
1

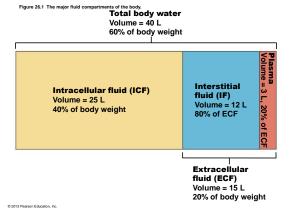
PowerPoint® Lecture Slides prepared by Barbara Heard, Atlantic Cape Community College

Fluid, Electrolyte, and Acid-Base Balance

PEARSON

Body Water Content

D 2013 Pearson Education Inc


- Infants: 73% or more water (low body fat, low bone mass)
- · Adult males: ~60% water
- Adult females: ~50% water (higher fat content, less skeletal muscle mass)
 Adipose tissue least hydrated of all
- Water content declines to ~45% in old age

Fluid Compartments

- Total body water = 40 L
- Two main fluid compartments
 - Intracellular fluid (ICF) compartment: 2/3 in cells
 - Extracellular fluid (ECF) compartment: 1/3 outside cells
 - Plasma: 3 L
 - Interstitial fluid (IF): 12 L in spaces between cells
 Usually considered part of IF: lymph, CSF, humors of the eye, synovial fluid, serous fluid, and gastrointestinal secretions

© 2013 Pearson Education, Inc.

© 2013 Pearson Education. Inc

Electrolyte Concentration

• Expressed in milliequivalents per liter (mEq/L), measure of number of electrical charges per liter of solution

 $mEq/L = \frac{ion concentration (mg/L)}{atomic weight of ion (mg/mmol)}$

 $\times~$ no. of electrical charges on one ion

Electrolyte Concentration

© 2013 Pearson Education. Inc

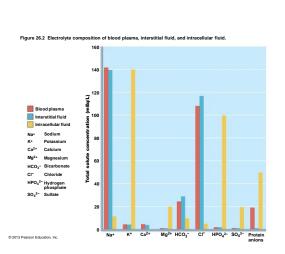
- For single charged ions (e.g. Na⁺), 1 mEq = 1 mOsm
- For bivalent ions (e.g. Ca²⁺), 1 mEq = 1/2 mOsm
- 1 mEq of either provides same amount of charge

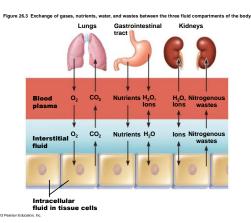
Extracellular and Intracellular Fluids

- Each fluid compartment has distinctive pattern of electrolytes
- ECF

© 2013 Pearson Education, Inc

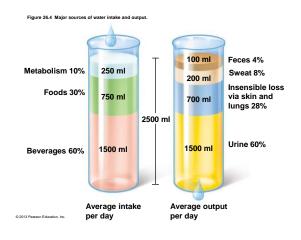
© 2013 Pearson Education. Inc


- All similar
 - Major cation: Na⁺
 - Major anion: Cl⁻
- Except: higher protein, lower Cl⁻ content of plasma


Extracellular and Intracellular Fluids

· ICF:

© 2013 Pearson Education, Inc


- Low Na⁺ and Cl⁻
- Major cation: K+
- Major anion HPO₄²⁻
- More soluble proteins than in plasma

- Water intake must = water output = ~ 2500 ml/day
- Water intake: beverages, food, and metabolic water
- Water output: urine (60%), **insensible water loss** (lost through skin and lungs), perspiration, and feces

Maintenance of Body fluid Osmolality

- Osmolality maintained at ~ 280 300 mOsm
- Rise in osmolality →
 - Stimulates thirst
 - ADH release
- Decrease in osmolality \rightarrow
 - Thirst inhibition
 - ADH inhibition

© 2013 Pearson Education, Inc.

Regulation of Water Output: Influence of ADH

- · Other factors may trigger ADH release
 - Large changes in blood volume or pressure
 - E.g., ↓ BP → ↑ ADH release due to blood vessel baroreceptors and renin-angiotensin-aldosterone mechanism
 - Factors lowering blood volume: intense sweating, vomiting, or diarrhea; severe blood loss; traumatic burns; and prolonged fever

	† ECF cars † Na- concer in plas	tration		
Stim	ulaina -es	C	Plasma (5-10%	volume), (BP
	Osmorecep In hypothale			inhi 🛏
Negative feedback inhibits Stim	uistes —c>	[Barcreco In atria large ve	and
Rah	Posterior pl	utary	<u>,</u> -	► Stin
Rah	Antidiure hormone (4200	АДН	
	Collecting d	ucts		
	• • • • • •	- Effects		
	-	Results	in	
i ECF o	arrolality a volume	Scant u	rine	

Figure 26.6 Mechanisms and consequences of ADH release

© 2013 Pearson Education, Inc.

