells remain and mediate secondary responses

Cytokines

- · Chemical messengers of immune system
- Mediate cell development, differentiation, and responses in immune system
- · Include interferons and interleukins
- Interleukin 1 (IL-1) released by macrophages co-stimulates bound T cells to
 - Release interleukin 2 (IL-2)
 - Synthesize more IL-2 receptors

© 2013 Pearson Education, Inc.

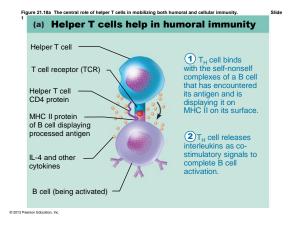
Cytokines

D 2013 Pearson Education Inc

- IL-2 key growth factor, acting on cells that release it and other T cells
 - Encourages activated T cells to divide rapidly
- Other cytokines amplify and regulate innate and adaptive responses
 - E.g., tumor necrosis factor cell toxin
 - E.g., gamma interferon enhances killing power of macrophages

© 2013 Pearson Education, Inc.

© 2013 Pearson Education. Inc


Roles of Helper T (T_H) cells

- Play central role in adaptive immune response
 - Activate both humoral and cellular arms
 - Once primed by APC presentation of antigen, they
 - Help activate T and B cells
 - Induce T and B cell proliferation
 - Their cytokines recruit other immune cells
- Without T_H, there is no immune response

Helper T cells: Activation of B cells

- Interact directly with B cells displaying antigen fragments bound to MHC II receptors
- Stimulate B cells to divide more rapidly and begin antibody formation
- B cells may be activated without T_H cells by binding to T cell-independent antigens

 Response weak and short-lived
- Most antigens require T_H co-stimulation to activate B cells: T cell-dependent antigens

Helper T cells: Activation of CD8 cells

- CD8 cells require T_H cell activation into destructive cytotoxic T cells
- Cause dendritic cells to express costimulatory molecules required for CD8 cell activation

Figure 21.18b The central role of helper T cells in mobilizing both humoral and cellular immunity. (b) Helper T cells help in cellular immunity CD4 protein Helper T cell T_H cell binds Class II MHC dendritic cell. protein APC (dendritic cell) 2 T_H cell stimulates dendritic -2 cell to express co-stimulatory molecules. 3 Dendritic cell can now activate Class I CD8 CD8 cell with the MHC protein help of interleukin 2 protein CD8 T cell secreted by T_H cell. (becomes T_c cell after activation) © 2013 Pearson Education Inc

Helper T cells: Amplification of Innate Defenses

- Amplify responses of innate immune system
- Activate macrophages → more potent killers
- Mobilize lymphocytes and macrophages and attract other types of WBCs

© 2013 Pearson Education, Inc

© 2013 Pearson Education. Inc

© 2013 Pearson Education Inc

Helper T cells: Subsets of T_H cells

- T_H1 mediate most aspects of cellular immunity
- T_H2 defend against parasitic worms; mobilize eosinophils; promote allergies
- T_H17 link adaptive and innate immunity by releasing IL-17; may play role in autoimmune disease

© 2013 Pearson Education. Inc

Cytotoxic T (T_c) cells

- · Directly attack and kill other cells
- Activated T_C cells circulate in blood and lymph and lymphoid organs in search of body cells displaying antigen they recognize

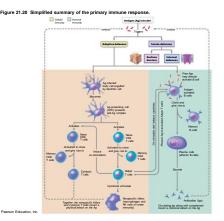
Roles of Cytotoxic T (T_c) cells

- Targets
 - Virus-infected cells
 - Cells with intracellular bacteria or parasites
 - Cancer cells
 - Foreign cells (transfusions or transplants)

Cytotoxic T cells

- · Lethal hit two methods:
 - T_C cell releases perforins and granzymes by exocytosis
 - Perforins create pores through which granzymes enter target cell
 - · Granzymes stimulate apoptosis
 - T_C cell binds specific membrane receptor on target cell, and stimulates apoptosis

