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The Pulmonary and Systemic Circuits

• Heart is transport system; two 

side-by-side pumps

– Right side receives oxygen-poor blood from 

tissues

• Pumps to lungs to get rid of CO2, pick up O2, via 

pulmonary circuit

– Left side receives oxygenated blood from 

lungs

• Pumps to body tissues via systemic circuit
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Figure 18.1  The systemic and pulmonary circuits.



© 2013 Pearson Education, Inc.

Animation: Rotatable heart

Heart Anatomy

• Approximately size of fist

• Location:

– In mediastinum between second rib and fifth 

intercostal space

– On superior surface of diaphragm

– Two-thirds of heart to left of midsternal line

– Anterior to vertebral column, posterior to 

sternum

PLAY

rotating_heart.mpg
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Heart Anatomy

• Base (posterior surface) leans toward right 

shoulder

• Apex points toward left hip

• Apical impulse palpated between fifth 

and sixth ribs, just below left nipple
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Figure 18.2a  Location of the heart in the mediastinum.
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Figure 18.2c  Location of the heart in the mediastinum.
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Coverings of the Heart: Pericardium

• Double-walled sac

• Superficial fibrous pericardium

– Protects, anchors to surrounding structures, 

and prevents overfilling
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Pericardium

• Deep two-layered serous pericardium

– Parietal layer lines internal surface of fibrous 

pericardium

– Visceral layer (epicardium) on external 

surface of heart

– Two layers separated by fluid-filled 

pericardial cavity (decreases friction)
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Figure 18.3  The pericardial layers and layers of the heart wall.
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Homeostatic Imbalance

• Pericarditis

– Inflammation of pericardium

– Roughens membrane surfaces  pericardial 

friction rub (creaking sound) heard with 

stethoscope

– Cardiac tamponade

• Excess fluid sometimes compresses heart 

limited pumping ability
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Layers of the Heart Wall

• Three layers of heart wall:

– Epicardium

– Myocardium

– Endocardium

• Epicardium

– Visceral layer of serous pericardium
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Layers of the Heart Wall

• Myocardium 

– Spiral bundles of contractile cardiac muscle 

cells 

– Cardiac skeleton: crisscrossing, interlacing 

layer of connective tissue

• Anchors cardiac muscle fibers 

• Supports great vessels and valves

• Limits spread of action potentials to specific paths
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Layers of the Heart Wall

• Endocardium continuous with endothelial 

lining of blood vessels

– Lines heart chambers; covers cardiac 

skeleton of valves
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Figure 18.3  The pericardial layers and layers of the heart wall.
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Figure 18.4  The circular and spiral arrangement of cardiac muscle bundles in the myocardium of the heart.
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Chambers 

• Four chambers:

– Two superior atria

– Two inferior ventricles

• Interatrial septum – separates atria

– Fossa ovalis – remnant of foramen ovale of 

fetal heart

• Interventricular septum – separates 

ventricles
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Figure 18.5e  Gross anatomy of the heart.
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Atria: The Receiving Chambers

• Small, thin-walled

• Contribute little to propulsion of blood

• Three veins empty into right atrium:

– Superior vena cava, inferior vena cava, 

coronary sinus

• Four pulmonary veins empty into left 

atrium
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Ventricles: The Discharging Chambers 

• Most of the volume of heart

• Right ventricle - most of anterior surface

• Left ventricle – posteroinferior surface

• Trabeculae carneae – irregular ridges of 

muscle on walls

• Papillary muscles – anchor chordae 

tendineae
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Ventricles: The Discharging Chambers 

• Thicker walls than atria

• Actual pumps of heart

• Right ventricle 

– Pumps blood into pulmonary trunk

• Left ventricle

– Pumps blood into aorta (largest artery in 

body)
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Figure 18.5b  Gross anatomy of the heart.
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Figure 18.5a  Gross anatomy of the heart.
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Figure 18.5f  Gross anatomy of the heart.
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Heart Valves

• Ensure unidirectional blood flow through heart

• Open and close in response to pressure 

changes

• Two atrioventricular (AV) valves

– Prevent backflow into atria when ventricles contract

– Tricuspid valve (right AV valve)

– Mitral valve (left AV valve, bicuspid valve)

– Chordae tendineae anchor cusps to papillary 

muscles

• Hold valve flaps in closed position
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Figure 18.7  The atrioventricular (AV) valves.