Disorders of Water Balance

- · Principal abnormalities of water balance
 - Dehydration
 - Hypotonic hydration
 - Edema

© 2013 Pearson Education. Inc

© 2013 Pearson Education, Inc

Disorders of Water Balance: Hypotonic Hydration

- Cellular overhydration, or water intoxication
- Occurs with renal insufficiency or rapid excess water ingestion
- ECF osmolality ↓ → hyponatremia → net osmosis into tissue cells → swelling of cells → severe metabolic disturbances (nausea, vomiting, muscular cramping, cerebral edema) → possible death
- · Treated with hypertonic saline

© 2013 Pearson Education, Inc.

(b) Consequences of hypotonic hydration (water gain). If more water than solutes is gained, cells swell.

D 2013 Pearson Education, Inc.

Disorders of Water Balance: Edema

- Atypical accumulation of IF → tissue swelling (not cell swelling)
- Result of \uparrow fluid out of blood or \downarrow fluid into blood
- fluid out of blood caused by
 - Increased capillary hydrostatic pressure or permeability
 - Capillary hydrostatic pressure increased by incompetent venous valves, localized blood vessel blockage, congestive heart failure, ↑ blood volume
 - Capillary permeability increased by ongoing inflammatory response

© 2013 Pearson Education, Inc.

Edema

© 2013 Pearson Education Inc.

© 2013 Pearson Education. Inc

- \downarrow fluid returning to blood result of
 - Imbalance in colloid osmotic pressures, e.g., hypoproteinemia (↓ plasma protein levels → low colloid osmotic pressure)
 - Fluids fail to return at venous ends of capillary beds
 - Results from protein malnutrition, liver disease, or glomerulonephritis

Electrolyte Balance

- Electrolytes are salts, acids, bases, some proteins
- Electrolyte balance usually refers only to salt balance
- Salts control fluid movements; provide minerals for excitability, secretory activity, membrane permeability
- Salts enter body by ingestion and metabolism; lost via perspiration, feces, urine, vomit

© 2013 Pearson Education, Inc.

Central Role of Sodium

- · Most abundant cation in ECF
 - Sodium salts in ECF contribute 280 mOsm of total 300 mOsm ECF solute concentration
- Only cation exerting significant osmotic pressure
 - Controls ECF volume and water distribution
 - Changes in Na⁺ levels affects plasma volume, blood pressure, and ECF and IF volumes

Table 26.2 Sodium Concentration and Sodium Content

Table 26.2	Sodium Concentra and Sodium Conte	
	ECF Na ⁺ CONCENTRATION	BODY Na ⁺ CONTENT
Homeostatic Importance	ECF osmolality	Blood volume and blood pressure
Sensors	Osmoreceptors	Baroreceptors
Regulation	ADH and thirst mechanisms	Renin-angiotensin- aldosterone and ANP hormone mechanisms*

*ADH and thirst are also required to maintain blood volume and for longterm control of blood pressure.

© 2013 Pearson Education, Inc

Regulation of Sodium Balance: Aldosterone

- Regardless of aldosterone presence
 - 65% Na⁺ reabsorbed in proximal tubules; 25% reclaimed in nephron loops
 - Na + never secreted into filtrate
- Water in filtrate follows Na+ *if ADH is* present
 - $-\uparrow$ Na⁺ in urine \rightarrow \uparrow water loss

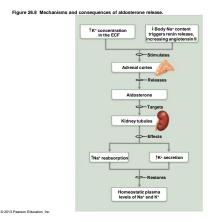
Aldosterone

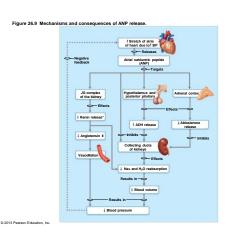
- Aldosterone → decreased urinary output; increased blood volume
 - By active reabsorption of remaining Na⁺ in distal convoluted tubule and collecting duct
- Also causes increased K⁺ secretion

© 2013 Pearson Education, Inc

© 2013 Pearson Education, Inc

Regulation of Sodium Balance: Aldosterone


- Renin-angiotensin-aldosterone mechanism main trigger for aldosterone release
 - Granular cells of JGC secrete renin in response to
 - Sympathetic nervous system stimulation
 - \downarrow filtrate NaCl concentration
 - \downarrow stretch (due to \downarrow blood pressure) of granular cells


Regulation of Sodium Balance: Aldosterone

- Renin catalyzes production of angiotensin II
 - Prompts aldosterone release from adrenal cortex
 - $-\uparrow$ Na⁺ reabsorption by kidney tubules
- Aldosterone release also triggered by elevated K⁺ levels in ECF
- Aldosterone brings about its effects slowly (hours to days)

© 2013 Pearson Education, Inc.

