Nominal and ordinal logistic regression

Patrick Breheny

April 26
Our goal for today is to briefly go over ways to extend the logistic regression model to the case where the outcome can have multiple categories (i.e., not binary).

We will discuss two approaches:

- \textit{Multinomial logistic regression}, which makes no assumptions regarding the relationship between the categories, and is most appropriate for nominal outcomes.

- The \textit{proportional odds model}, which assumes an ordering to the categories and is most appropriate for ordinal outcomes.
We will use the following notation to describe these multi-class models:

- Let Y be a random variable that can on one of K discrete value (i.e., fall into one of K classes)
- Number the classes $1, \ldots, K$
- Thus, $\pi_{i2} = \Pr(Y_i = 2)$ denotes the probability that the ith individual’s outcome belongs to the second class
- More generally, $\pi_{ik} = \Pr(Y_i = k)$ denotes the probability that the ith individual’s outcome belongs to the kth class
The multinomial logistic regression model

- Multinomial logistic regression is equivalent to the following:
 - Let $k = 1$ denote the reference category
 - Fit separate logistic regression models for $k = 2, \ldots, K$, comparing each outcome to the baseline:
 \[
 \log \left(\frac{\pi_{ik}}{\pi_{i1}} \right) = x_i^T \beta_k
 \]
 - Note that this will result in $K - 1$ vectors of regression coefficients (we don’t need to estimate the Kth vector because $\sum_k \pi_k = 1$)
The fitted class probabilities for an observation with explanatory variable vector x are therefore

$$\hat{\pi}_1 = \frac{1}{1 + \sum_k \exp(x^T \hat{\beta}_k)}$$

$$\hat{\pi}_k = \frac{\exp(x^T \hat{\beta}_k)}{1 + \sum_l \exp(x^T \hat{\beta}_l)}$$
Like logistic regression, odds ratios in the multinomial model are easily estimated as exponential functions of the regression coefficients:

\[
\text{OR}_{kl} = \frac{\pi_k}{\pi_l} = \frac{\pi_k/\pi_1}{\pi_l/\pi_1} = \exp\left(\frac{(x_2 - x_1)^T \beta_k}{(x_2 - x_1)^T \beta_l}\right) = \exp\left((x_2 - x_1)^T (\beta_k - \beta_l)\right)
\]

In the simple case of changing \(x_j\) by \(\delta_j\) and comparing \(k\) to the reference category,

\[
\text{OR}_{kl} = \exp(\delta_j/\beta_{k,j})
\]
This model estimates the following odds ratios, comparing vaccinated to control:

<table>
<thead>
<tr>
<th></th>
<th>$\hat{\beta}$</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate</td>
<td>2.24</td>
<td>9.38</td>
</tr>
<tr>
<td>Large</td>
<td>2.22</td>
<td>9.17</td>
</tr>
</tbody>
</table>

A test of the null hypothesis that the odds ratios are all 1 is significant ($p = 0.00009$)

Note: These are the same coefficients, the same ratios (replacing OR with RR), and the same p-value for the hypothesis test as the Poisson regression approach.
Multinomial regression requires the estimation of $(K - 1)p$ parameters, and assumes nothing about the relationship between the categories to assist in that estimation.

This is very flexible of course, but has the potential to lead to large variability in the estimates, especially when the number of categories is large.

A common alternative when the categories are ordered to assume that the log odds of $Y \geq k$ is linearly related to the explanatory variables.

This is called the *proportional odds* model, and requires the estimate of only one regression coefficient per explanatory variable.
Specifically, the proportional odds model assumes

$$\log \left(\frac{\pi_k + \cdots + \pi_K}{1 + \cdots + \pi_{k-1}} \right) = \beta_{0k} + \mathbf{x}^T \mathbf{\beta}$$

Thus, we still have to estimate \(K - 1\) intercepts, but only \(p\) linear effects, where \(p\) is the number of explanatory variables (note that \(K + p - 1 < (K - 1)(p + 1)\) if \(K > 2\)).

Note: Writing down the proportional odds model requires us to modify the notation we’ve used all semester – so in the above, \(\mathbf{x}\) and \(\mathbf{\beta}\) do not include a term for the intercept.
The proportional odds model estimates that the odds ratio for $Y \in \{\text{Moderate, Large}\}$ given vaccination is $\exp(\hat{\beta}_1) = 6.3$; furthermore, by assumption of the model, this is also the odds ratio for a large response relative to $\{\text{Small, Moderate}\}$ given vaccination.
Non-linear models

- Linear and generalized linear models are certainly the most important class of models, but they are not the only kind of model.
- For example, we have already alluded to the idea that we sometimes wish to allow the effect of an explanatory variable to be a smooth curve rather than a line:

$$g(\mu_i) = f(x_i)$$
Non-linear models: Example
Tree-based models

There are also tree-based models:
There are many additional extensions/modifications/alternatives that have been proposed as well:

- Robust regression
- Distribution-free methods for inference
- Discriminant analysis
- Principal component analysis
- Methods for dealing with highly correlated explanatory variables
- Methods for variable selection that avoid the problems of subset selection

These topics form the basis of BST 764: Applied Statistical Modeling, which I will be teaching next fall.