© 2013 Pearson Education, Inc.

Heart Valves

• Two semilunar (SL) valves

– Prevent backflow into ventricles when 

ventricles relax

– Open and close in response to pressure 

changes

– Aortic semilunar valve

– Pulmonary semilunar valve
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As ventricles contract 
and intraventricular 
pressure rises, blood 
is pushed up against 
semilunar valves, 
forcing them open.

As ventricles relax 
and intraventricular 
pressure falls, blood 
flows back from 
arteries, filling the 
cusps of semilunar 
valves and forcing 
them to close.
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Pulmonary

trunk

Semilunar valves open

Semilunar valves closed

Figure 18.8  The semilunar (SL) valves.
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Figure 18.6a  Heart valves.
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Figure 18.6b  Heart valves.
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Figure 18.6c  Heart valves.
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Figure 18.6d  Heart valves.
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Homeostatic Imbalance

• Two conditions severely weaken heart:

– Incompetent valve

• Blood backflows so heart repumps same blood 

over and over

– Valvular stenosis

• Stiff flaps – constrict opening  heart must exert 

more force to pump blood

• Valve replaced with mechanical, animal, or 

cadaver valve
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Pathway of Blood Through the Heart

• Pulmonary circuit

– Right atrium  tricuspid valve  right 

ventricle

– Right ventricle  pulmonary semilunar valve 

 pulmonary trunk  pulmonary arteries 

lungs

– Lungs  pulmonary veins  left atrium
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PLAY Animation: Rotatable heart (sectioned)

Pathway of Blood Through the Heart

• Systemic circuit

– Left atrium  mitral valve  left ventricle

– Left ventricle  aortic semilunar valve 

aorta

– Aorta  systemic circulation

rotating_heart_sectioned.mpg
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Figure 18.9  The heart is a double pump, each side supplying its own circuit.
Both sides of the heart pump at the same time, but let’s 

follow one spurt of blood all the way through the 

system.
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Slide 2Figure 18.9  The heart is a double pump, each side supplying its own circuit.
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Slide 3Figure 18.9  The heart is a double pump, each side supplying its own circuit.

Oxygen-poor blood

Oxygen-rich blood

Superior vena cava (SVC)

Inferior vena cava (IVC)

Coronary sinus

Right

atrium

SVC

IVC

Coronary

sinus

Right

atrium



© 2013 Pearson Education, Inc.

Figure 18.9  The heart is a double pump, each side supplying its own circuit. Slide 4

Oxygen-poor blood

Oxygen-rich blood

Superior vena cava (SVC)
Inferior vena cava (IVC)

Coronary sinus

Right

atrium

Tricuspid
valve Right

ventricle

SVC

IVC

Coronary

sinus

Right

atrium

Tricuspid

valve

Right

ventricle



© 2013 Pearson Education, Inc.

Figure 18.9  The heart is a double pump, each side supplying its own circuit. Slide 5
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Figure 18.9  The heart is a double pump, each side supplying its own circuit. Slide 6
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Slide 7Figure 18.9  The heart is a double pump, each side supplying its own circuit.
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Figure 18.9  The heart is a double pump, each side supplying its own circuit. Slide 8
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Figure 18.9  The heart is a double pump, each side supplying its own circuit. Slide 9
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Figure 18.9  The heart is a double pump, each side supplying its own circuit. Slide 10
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Figure 18.9  The heart is a double pump, each side supplying its own circuit. Slide 11
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Figure 18.9  The heart is a double pump, each side supplying its own circuit. Slide 12
Both sides of the heart pump at the same time, but let’s 

follow one spurt of blood all the way through the 

system.
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Pathway of Blood Through the Heart

• Equal volumes of blood pumped to 

pulmonary and systemic circuits

• Pulmonary circuit short, low-pressure 

circulation

• Systemic circuit long, high-friction 

circulation

• Anatomy of ventricles reflects differences

– Left ventricle walls 3X thicker than right

• Pumps with greater pressure
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Figure 18.10  Anatomical differences between the right and left ventricles.
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Coronary Circulation

