1. If \(n = 10 \) and \(p = 0.60 \), then the mean of the binomial distribution is:
 a. 0.06
 b. 2.65
 c. 6.00
 d. 5.76

2. If \(n = 20 \) and \(p = 0.70 \), then the standard deviation of the binomial distribution is:
 a. 0.14
 b. 2.05
 c. 14.0
 d. 14.7

3. Suppose that a judge's decision follow a binomial distribution and that his verdict is correct 90% of the time. In his next 10 decisions, what is the probability that he makes fewer than 2 incorrect verdicts?
 Enter your answer to at least three decimal places.

4. If \(X \) has a binomial distribution with \(n = 4 \) and \(p = 0.3 \), then \(P(X > 1) = \) __________
 Enter your answer to at least four decimal places.

5. Given that \(Z \) is a standard normal random variable, \(P(-1.0 \leq Z \leq 1.5) \) is:
 a. 0.7745
 b. 0.8413
 c. 0.0919
 d. 0.9332

6. Given that \(Z \) is a standard normal variable, the value \(z \) for which \(P(Z \leq z) = 0.2580 \) is:
 a. 0.70
 b. 0.758
 c. -0.65
 d. 0.242

7. A standard normal distribution is a normal distribution with:
 a. a mean of zero and a standard deviation of one.
 b. a mean of one and a standard deviation of zero.
 c. a mean usually larger than the standard deviation.
 d. a mean always larger than the standard deviation.

8. If \(Z \) is a standard normal random variable, then the value \(z \) for which \(P(-z \leq Z \leq z) = 0.8764 \) is:
 a. 0.3764
 b. 1.54
 c. 3.08
 d. 1.16

9. A larger standard deviation of a normal distribution indicates that the distribution becomes:
 a. narrower and more peaked.
 b. flatter and wider.
 c. more skewed to the right.
 d. more skewed to the left.
If Z is a standard normal random variable, find the following probabilities:

Enter your answer to four decimal places.

a. $P(Z \leq 2.33) = \quad$?

b. $P(Z \geq 1.65) = \quad$?

c. $P(-0.58 \leq Z \leq 1.58) = \quad$?

d. $P(Z \leq -2.27) = \quad$?

Suppose Z has a standard normal distribution. Then 28.1% of the possible Z values are smaller than \quad ?

Enter your answer to two decimal places.
<table>
<thead>
<tr>
<th>1. c</th>
<th>2. b</th>
<th>3. 0.736</th>
<th>4. 0.3483</th>
<th>5. a</th>
<th>6. c</th>
<th>7. a</th>
<th>8. b</th>
<th>9. b</th>
<th>10.</th>
<th>11.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9901</td>
<td>0.0495</td>
</tr>
</tbody>
</table>