© 2013 Pearson Education Inc.

Influence of other Hormones

- Female sex hormones
 - Estrogens:
 [↑] NaCl reabsorption (like aldosterone)
 - * \rightarrow H_2O retention during menstrual cycles and pregnancy
 - Progesterone: ↓ Na⁺ reabsorption (blocks aldosterone)
 - + Promotes Na⁺ and H_2O loss
- Glucocorticoids:
 [↑] Na⁺ reabsorption and promote edema

	Education,	Inc.

	i System blood pressure	c /volume	
Stretch in affarant	i Filtrate NaCl concentration in ascending	Inhibits baroreceptors	
arterioles	limb of nephron loop	in blood vessels	
(+)	(+)	(+)	
	nular cells (+)	Sympathetic nervous system	
	-Release	(+)	
	Renin	Systemic arterioles	
	- Catalyzes conversion	- Causes	
Angiotensinogen	Angiotensin I	Vasoconstriction	
(from liver)		- Results in	
Converting	enzyme (in lungs)	Peripheral resistance	(+)
	Angiotensin II (+		Posterior pituitary
(+)	(+)	- T	- Releases
Systemic arterioles	Adrenal cortex		ADH (antidiuretic hormone)
- Causes	- Secretes		(+)
Vasoconstriction	Aldosterone		Collecting ducts
- Results in	Targets		of kidneys
Peripheral resistance	Distal kidney tubules		- Causes
	Causes		1H2O reabsorption
	1 Na* (and H ₂ O) reabsorption		
	- Results in	1.0	
	†Blood volume		
	+	(+)	stimulates Renin-angiotensin-aldosterone
	Blood pressure		Mechanism
			Neural regulation (sympathetic rervous system effects)

Regulation of Potassium Balance

- · Importance of potassium
 - Affects RMP in neurons and muscle cells (especially cardiac muscle)

 - \downarrow ECF [K+] \rightarrow hyperpolarization and nonresponsiveness

Regulation of Potassium Balance

- · Hyperkalemia too much K+
- Hypokalemia too little K+
- Both disrupt electrical conduction in heart \rightarrow
 - Sudden death

© 2013 Pearson Education, Inc.

© 2013 Pearson Education. Inc.

© 2013

© 2013 Pearson Education, Inc.

Regulation of Potassium Balance

- K⁺ part of body's buffer system
- H⁺ shifts in and out of cells in opposite direction of K⁺ to maintain cation balance, so
 - ECF K⁺ levels rise with acidosis
 - ECF K⁺ levels fall with alkalosis
 - · Interferes with activity of excitable cells

Influence of Plasma Potassium Concentration

- Most important factor affecting K⁺ secretion is its concentration in ECF
- High K⁺ diet $\rightarrow \uparrow$ K⁺ content of ECF \rightarrow K⁺ entry into principal cells \rightarrow K⁺ secretion
- Low K⁺ diet or accelerated K⁺ loss reduces its secretion

© 2013 Pearson Education, Inc

6

Regulation of Potassium Balance

- · Influence of aldosterone
 - Stimulates K⁺ secretion (and Na⁺ reabsorption) by principal cells
 - Adrenal cortical cells directly sensitive to K⁺ content of ECF
 - Increased K⁺ in adrenal cortex causes – Release of aldosterone \rightarrow K⁺ secretion
- Abnormal aldosterone levels severely influence K⁺ levels

© 2013 Pearson Education, Inc.

Regulation of Calcium

- 99% of body's calcium in bones
 Calcium phosphate salts
- Ca²⁺ in ECF important for
 - Blood clotting
 - Cell membrane permeability
 - Secretory activities
 - Neuromuscular excitability most important

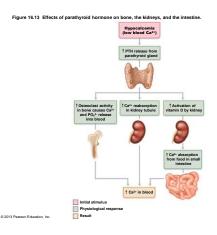
© 2013 Pearson Education, Inc.