• Functional blood supply to heart muscle 

itself

– Delivered when heart relaxed

– Left ventricle receives most blood supply

• Arterial supply varies among individuals

• Contains many anastomoses (junctions)

– Provide additional routes for blood delivery

– Cannot compensate for coronary artery 

occlusion
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Coronary Circulation: Arteries

• Arteries arise from base of aorta

• Left coronary artery branches  anterior 

interventricular artery and circumflex artery

– Supplies interventricular septum, anterior ventricular 

walls, left atrium, and posterior wall of left ventricle

• Right coronary artery branches  right 

marginal artery and posterior interventricular 

artery

– Supplies right atrium and most of right ventricle
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Figure 18.11a  Coronary circulation.
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Coronary Circulation: Veins

• Cardiac veins collect blood from capillary beds

• Coronary sinus empties into right atrium; 

formed by merging cardiac veins

– Great cardiac vein of anterior interventricular sulcus

– Middle cardiac vein in posterior interventricular 

sulcus

– Small cardiac vein from inferior margin

• Several anterior cardiac veins empty directly 

into right atrium anteriorly
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Figure 18.11b  Coronary circulation.
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Figure 18.5d  Gross anatomy of the heart.
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Homeostatic Imbalances

• Angina pectoris

– Thoracic pain caused by fleeting deficiency in 

blood delivery to myocardium

– Cells weakened

• Myocardial infarction (heart attack)

– Prolonged coronary blockage

– Areas of cell death repaired with 

noncontractile scar tissue
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Microscopic Anatomy of Cardiac Muscle

• Cardiac muscle cells striated, short, 
branched, fat, interconnected, 
1 (perhaps 2) central nuclei

• Connective tissue matrix (endomysium) 
connects to cardiac skeleton

– Contains numerous capillaries

• T tubules wide, less numerous; SR simpler 
than in skeletal muscle

• Numerous large mitochondria (25–35% of 
cell volume)
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Figure 18.12a  Microscopic anatomy of cardiac muscle.
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Microscopic Anatomy of Cardiac Muscle

• Intercalated discs - junctions between 

cells - anchor cardiac cells 

– Desmosomes prevent cells from separating 

during contraction

– Gap junctions allow ions to pass from cell to 

cell; electrically couple adjacent cells

• Allows heart to be functional syncytium

– Behaves as single coordinated unit
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Figure 18.12b  Microscopic anatomy of cardiac muscle.
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Cardiac Muscle Contraction

• Three differences from skeletal muscle:

– ~1% of cells have automaticity 

(autorhythmicity)

• Do not need nervous system stimulation

• Can depolarize entire heart

– All cardiomyocytes contract as unit, or none 

do

– Long absolute refractory period (250 ms)

• Prevents tetanic contractions
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Cardiac Muscle Contraction

• Three similarities with skeletal muscle:

– Depolarization opens few voltage-gated fast 

Na+ channels in sarcolemma 

• Reversal of membrane potential from –90 mV to 

+30 mV

• Brief; Na channels close rapidly

– Depolarization wave down T tubules  SR to 

release Ca2+


– Excitation-contraction coupling occurs

• Ca2+ binds troponin  filaments slide
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Cardiac Muscle Contraction

• More differences

– Depolarization wave also opens slow Ca2+

channels in sarcolemma  SR to release its 

Ca2+

– Ca2+ surge prolongs the depolarization phase 

(plateau)
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Cardiac Muscle Contraction

• More differences

– Action potential and contractile phase last 

much longer than a neuron.

• Allow blood ejection from heart

– Repolarization result of inactivation of Ca2+

channels and opening of voltage-gated K+

channels

• Ca2+ pumped back to SR and extracellularly
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Figure 18.13  The action potential of contractile cardiac muscle cells. Slide 1
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Figure 18.13  The action potential of contractile cardiac muscle cells. Slide 2
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Figure 18.13  The action potential of contractile cardiac muscle cells. Slide 3
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Figure 18.13  The action potential of contractile cardiac muscle cells. Slide 4
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Depolarization is due to Na+

influx through fast voltage-gated Na+ 

channels. A positive feedback cycle 
rapidly opens many Na+ channels, 
reversing the membrane potential. 
Channel inactivation ends this phase.

