Linear Discriminant Analysis, Part II

Patrick Breheny

September 20
To illustrate the application of LDA to a real data set, we will use a famous data set collected by Anderson and published in ”The irises of the Gaspé Peninsula”, and which originally inspired Fisher to develop LDA.

Anderson collected and measured hundreds of irises in an effort to study variation between and among the different species.

There are 260 species of iris; this data set focuses on three of them (Iris setosa, Iris virginica and Iris versicolor).

Four features were measured on 50 samples for each species: sepal width, sepal length, petal width, and petal length.
Iris species

(a) setosa

(b) virginica

(c) versicolor
Scatterplot matrix

- SepalLength
- SepalWidth
- PetalLength
- PetalWidth

Legend:
- setosa
- versicolor
- virginica
Fitting LDA models in SAS/R is straightforward

SAS code:
```
PROC DISCRIM DATA=iris;
   CLASS Species;
RUN;
```

R code (requires the MASS package):
```
fit <- lda(Species~.,Data)
```
The cross-classification table of predicted and actual species assignments (sometimes called the *confusion matrix*):

<table>
<thead>
<tr>
<th>Predicted</th>
<th>Actual</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>setosa</td>
<td>setosa</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>versicolor</td>
<td>0</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>virginica</td>
<td>0</td>
<td>2</td>
<td>49</td>
</tr>
</tbody>
</table>
Mahalanobis distance

- The “distance” between classes k and l can be quantified using the Mahalanobis distance:

$$\Delta = \sqrt{(\mu_k - \mu_l)^T \Sigma^{-1} (\mu_k - \mu_l)},$$

- Essentially, this is a scale-invariant version of how far apart the means, and which also adjusts for the correlation between variables.
- The result is a multivariate extension of the notion of “how many standard deviations apart are X and Y”?
Linear discriminant analysis in R/SAS
Comparison with multinomial/logistic regression

Mahalanobis distance

<table>
<thead>
<tr>
<th></th>
<th>setosa</th>
<th>versicolor</th>
<th>virginica</th>
</tr>
</thead>
<tbody>
<tr>
<td>setosa</td>
<td>0.00</td>
<td>9.48</td>
<td>13.39</td>
</tr>
<tr>
<td>versicolor</td>
<td>9.48</td>
<td>0.00</td>
<td>4.15</td>
</tr>
<tr>
<td>virginica</td>
<td>13.39</td>
<td>4.15</td>
<td>0.00</td>
</tr>
</tbody>
</table>

These distances are rather large; hence the ease with which LDA was able to classify the species.
An important feature of LDA is the ability to estimate the conditional probability of the class given the identifying features. This is valuable in two distinct situations:

- To predict future classes
- To illustrate the model and the relationship of the explanatory variables to the outcome

For example, suppose we only had five observations per species; would that be enough to build an accurate classifier?
To explore this, let’s split our sample randomly into a *training set* used to fit the model, and a *test set* we can use to see how well our model predicts new observations.

Once this is done, it is straightforward in both SAS and R to make predictions on a new set of data:

```sas
PROC DISCRIM DATA=Train TESTDATA=Test TESTOUT=Pred;
   CLASS Species;
RUN;
```

Or in R:

```r
fit <- lda(Species~.,Train)
pred <- predict(fit,Test)
```
Prediction results

Results from one such test/train split:

<table>
<thead>
<tr>
<th></th>
<th>Actual</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>setosa</td>
<td>versicolor</td>
<td>virginica</td>
</tr>
<tr>
<td>setosa</td>
<td>45</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Predicted</td>
<td>versicolor</td>
<td>42</td>
<td>4</td>
</tr>
<tr>
<td>virginica</td>
<td>0</td>
<td>3</td>
<td>41</td>
</tr>
</tbody>
</table>

The misclassification error goes up slightly, but the differences between the species are big enough that we have a rather good classifier even with only 5 observations per class.
If you are familiar with multinomial logistic regression, you may be thinking to yourself: what’s the big deal? I already have a perfectly good tool for dealing with this problem.

To refresh your memory, the multinomial logistic regression model consists of defining one class to be the reference and fitting separate logistic regression models for \(k = 2, \ldots, K \), comparing each outcome to the baseline:

\[
\log \left(\frac{\pi_{ik}}{\pi_{i1}} \right) = \beta_{k0} + \mathbf{x}_i^T \mathbf{\beta}_k
\]

where \(\pi_{ik} \) denotes the probability that the \(i \)th individual’s outcome belongs to the \(k \)th class.
Recall, however, that LDA satisfies:

\[
\log \left(\frac{\pi_{ik}}{\pi_{i1}} \right) = \log \frac{\pi_k}{\pi_l} - \frac{1}{2} (\mu_k + \mu_l)^T \Sigma^{-1} (\mu_k - \mu_l) \\
+ x_i^T \Sigma^{-1} (\mu_k - \mu_l) \\
= \alpha_{k0} + x_i^T \alpha_k
\]

At first glance, then, it seems the models are the same.
Difference between LDA and logistic regression

- However, although the two approaches have the same form, they do not estimate their coefficients in the same manner.
- LDA operates by maximizing the log-likelihood based on an assumption of normality and homogeneity.
- Logistic regression, on the other hand, makes no assumption about $\Pr(X)$, and estimates the parameters of $\Pr(G|x)$ by maximizing the conditional likelihood.
Intuitively, it would seem that if the distribution of x is indeed multivariate normal, then we will be able to estimate our coefficients more efficiently by making use of that information.

On the other hand, logistic regression would presumably be more robust if LDA’s distributional assumptions are violated.

Indeed, this intuition is borne out, both by theoretical work and simulation studies, although in practice, the two approaches do usually give similar results.
Iris data comparison

- For the iris data, multinomial logistic regression classifies the data even better (slightly) than LDA:

<table>
<thead>
<tr>
<th></th>
<th>Actual setosa</th>
<th>Actual versicolor</th>
<th>Actual virginica</th>
</tr>
</thead>
<tbody>
<tr>
<td>setosa</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>versicolor</td>
<td>0</td>
<td>49</td>
<td>1</td>
</tr>
<tr>
<td>virginica</td>
<td>0</td>
<td>1</td>
<td>49</td>
</tr>
</tbody>
</table>

- However, this is not convincing; what matters is the ability to predict observations that the model doesn’t already know the answers for
Iris cross-validation

- Consider a cross-validation study with the iris data, randomly splitting it up into a training set containing 5 observations per species, with the remainder used as a test set.
- The results: LDA has a misclassification rate of 5.2%, while logistic regression has a misclassification rate of 7.7%.
Efron (1975) derived the asymptotic relative efficiency of logistic regression compared to LDA in the two-class case when the true distribution of x is normal and homogeneous, and found the logistic regression estimates to be considerably more variable:
Final remarks

- Recall the problem of complete separation in logistic regression: when there is no overlap between the classes, the logistic regression MLEs go to $\pm \infty$.
- This does not happen with LDA, however: estimates are always well-defined and finite.
- In principle, LDA should perform poorly when outliers are present, as these usually cause problems when assuming normality.
- In practice, however, the two approaches usually give similar results, even in cases where x is obviously not normal (such as for categorical explanatory variables).