© 2013 Pearson Education, Inc.
Figure 21.19 Cytotoxic T cells attack infected and cancerous cells.
Adaptive defenses 🖛 Cellular immunity
Cytotoxic 7 (1
T cell (T _c) for the constant and the target cell membrane.
on MHC proteins molecules from tispores (cylindrical hotes) similar to and binds tightly granuzes by those produced by complement
to target cell. granules by excytosis. activation.
Granule
Perforin
Tr cel
membrane
Target Cell
Target
cell Perforin Cancer cell
Granzymes -
() Granzymes enter the
The T _c detaches and searches for Once inside, granzymes
another prey. activate enzymes that trigger apoptosis.
(a) A mechanism of target cell killing by T ₆ cells. (b) Scanning electron micrograph of a
T _c cell killing a cancer cell (2100x).
© 2013 Pearson Education. Inc.


Natural Killer cells

- Recognize other signs of abnormality
 - Lack of class I MHC
 - Antibody coating target cell
 - Different surface markers of stressed cells
- Use same key mechanisms as T_C cells for killing their target cells
- Immune surveillance—NK and T_c cells prowl for markers they recognize

© 2013 Pearson Education, Inc

© 2013 Pearson Education. Inc

© 2013 Pearson Education, Inc

Organ Transplants

- · Four varieties
 - Autografts: from one body site to another in same person
 - Isografts: between identical twins
 - Allografts: between individuals who are not identical twins
 - Xenografts: from another animal species

Organ Transplants

- · Success depends on similarity of tissues
 - Autografts and isografts ideal donor tissues
 - Almost always successful if good blood supply and no infection
 - Research into successful xenografts from genetically engineered animals
 - Most common is allograft
 - ABO, other blood antigens, MHC antigens matched as closely as possible

© 2013 Pearson Education, Inc.

© 2013 Pearson Education, Inc

© 2013 Pearson Education. Inc

Prevention of Rejection

- · After surgery
 - Patient treated with immunosuppressive therapy
 - Corticosteroid drugs to suppress inflammation
 - Antiproliferative drugs
 - Immunosuppressant drugs
- · Many of these have severe side effects

© 2013 Pearson Education Inc.

Immunosuppressive Therapy Problems

- Patient's immune system suppressed
 - Cannot protect from foreign agents
 - Bacterial and viral infections \rightarrow death
 - Must balance drugs for graft survival but no toxicity
 - Use antibiotics to control infections
 - Best circumstances rejection after 10 years in 50% of patients

Immunosuppressive Therapy Problems

- · Research to induce tolerance
 - Chimeric immune system
 - · Suppress recipient's bone marrow
 - Douse recipient's bone marrow with bone marrow from donor of new organ
 - "Combined" immune system may treat transplanted organ as self
 - Harness regulatory T cell to suppress immune reactions

© 2013 Pearson Education, Inc.

Immunodeficiencies

 Congenital or acquired conditions that impair function or production of immune cells or molecules such as complement or antibodies

Congenital Immunodeficiencies

- Severe Combined Immunodeficiency (SCID) Syndrome - genetic defect
 - Marked deficit in B and T cells
 - Defective adenosine deaminase (ADA) enzyme
 - Metabolites lethal to T cells accumulate
 - Fatal if untreated; treated with bone marrow transplants

Hodgkin's Disease

- Acquired immunodeficiency
- · Cancer of B cells
- Leads to immunodeficiency by depressing lymph node cells

Acquired Immune Deficiency Syndrome (AIDS)

- Cripples immune system by interfering with activity of helper T cells
- Characterized by severe weight loss, night sweats, and swollen lymph nodes
- Opportunistic infections occur, including pneumocystis pneumonia and Kaposi's sarcoma

Acquired Immune Deficiency Syndrome (AIDS)

- Caused by human immunodeficiency virus (HIV) transmitted via body fluids—blood, semen, and vaginal secretions
- · HIV enters the body via
 - Blood transfusions; blood-contaminated needles; sexual intercourse and oral sex; mother to fetus
- HIV

© 2013 Pearson Education, Inc

 Destroys T_H cells → depresses cellular immunity

© 2013 Pearson Education, Inc.