Plateau phase is due to Ca2+

influx through slow Ca2+ channels. 
This keeps the cell depolarized 
because few K+ channels are open.    

Repolarization is due to Ca2+

channels inactivating and K+

channels opening. This allows K+

efflux, which brings the membrane 
potential back to its resting voltage.
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Energy Requirements

• Cardiac muscle

– Has many mitochondria

• Great dependence on aerobic respiration

• Little anaerobic respiration ability

– Readily switches fuel source for respiration

• Even uses lactic acid from skeletal muscles
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Homeostatic Imbalance

• Ischemic cells  anaerobic respiration 

lactic acid 

– High H+ concentration  high Ca2+

concentration 

•  Mitochondrial damage  decreased ATP 

production

•  Gap junctions close  fatal arrhythmias
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Heart Physiology: Electrical Events

• Heart depolarizes and contracts without 

nervous system stimulation

– Rhythm can be altered by autonomic nervous 

system
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Pacemaker (Autorhythmic) Cells

• Have unstable resting membrane potentials 

(pacemaker potentials or prepotentials) due to 

opening of slow Na+ channels

– Continuously depolarize

• At threshold, Ca2+ channels open 

• Explosive Ca2+ influx produces the rising phase 

of the action potential

• Repolarization results from inactivation of Ca2+

channels and opening of voltage-gated 

K+ channels
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Action Potential Initiation by Pacemaker 

Cells

• Three parts of action potential:

– Pacemaker potential

• Repolarization closes K+ channels and opens slow 

Na+ channels  ion imbalance 

– Depolarization

• Ca2+ channels open  huge influx  rising phase 

of action potential

– Repolarization

• K+ channels open  efflux of K+
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Figure 18.14  Pacemaker and action potentials of pacemaker cells in the heart. Slide 1
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Sequence of Excitation

• Cardiac pacemaker cells pass impulses, in 

order, across heart in ~220 ms

– Sinoatrial node 

– Atrioventricular node 

– Atrioventricular bundle 

– Right and left bundle branches 

– Subendocardial conducting network

(Purkinje fibers)
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Heart Physiology: Sequence of Excitation

• Sinoatrial (SA) node

– Pacemaker of heart in right atrial wall

• Depolarizes faster than rest of myocardium

– Generates impulses about 75X/minute (sinus 

rhythm)

• Inherent rate of 100X/minute tempered by extrinsic 

factors

• Impulse spreads across atria, and to AV 

node
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Heart Physiology: Sequence of Excitation

• Atrioventricular (AV) node

– In inferior interatrial septum

– Delays impulses approximately 0.1 second

• Because fibers are smaller diameter, have fewer 

gap junctions

• Allows atrial contraction prior to ventricular 

contraction

– Inherent rate of 50X/minute in absence of 

SA node input
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Heart Physiology: Sequence of Excitation

• Atrioventricular (AV) bundle

(bundle of His)

– In superior interventricular septum

– Only electrical connection between atria and 

ventricles

• Atria and ventricles not connected via gap 

junctions
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Heart Physiology: Sequence of Excitation

• Right and left bundle branches

– Two pathways in interventricular septum

– Carry impulses toward apex of heart
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Heart Physiology: Sequence of Excitation

• Subendocardial conducting network

– Complete pathway through interventricular 

septum into apex and ventricular walls

– More elaborate on left side of heart

– AV bundle and subendocardial conducting 

network depolarize 30X/minute in absence of 

AV node input

• Ventricular contraction immediately follows 

from apex toward atria
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Figure 18.15a  Intrinsic cardiac conduction system and action potential succession during one heartbeat.
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Pacemaker potential

SA node

Atrial muscle

AV node
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muscle
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potential
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Comparison of action potential shape at

various locations

Figure 18.15b  Intrinsic cardiac conduction system and action potential succession during one heartbeat.
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Homeostatic Imbalances

• Defects in intrinsic conduction system 

may cause

– Arrhythmias - irregular heart rhythms

– Uncoordinated atrial and ventricular 

contractions

– Fibrillation - rapid, irregular 

contractions; useless for pumping blood 

 circulation ceases  brain death

• Defibrillation to treat
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Homeostatic Imbalances