Regulation of Calcium

- Hypocalcemia $\rightarrow \uparrow$ excitability and muscle tetany
- Hypercalcemia → inhibits neurons and muscle cells, may cause heart arrhythmias
- Calcium balance controlled by parathyroid hormone (PTH) from parathyroid gland Paraty douistos from parathylimits
 - Rarely deviates from normal limits

Influence of PTH

- PTH promotes increase in calcium levels by targeting
 - Bones osteoclasts break down matrix, releasing calcium and phosphate to blood
 - Kidneys increases calcium reabsorption; decreases phosphate ion reabsorption
 - Small intestine increases calcium absorption (indirectly through stimulation of kidney to activate vitamin D precursor)


© 2013 Pearson Education, Inc

Influence of PTH

© 2013 Pearson Education, Inc

© 2013 Pearson Education. Inc

- 98% filtered calcium reabsorbed due to PTH
- If ECF calcium levels normal PTH secretion inhibited
- 75% of filtered phosphates reabsorbed in PCT
 - PTH inhibits this by decreasing the T_m
- Phosphate reabsorption also affected by insulin (increases it) and glucagon (decreases it)

Regulation of Anions

- CI- is major anion in ECF
 - Helps maintain osmotic pressure of blood
 - 99% of CI⁻ is reabsorbed under normal pH conditions
- When acidosis occurs, fewer chloride ions are reabsorbed
- Other anions have transport maximums and excesses are excreted in urine

Acid-base Balance

- pH affects all functional proteins and biochemical reactions, so closely regulated
- · Normal pH of body fluids
 - Arterial blood: pH 7.4
 - Venous blood and IF fluid: pH 7.35
 - ICF: pH 7.0

© 2013 Pearson Education, Inc

- Alkalosis or alkalemia: arterial pH >7.45
- Acidosis or acidemia: arterial pH <7.35

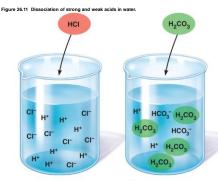
Acid-base Balance

© 2013 Pearson Education, Inc

© 2013 Pearson Education, Inc

© 2013 Pearson Education. Inc

- Most H⁺ produced by metabolism
 - Phosphorus-containing protein breakdown releases phosphoric acid into ECF
 - Lactic acid from anaerobic respiration of glucose
 - Fatty acids and ketone bodies from fat metabolism
 - $\rm H^{\scriptscriptstyle +}$ liberated when $\rm CO_2$ converted to $\rm HCO_3^-$ in blood


Acid-base Balance

- Concentration of hydrogen ions regulated sequentially by
 - Chemical buffer systems: rapid; first line of defense
 - Brain stem respiratory centers: act within 1–3 min
 - Renal mechanisms: most potent, but require hours to days to effect pH changes

© 2013 Pearson Education, Inc

Acid-base Balance: Chemical Buffer Systems

- Strong acids dissociate completely in water; can dramatically affect pH
- Weak acids dissociate partially in water; are efficient at preventing pH changes
- Strong bases dissociate easily in water; quickly tie up H⁺
- Weak bases accept H⁺ more slowly

(a) A strong acid such as HCI dissociates completely into its ions. (b) A weak acid such as H₂CO₃ does not dissociate completely.

Chemical Buffer Systems

- Chemical buffer: system of one or more compounds that act to resist pH changes when strong acid or base is added
 - Bind H⁺ if pH drops; release H⁺ if pH rises
 - 1. Bicarbonate buffer system
 - 2. Phosphate buffer system
 - 3. Protein buffer system

© 2013 Pearson Education, Inc

© 2013 Pearson Education Inc.

© 2013 Pearson Education. Inc

Phosphate Buffer System

- Action nearly identical to bicarbonate
 buffer
- · Components are sodium salts of:
 - Dihydrogen phosphate (H₂PO₄⁻), a weak acid
 - Monohydrogen phosphate (HPO₄²⁻), a weak base
- Unimportant in buffering plasma
- Effective buffer in urine and ICF, where phosphate concentrations are high

Respiratory Regulation of H+

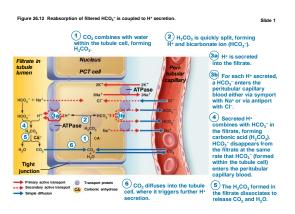
- Hypercapnia activates medullary chemoreceptors
 - \rightarrow Increased respiratory rate and depth
- Rising plasma H⁺ activates peripheral chemoreceptors
 - \rightarrow Increased respiratory rate and depth
 - More CO₂ is removed from the blood
 - H⁺ concentration is reduced

Respiratory Regulation of H+

- Alkalosis depresses respiratory center
 Respiratory rate and depth decrease
 - Respiratory rate and deptir de
 H⁺ concentration increases
- Respiratory system impairment causes acid-base imbalances
 - Hypoventilation \rightarrow respiratory acidosis
 - Hyperventilation \rightarrow respiratory alkalosis

© 2013 Pearson Education, Inc.