© 2013 Pearson Education. Inc

Treatment of Autoimmune Diseases

- Suppress entire immune system
 - Anti-inflammatory drugs, e.g., corticosteroids
 - Blocking cytokine action
 - Blocking co-stimulatory molecules
- Research
 - Activating regulatory T cells; inducing selftolerance using vaccines; directing antibodies against self-reactive immune cells

© 2013 Pearson Education, Inc.

© 2013 Pearson Education, Inc

Immediate Hypersensitivity

- Acute (type I) hypersensitivities (allergies) begin in seconds after contact with allergen
- Initial contact is asymptomatic but sensitizes person
- · Reaction may be local or systemic

Anaphylactic Shock

- Systemic response to allergen that directly enters blood and circulates rapidly
- Basophils and mast cells enlisted throughout body
- · Systemic histamine release may cause
 - Constriction of bronchioles; tongue may swell
 - Sudden vasodilation and fluid loss from bloodstream may \rightarrow
 - Circulatory collapse (hypotensive shock) and death
- Treatment: epinephrine

 Just extra outline from TEXT not covered in class

Class I MHC Proteins

- Bind with fragment of protein synthesized in the cell (endogenous antigen)
- Endogenous antigen is self-antigen in normal cell; a nonself antigen in infected or abnormal cell
- · Crucial for CD8 cell activation
- Inform cytotoxic T cells of microorganisms hiding in cells (cytotoxic T cells ignore displayed selfantigens)
- Act as antigen holders; form "self" part that T cells recognize

© 2013 Pearson Education, Inc.

Class II MHC Proteins

- Bind with fragments of exogenous antigens that have been engulfed and broken down in a phagolysosome
- Recognized by helper T cells
- · Signal CD4 cells that help is required

MHC Restriction

© 2013 Pearson Education, Inc

- CD4 and CD8 cells have different requirements for MHC protein that presents antigens to them
 - CD4 cells that become T_H bind only class II MHC proteins typically on APC surfaces
 - CD8 cells that become cytotoxic T cells bind only class I MHC proteins on APC surfaces
 - Once activated, cytotoxic T cells seek same antigen on class I MHC proteins on any cell

© 2013 Pearson Education, Inc.

MHC Restriction

© 2013 Pearson Education, Inc

© 2013 Pearson Education. Inc

- CD8 cells activated by class I MHC proteins
- How do APCs get endogenous antigens from another cell and display them on class I MHCs?
 - Dendritic cells engulf dying virus-infected or tumor cells, or import antigens via temporary gap junctions with infected cells—then display both class I and class II MHCs

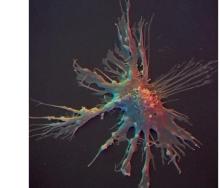
Antigen-presenting Cells (APCs)

- · Engulf antigens
- Present fragments of antigens to T cells for recognition
- Major types
 - Dendritic cells in connective tissues and epidermis
 - Macrophages in connective tissues and lymphoid organs
 - B cells

© 2013 Pearson Education. Inc

19

Dendritic Cells and Macrophages


- Dendritic cells phagocytize pathogens, enter lymphatics to present antigens to T cells in lymph node
 - Most effective antigen presenter known
 - Key link between innate and adaptive immunity
- Macrophages widespread in lymphoid organs and connective tissues
 - Present antigens to T cells to activate themselves into voracious phagocytes that secrete bactericidal chemicals

© 2013 Pearson Education, Inc.