• Defective SA node may cause

– Ectopic focus - abnormal pacemaker

– AV node may take over; sets junctional 

rhythm (40–60 beats/min)

• Extrasystole (premature contraction)

– Ectopic focus sets high rate

– Can be from excessive caffeine or 

nicotine
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Homeostatic Imbalance

• To reach ventricles, impulse must 

pass through AV node

• Defective AV node may cause

– Heart block

• Few (partial) or no (total) impulses reach 

ventricles

– Ventricles beat at intrinsic rate – too slow for life

– Artificial pacemaker to treat
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Extrinsic Innervation of the Heart

• Heartbeat modified by ANS via cardiac 

centers in medulla oblongata

– Sympathetic   rate and force

– Parasympathetic   rate

– Cardioacceleratory center – sympathetic –

affects SA, AV nodes, heart muscle, coronary 

arteries

– Cardioinhibitory center – parasympathetic –

inhibits SA and AV nodes via vagus nerves
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The vagus nerve

(parasympathetic)
decreases heart rate.

Dorsal motor nucleus
of vagus

Cardioinhibitory
center

Cardioaccele-
ratory center

Medulla oblongata

Sympathetic
trunk
ganglion

Thoracic spinal cord
Sympathetic trunk

Sympathetic cardiac

nerves increase heart rate
and force of contraction.

AV
node

SA
node

Parasympathetic fibers Sympathetic fibers Interneurons

Figure 18.16  Autonomic innervation of the heart.
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Electrocardiography

• Electrocardiogram (ECG or EKG)

– Composite of all action potentials generated 

by nodal and contractile cells at given time

• Three waves:

– P wave – depolarization SA node  atria

– QRS complex - ventricular depolarization and 

atrial repolarization

– T wave - ventricular repolarization
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Figure 18.17  An electrocardiogram (ECG) tracing.
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Figure 18.18  The sequence of depolarization and repolarization of the heart related to the deflection 

waves of an ECG tracing.
Slide 1
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Normal sinus rhythm.

Junctional rhythm. The SA node is nonfunctional, P waves are

absent, and the AV node paces the heart at 40–60 beats/min.

Second-degree heart block. Some P waves are not conducted
through the AV node; hence more P than QRS waves are seen. In
this tracing, the ratio of P waves to QRS waves is mostly 2:1.

Ventricular fibrillation. These chaotic, grossly irregular ECG

deflections are seen in acute heart attack and electrical shock.

Figure 18.19  Normal and abnormal ECG tracings.
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Electrocardiography

• P-R interval

– Beginning of atrial excitation to beginning of 

ventricular excitation

• S-T segment

– Entire ventricular myocardium depolarized

• Q-T interval

– Beginning of ventricular depolarization 

through ventricular repolarization
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Heart Sounds

• Two sounds (lub-dup) associated with 

closing of heart valves

– First as AV valves close; beginning of systole

– Second as SL valves close; beginning of 

ventricular diastole

– Pause indicates heart relaxation

• Heart murmurs - abnormal heart sounds; 

usually indicate incompetent or stenotic 

valves



Cardiac cycle related to sounds & values:

http://upload.wikimedia.org/wikipedia/commons/5/5b/Cardiac_Cycle_Left_Ventricle.PNG
http://upload.wikimedia.org/wikipedia/commons/5/5b/Cardiac_Cycle_Left_Ventricle.PNG
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Aortic valve sounds
heard in 2nd intercostal
space at right sternal
margin

Pulmonary valve

sounds heard in 2nd
intercostal space at left
sternal margin

Mitral valve sounds
heard over heart apex
(in 5th intercostal space)
in line with middle of
clavicle

Tricuspid valve sounds
typically heard in right
sternal margin of 5th
intercostal space

Figure 18.20  Areas of the thoracic surface where the sounds of individual valves can best be detected.
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Mechanical Events: The Cardiac Cycle

• Cardiac cycle

– Blood flow through heart during one complete 

heartbeat: atrial systole and diastole followed 

by ventricular systole and diastole

– Systole—contraction 

– Diastole—relaxation

– Series of pressure and blood volume changes 
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Phases of the Cardiac Cycle