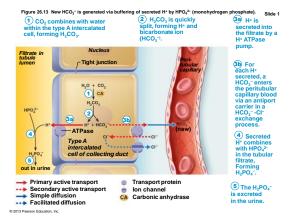
© 2013 Pearson Education. Inc


© 2013 Pearson Education, Inc

Renal Mechanisms of Acid-Base Balance

- · Most important renal mechanisms
 - Conserving (reabsorbing) or generating new $\rm HCO_3^-$
 - Excreting HCO₃⁻
- Generating or reabsorbing one HCO₃⁻ same as losing one H⁺
- Excreting one HCO_3^- same as gaining one H^+

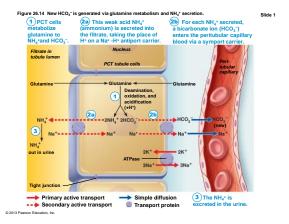
Renal Mechanisms of Acid-base Balance


- Renal regulation of acid-base balance depends on kidney's ability to secrete H⁺
- H⁺ secretion occurs in PCT and collecting duct type A intercalated cells:
 - The H⁺ comes from H₂CO₃ produced in reactions catalyzed by carbonic anhydrase inside cells
 - As H⁺ secreted, Na⁺ reabsorbed
 - See Steps 1 and 2 of following figure

© 2013 Pearson Education, Inc.

Renal Mechanisms of Acid-base Balance

- Rate of H⁺ secretion changes with ECF CO₂ levels
 - \uparrow CO₂ in peritubular capillary blood \rightarrow \uparrow rate of H^+ secretion
 - System responds to both rising and falling H⁺ concentrations


Ammonium Ion Excretion

- More important mechanism for excreting acid
- Involves metabolism of glutamine in PCT cells
- Each glutamine produces 2 $\rm NH_4^+$ and 2 "new" $\rm HCO_3^-$
- HCO₃⁻ moves to blood and NH₄⁺ is excreted in urine
- · Replenishes alkaline reserve of blood

© 2013 Pearson Education, Inc.

© 2013 Pearson Education. Inc

© 2013 Pearson Education Inc

Bicarbonate Ion Secretion

- When body in alkalosis, type B intercalated cells
 - Secrete HCO3-
 - Reclaim H⁺ to acidify blood

Bicarbonate Ion Secretion

- Mechanism is opposite of bicarbonate ion reabsorption process by type A intercalated cells
- Even during alkalosis, nephrons and collecting ducts conserve more HCO₃⁻ than they excrete

Respiratory Acidosis and Alkalosis

- Most important indicator of adequacy of respiratory function is P_{CO2} level (normally 35–45 mm Hg)
 - P_{CO_2} above 45 mm Hg \rightarrow respiratory acidosis
 - Common cause of acid-base imbalances
 - Due to decrease in ventilation or gas exchange
 - CO₂ accumulates in blood
 - Characterized by falling blood pH and rising $\mathsf{P}_{\mathsf{CO}_2}$

© 2013 Pearson Education, Inc.

© 2013 Pearson Education, Inc

© 2013 Pearson Education. Inc

Respiratory Acidosis and Alkalosis

- P_{CO_2} below 35 mm Hg \rightarrow respiratory alkalosis
 - Common result of hyperventilation often due to stress or pain
 - · CO₂ eliminated faster than produced

Metabolic Acidosis and Alkalosis

- Metabolic acidosis low blood pH and $\rm HCO_{3}^{-}$
 - Causes

© 2013 Pearson Education, Inc

- Ingestion of too much alcohol (\rightarrow acetic acid)
- Excessive loss of HCO₃⁻ (e.g., persistent diarrhea)
- Accumulation of lactic acid (exercise or shock), ketosis in diabetic crisis, starvation, and kidney failure

© 2013 Pearson Education, Inc

© 2013 Pearson Education. Inc

Metabolic Acidosis and Alkalosis

- Metabolic alkalosis much less common than metabolic acidosis
 - Indicated by rising blood pH and HCO3-
 - Causes include vomiting of acid contents of stomach or by intake of excess base (e.g., antacids)

Respiratory Compensation

- · Changes in respiratory rate and depth
- · In metabolic acidosis
 - High H⁺ levels stimulate respiratory centers
 - Rate and depth of breathing elevated
 - Blood pH is below 7.35 and $\mathrm{HCO_3^-}$ level is low
 - As CO_2 eliminated by respiratory system, P_{CO_2} falls below normal