© 2013 Pearson Education, Inc

© 2013 Pearson Education. Inc

Figure 21.10 Dendritic cell. Scanning electron micrograph (1050x)

© 2013 Pearson Education, Inc.

B lymphocytes

- · Do not activate naive T cells
- Present antigens to helper T cell to assist own activation

Adaptive Immunity: Summary

- Uses lymphocytes, APCs, and specific molecules to identify and destroy nonself substances
- · Depends upon ability of its cells to
 - Recognize antigens by binding to them
 - Communicate with one another so that whole system mounts specific response

© 2013 Pearson Education, Inc.

Activation and Differentiation of B Cells

- B cell activated when antigens bind to its surface receptors and cross-link them →
- Receptor-mediated endocytosis of crosslinked antigen-receptor complexes (clonal selection) →
- Proliferation and differentiation into effector cells

Fate of the Clones

- · Most clone cells become plasma cells
 - Secrete specific antibodies at rate of 2000 molecules per second for four to five days, then die
 - Antibodies circulate in blood or lymph
 - Bind to free antigens and mark for destruction by innate or adaptive mechanisms

Fate of the Clones

- Clone cells that do not become plasma cells become **memory cells**
 - Provide immunological memory
 - Mount an immediate response to future exposures to same antigen

Neutralization

- · Simplest defensive mechanism
- Antibodies block specific sites on viruses or bacterial exotoxins
- Prevent these antigens from binding to receptors on tissue cells
- Antigen-antibody complexes undergo phagocytosis

Agglutination

© 2013 Pearson Education, Inc

- Antibodies bind same determinant on more than one cell-bound antigen
- Cross-linked antigen-antibody complexes agglutinate
 - Example: clumping of mismatched blood cells

Precipitation

© 2013 Pearson Education, Inc.

© 2013 Pearson Education Inc.

© 2013 Pearson Education. Inc.

- · Soluble molecules are cross-linked
- Complexes precipitate and are subject to phagocytosis

© 2013 Pearson Education, Inc.

Complement Fixation and Activation

- Main antibody defense against cellular antigens (bacteria, mismatched RBCs)
- Several antibodies bind close together on a cellular antigen → complement-binding sites on stem regions align
 - Triggers complement fixation into cell's surface
 - \rightarrow Cell lysis

Complement Fixation and Activation

- · Activated complement functions
 - Amplifies inflammatory response
 - Promotes phagocytosis via opsonization
 - → Positive feedback cycle that enlists more and more defensive elements

Basic Antibody Structure

- T- or Y-shaped **antibody monomer** of four looping polypeptide chains linked by disulfide bonds
- Two identical heavy (H) chains with hinge region at "middles"
- Two identical light (L) chains
- Variable (V) regions at one end of each arm combine to form two identical **antigen-binding sites**

Cytotoxic T cells

igure 21.11 Clonal selection of a B cell

Adaptive de

- · Bind to a self-nonself complex
- · Can destroy all infected or abnormal cells

© 2013 Pearson Education, Inc.	© 2013 Pearson Education, Inc.

Seeding Secondary Lymphoid Organs and Circulation

- Immunocompetent B and T cells not yet exposed to antigen called **naive**
- Exported from primary lymphoid organs (bone marrow and thymus) to "seed" secondary lymphoid organs (lymph nodes, spleen, etc.)
 - Increases chance of encounter with antigen

Plasa cells Sacro e 2013 Puarson Education, inc. mole

Monoclonal Antibodies as Clinical and Research Tools

© 2013 Pearson Education, Inc

© 2013 Pearson Education. Inc

- Commercially prepared pure antibody
 Specific for single antigenic determinant
- Produced by hybridomas
 - Cell hybrids: fusion of tumor cell and B cell
- Proliferate indefinitely and have ability to produce single type of antibody
- Used in research, clinical testing, and cancer treatment