• 1. Ventricular filling—takes place in mid-to-

late diastole

– AV valves are open; pressure low 

– 80% of blood passively flows into ventricles

– Atrial systole occurs, delivering remaining 

20%

– End diastolic volume (EDV): volume of 

blood in each ventricle at end of ventricular 

diastole
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Phases of the Cardiac Cycle

• 2. Ventricular systole

– Atria relax; ventricles begin to contract 

– Rising ventricular pressure  closing of AV 
valves

– Isovolumetric contraction phase (all valves 
are closed)

– In ejection phase, ventricular pressure 
exceeds pressure in large arteries, forcing SL 
valves open

– End systolic volume (ESV): volume of blood 
remaining in each ventricle after systole
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Phases of the Cardiac Cycle

• 3. Isovolumetric relaxation - early 

diastole

– Ventricles relax; atria relaxed and filling

– Backflow of blood in aorta and pulmonary 

trunk closes SL valves

• Causes dicrotic notch (brief rise in aortic 

pressure as blood rebounds off closed valve)

• Ventricles totally closed chambers

– When atrial pressure exceeds that in 

ventricles  AV valves open; cycle begins 

again at step 1
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Figure 18.21  Summary of events during the cardiac cycle.
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Cardiac Output (CO)

• Volume of blood pumped by each ventricle 

in one minute

• CO = heart rate (HR) × stroke volume

(SV)

– HR = number of beats per minute

– SV = volume of blood pumped out by one 

ventricle with each beat

• Normal – 5.25 L/min
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Cardiac Output (CO)

• At rest

– CO (ml/min) = HR (75 beats/min)  SV (70 ml/beat) 

= 5.25 L/min

– CO increases if either/both SV or HR increased

– Maximal CO is 4–5 times resting CO in nonathletic 

people

– Maximal CO may reach 35 L/min in trained athletes

– Cardiac reserve - difference between resting and 

maximal CO
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Regulation of Stroke Volume

• SV = EDV – ESV

– EDV affected by length of ventricular diastole 

and venous pressure

– ESV affected by arterial BP and force of 

ventricular contraction

• Three main factors affect SV:

– Preload

– Contractility

– Afterload
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Regulation of Stroke Volume

• Preload: degree of stretch of cardiac muscle 

cells before they contract (Frank-Starling law of 

heart)

– Cardiac muscle exhibits a length-tension relationship

– At rest, cardiac muscle cells shorter than optimal 

length

– Most important factor stretching cardiac muscle is 

venous return – amount of blood returning to heart

• Slow heartbeat and exercise increase venous return 

• Increased venous return distends (stretches) ventricles and 

increases contraction force
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Regulation of Stroke Volume

• Contractility—contractile strength at given 
muscle length, independent of muscle stretch 
and EDV

• Increased by
– Sympathetic stimulation  increased Ca2+ influx 

more cross bridges

– Positive inotropic agents 
• Thyroxine, glucagon, epinephrine, digitalis, high extracellular 

Ca2+

• Decreased by negative inotropic agents
– Acidosis, increased extracellular K+, calcium channel 

blockers
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Figure 18.23  Norepinephrine increases heart contractility via a cyclic AMP secondmessenger system.
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Regulation of Stroke Volume

• Afterload - pressure ventricles must 

overcome to eject blood

• Hypertension increases afterload, resulting 

in increased ESV and reduced SV
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Regulation of Heart Rate

• Positive chronotropic factors increase 

heart rate

• Negative chronotropic factors decrease 

heart rate
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Autonomic Nervous System Regulation

• Sympathetic nervous system 

activated by emotional or physical 

stressors

– Norepinephrine causes pacemaker to 

fire more rapidly (and increases 

contractility)

• Binds to β1-adrenergic receptors   HR 

•  contractility; faster relaxation

– Offsets lower EDV due to decreased fill time
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Autonomic Nervous System Regulation

• Parasympathetic nervous system opposes 

sympathetic effects 

– Acetylcholine hyperpolarizes pacemaker cells 

by opening K+ channels  slower HR

– Little to no effect on contractility

• Heart at rest exhibits vagal tone

– Parasympathetic dominant influence 
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Autonomic Nervous System Regulation

• Atrial (Bainbridge) reflex - sympathetic 

reflex initiated by increased venous return, 

hence increased atrial filling

– Stretch of atrial walls stimulates SA node  

HR

– Also stimulates atrial stretch receptors, 

activating sympathetic reflexes
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Figure 18.22  Factors involved in determining cardiac output.
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Chemical Regulation of Heart Rate 

• Hormones

– Epinephrine from adrenal medulla increases 

heart rate and contractility

– Thyroxine increases heart rate; enhances 

effects of norepinephrine and epinephrine

• Intra- and extracellular ion concentrations 

(e.g., Ca2+ and K+) must be maintained for 

normal heart function



© 2013 Pearson Education, Inc.

