Kernel density classification

Patrick Breheny

October 25
In addition to providing estimates of density, kernel density methods may also be used for *classification*

Suppose \(x \) is continuous, but that \(y \) is discrete, and can take values in \(K \) different categories

Given a sample of \(n \) pairs of observations \(\{x_i, y_i\} \), we would like to obtain a method for estimating \(P(y_i = j \mid x_i) \) in future observations for which \(x \) is observed but \(y \) is not.
Kernel density classification

This can be accomplished in a straightforward fashion using kernel density estimation and Bayes’ theorem:

\[
\hat{P}(y = j | x_0) = \frac{\hat{\pi}_j \hat{f}_j(x_0)}{\sum_{k=1}^{K} \hat{\pi}_k \hat{f}_k(x_0)}
\]

- \(\hat{\pi}_j\) is an estimate of the prior probability of class \(j\); usually, \(\hat{\pi}_j\) is the sample proportion falling into the \(j\)th category.
- \(\hat{f}_j(x_0)\) is the estimated density at \(x_0\) based on a kernel density fit involving only observations from the \(j\)th class.
- This is essentially the same idea as discriminant analysis, only instead of assuming normality, we are estimating the probability density of the classes using a nonparametric method.
Let us consider a study of coronary heart disease (CHD).

The study looked at many potential risk factors for CHD, such as blood pressure, tobacco and alcohol consumption, age, family history, etc.

One goal of the study is to try to assess the probability of developing coronary heart disease, given that a person has certain risk factors.

In this lecture, we will focus on systolic blood pressure as a risk factor.
Kernel density estimates

Systolic blood pressure

Density

No CHD

CHD

Patrick Breheny

STA 621: Nonparametric Statistics
In the sample, $\hat{\pi}_{CHD} = .346$
Evaluation

- As we can see, the kernel density classifier is not restricted to a linear function, although it seems somewhat unstable in regions where there is little data.
- As we have seen, there will be many regions with little data when we move to higher dimensions.
The independence assumption

Thus, the simplifying assumption of independence is often made:

$$\hat{f}_j(x) = \prod_{k=1}^{K} \hat{f}_{jk}(x_k),$$

where \hat{f}_{jk} is an estimate of the density of the jth class in the kth dimension.

This assumption is, generally speaking, not true.

However, it drastically simplifies the estimation and alleviates the curse of dimensionality by allowing the class-specific marginal densities f_{jk} to be estimated with one-dimensional kernel methods.
This approach is called the **naive Bayes classifier**

It is not necessarily a good way to estimate $\hat{f}_j(x)$, but in practice, it often performs well as a classifier.

The reason for this is that, although the estimator has considerable bias, the savings in variance are tremendous.

Furthermore, a bad estimate for f_j does not necessarily imply that the estimate $P(y = j | x)$ is bad.
Finally, it is not hard to show that, for the naive Bayes classifier,

$$\text{logit}(y = 1|x) = \beta_0 + \sum_{k=1}^{K} g_k(x_k)$$

Thus, the naive Bayes classifier is equivalent to a certain sort of additive (i.e., no interactions) logistic regression model, with flexible functions g_k determining the impact of x_k on the log-odds that $y = 1$.

For the rest of the course, we will take a more direct role in this regression/classification problem by starting with the above model and estimating the functions g directly.