Summary of Antibody Actions

- Antigen-antibody complexes do not destroy antigens; prepare them for destruction by innate defenses
- Antibodies do not invade solid tissue unless lesion present
- Can act intracellularly if attached to virus before it enters cell
 - Activate mechanisms that destroy virus

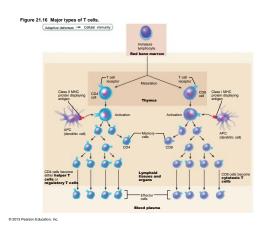
Cellular Immune Response

- T cells provide defense against intracellular antigens
- Some T cells directly kill cells; others release chemicals that regulate immune response

Cellular Immune Response

- Two populations of T cells based on which glycoprotein surface receptors displayed
 - CD4 cells usually become **helper T cells** (T_H) ; activate B cells, other T cells, macrophages, and direct adaptive immune response
 - Some become regulatory T cells which moderate immune response
 - Can also become memory T cells

© 2013 Pearson Education Inc


© 2013 Pearson Education, Inc.

© 2013 Pearson Education, Inc

© 2013 Pearson Education. Inc

Cellular Immune Response

- CD8 cells become cytotoxic T cells (T_c)
 - Destroy cells harboring foreign antigens
 - Also become memory T cells
- Helper, cytotoxic, and regulatory T cells are activated T cells
- Naive T cells simply termed CD4 or CD8 cells

MHC Proteins and Antigen Presentation

- T cells respond only to processed fragments of antigens displayed on surfaces of cells
- Antigen presentation vital for activation of naive T cells and normal functioning of effector T cells

MHC Proteins

- Two types of MHC proteins important to T cell activation
 - Class I MHC proteins displayed by all cells except RBCs
 - Class II MHC proteins displayed by APCs (dendritic cells, macrophages, and B cells)
- Both types are synthesized at ER and bind to peptide fragments

Table 21.5 Role of MHC Proteins in Cellular Immunity

Table 213 Role of LMHC Proteins in Cellular Immunity CASS I Displayed by All nucleated cell Class I MeC. Artigun APC (dendric) cells, morphage 1 cells Recognized by Naive CD6 cells and cytobic Cells CD0 protein Allow CD4 cells and here T cells CCC D protein Foreign antigers on MEC are mainty with the measure of the CD6 protein multiple of the CD6 protein multi

© 2013 Pearson Education, Inc.

Bacterial and gen Checking and generative Dentifice

ection of T cells involves simultaneous recognition of self and non

Adaptive defenses -> Cellular immunity

© 2013 Pearson Education, In

Figure 21.17 Clonal sel

Acquired Immune Deficiency Syndrome (AIDS)

- HIV multiplies in lymph nodes throughout asymptomatic period, ~10 years if untreated
- Symptoms when immune system collapses
- Virus also invades brain → dementia
- HIV-coated glycoprotein complex attaches to CD4 receptor
- HIV enters cell and uses reverse transcriptase to produce DNA from its viral RNA
- The DNA copy (a provirus) directs host cell to make viral RNA and proteins, enabling virus to reproduce

© 2013 Pearson Education, Inc.

© 2013 Pearson Education. Inc

Acquired Immune Deficiency Syndrome (AIDS)

- HIV reverse transcriptase → frequent errors; high mutation rate and resistance to drugs
- Treatment with antiviral drugs
 - Fusion inhibitors block HIV's entry into cell
 - Integrase inhibitors block viral RNA integration into host's DNA
 - Reverse transcriptase and protease inhibitors inhibit viral replication enzymes

- Antiretroviral vaginal gel reduces risk by 50%

© 2013 Pearson Education, Inc

Autoimmune Diseases

- Immune system loses ability to distinguish self from foreign
- Production of autoantibodies and sensitized T_C cells that destroy body tissues
- Examples include multiple sclerosis, myasthenia gravis, Graves' disease, type 1 diabetes mellitus, systemic lupus erythematosus (SLE), glomerulonephritis, and rheumatoid arthritis