Homeostatic Imbalance

• Hypocalcemia  depresses heart

• Hypercalcemia  increased HR and 

contractility

• Hyperkalemia  alters electrical activity 

 heart block and cardiac arrest

• Hypokalemia  feeble heartbeat; 

arrhythmias
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Other Factors that Influence Heart Rate

• Age

– Fetus has fastest HR

• Gender

– Females faster than males

• Exercise

– Increases HR

• Body temperature

– Increases with increased temperature
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Homeostatic Imbalances

• Tachycardia - abnormally fast heart rate 

(>100 beats/min)

– If persistent, may lead to fibrillation

• Bradycardia - heart rate slower than 

60 beats/min

– May result in grossly inadequate blood 

circulation in nonathletes

– May be desirable result of endurance training
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Homeostatic Imbalance

• Congestive heart failure (CHF)

– Progressive condition; CO is so low that blood 

circulation inadequate to meet tissue needs

– Reflects weakened myocardium caused by

• Coronary atherosclerosis—clogged arteries

• Persistent high blood pressure

• Multiple myocardial infarcts

• Dilated cardiomyopathy (DCM) 
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Homeostatic Imbalance

• Pulmonary congestion

– Left side fails  blood backs up in lungs

• Peripheral congestion

– Right side fails  blood pools in body organs 

 edema

• Failure of either side ultimately weakens 

other

• Treat by removing fluid, reducing afterload, 

increasing contractility
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Developmental Aspects of the Heart

• Embryonic heart chambers

– Sinus venosus

– Atrium

– Ventricle

– Bulbus cordis
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Figure 18.24  Development of the human heart.
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Developmental Aspects of the Heart

• Fetal heart structures that bypass 

pulmonary circulation

– Foramen ovale connects two atria

• Remnant is fossa ovalis in adult 

– Ductus arteriosus connects pulmonary trunk 

to aorta

• Remnant - ligamentum arteriosum in adult

– Close at or shortly after birth
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Developmental Aspects of the Heart

• Congenital heart defects

– Most common birth defects; treated with 

surgery

– Most are one of two types:

• Mixing of oxygen-poor and oxygen-rich blood, e.g., 

septal defects, patent ductus arteriosus

• Narrowed valves or vessels  increased workload 

on heart, e.g., coarctation of aorta

– Tetralogy of Fallot

• Both types of disorders present



Fetus Heart: Before & After Birth 

Ductus venosus

Ductus arteriosus

Foramen 
ovale



Sounds 

Ventricular septal defect

Normal

http://www.easyauscultation.com/
cases-listing-details.aspx?caseID=7

http://www.easyauscultation.com/cases-listing-details.aspx?caseID=7


Indomethacin

In humans, postnatal indomethacin can cause 
closure of the ductus arteriosus, and is used 
therapeutically when this structure remains patent 
in preterm neonates (Heymann et al., ’76). 

Ductal constriction can also occur in utero after 
maternal indomethacin administration (Moise et 
al., ’88).

In addition, infants exposed to prenatal indomethacin 
were more likely to require surgical ligation of their 
PDA due to either a lack of response to postnatal 
indomethacin or a reopening of the duct after initial 
closure. 

Pediatrics in Review Vol.28 No.4 April 
2007 



The human heart beats more than 3.5 billion times in an average 
lifetime.

The human embryonic heart begins beating approximately 21 days 
after conception.

The human heart begins beating at a rate near the mother’s, about 
75-80 BPM. 

The embryonic heart rate (EHR) then accelerates linearly for the first 
month of beating, peaking at 165-185 BPM during the early 7th week.
This acceleration is approximately 3.3 BPM per day, or about 10 BPM 
every three days 
( increase of 100 BPM in the first month).

After peaking at about 9.2 weeks after the normal menstrual period 
(LMP), it decelerates to about 150 BPM (+/-25 BPM) during the 15th 
week after the LMP. 



Terry J. DuBose, M.S., RDMS; Director Diagnostic Medical 
Sonography Program

http://upload.wikimedia.org/wikipedia/en/c/ce/EHR-BBII.jpg
http://upload.wikimedia.org/wikipedia/en/c/ce/EHR-BBII.jpg


Congenital Heart Diseases: Neonate & 

Young Infant

• Significant congenital heart disease (CHD) may be 
diagnosed at virtually any age.

• Some conditions always are discovered in neonates; 
others rarely are identified during infancy.



Pediatrics in Review Vol.28 No.4, 2007 



Pediatrics in Review Vol.28 No.4, 2007 



Tetralogy of Fallot

This condition results from a single error: the conus septum 
develops too far anteriorly giving rise to two unequally 
proportioned vessels- - a large aorta and a smaller stenotic 
pulmonary trunk. 

The four main characteristics of Tetralogy of Fallot are: 
(1) pulmonary stenosis 
(2) ventricular septal defect (VSD) of the membranous portion 
(the septum is displaced too far anteriorly to contribute to the 
septum) 
(3) overriding aorta (the aorta straddles the VSD) 



Tricuspid Atresia:
Total Correction: mortality less than 3%

Transposition of the great arteries
Total Correction: mortality less than 2%

Pulmonic stenosis
Total Correction: mortality less than 1%

Truncus Arteriosus (various types)
Mortality is > 10%

Hypoplastic left heart syndrome
Mortality ~10%

Perry et al. 2010. Maternal Child Nursing Care, 4th Edition. Chapter 48



Septal defects

At the end of the seventh week -final stage of development.
Fetus does not use its lungs, most of the blood is diverted to the 
systemic circulation. Foramen ovale and the septum primum 
At birth the child will use its lungs for the first time: more blood 
pulmonary circulation. 
The pressure increase in the left atrium will force septum primum 
to wall- two septa fuse    

(common atrial septum) 
O1 = Ostium primum 
S1 = Septum primum 
FO = Foramen ovale 
S2 = Septum secundum 



ECG: Neonate

• Arrhythmias in fetuses and newborns are relatively 
common, occurring in up to 90% of newborns and in 
1% to 3% of pregnancies (NeoReviews Vol.9 No.6 2008 e242,2008 American 
Academy of Pediatrics, Fetal and Neonatal Arrhythmias)

• Weak arterial pulses and right heart overload in the 
electrocardigram suggested the diagnosis of 
hypoplasia of the left heart. Impaired coronary 
perfusion to portions of the right and left ventricular 
myocardium. Pulmonary vasoconstriction from 
hypoxia. Myocardial ischemia on the 
electrocardiogram (The Journal of Pediatrics Volume 81 (2): 243-250 )

• SIDS: A prolonged QT interval may be an important 
cause for SIDS. (Schwartz et al., The New England Journal of Medicine, 
1998 338(24):1709-1714. 
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Brugada syndrome : Genetic disease, abnormal ECG sudden cardiac death (Sudden Unexpected
Death Syndrome -SUDS). First described in 1992, ventricular fibrillation mutation in Na+ ion channel



Ion channels

• Recent evidence indicates that between 5 and 15% of 
SIDS cases carry potentially lethal loss-of-function 
mutations in cardiac channelopathy genes. 

(Future Cardiol. 2009 Mar;5(2):201-7. Sudden infant death syndrome and cardiac arrhythmias. 
Morris JA, Harrison L, Brodison A, Lauder R. Department of Pathology, Royal Lancaster Infirmary, 
Lancaster LA1 4RP, UK.)

• Morphological changes in the mitochondrial network 
likely accompany the uncoupling with mitochondrial 
fission dampening the signals leading to cardiomyocyte 
death.

(J Bioenerg Biomembr. 2009 Apr;41(2):133-6. Uncouple my heart: the benefits of inefficiency.
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Age-Related Changes Affecting the Heart

• Sclerosis and thickening of valve flaps

• Decline in cardiac reserve

• Fibrosis of cardiac muscle

• Atherosclerosis


