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Ridge regression: Definition

As mentioned in the previous lecture, ridge regression
penalizes the size of the regression coefficients

Specifically, the ridge regression estimate β̂ is defined as the
value of β that minimizes

∑
i

(yi − xTi β)
2 + λ

p∑
j=1

β2j
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Ridge regression: Solution

Theorem: The solution to the ridge regression problem is given by

β̂ = (XTX+ λI)−1XTy

Note the similarity to the ordinary least squares solution, but with
the addition of a “ridge” down the diagonal

Corollary: As λ→ 0, β̂
ridge

→ β̂
OLS

Corollary: As λ→∞, β̂
ridge

→ 0

Patrick Breheny BST 764: Applied Statistical Modeling 3/22



Ridge regression
Selection of λ

Ridge regression in R/SAS

Definition and solution
Properties

Ridge regression: Solution (Cont’d)

Corollary: In the special case of an orthonormal design matrix,

β̂ridgeJ =
β̂OLS
J

1 + λ

This illustrates the essential feature of ridge regression:
shrinkage

Applying the ridge regression penalty has the effect of
shrinking the estimates toward zero – introducing bias but
reducing the variance of the estimate
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Ridge vs. OLS in the presence of collinearity

The benefits of ridge regression are most striking in the presence of
multicollinearity, as illustrated in the following example:

> x1 <- rnorm(20)

> x2 <- rnorm(20,mean=x1,sd=.01)

> y <- rnorm(20,mean=3+x1+x2)

> lm(y~x1+x2)$coef

(Intercept) x1 x2

2.582064 39.971344 -38.040040

> lm.ridge(y~x1+x2,lambda=1)

x1 x2

2.6214998 0.9906773 0.8973912
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Invertibility

Recall from BST 760 that the ordinary least squares estimates
do not always exist; if X is not full rank, XTX is not

invertible and there is no unique solution for β̂
OLS

This problem does not occur with ridge regression, however

Theorem: For any design matrix X, the quantity XTX+ λI
is always invertible; thus, there is always a unique solution

β̂
ridge
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Bias and variance

Theorem: The variance of the ridge regression estimate is

Var(β̂) = σ2WXTXW,

where W = (XTX+ λI)−1

Theorem: The bias of the ridge regression estimate is

Bias(β̂) = −λWβ

It can be shown that the total variance (
∑

j Var(β̂j)) is a
monotone decreasing sequence with respect to λ, while the
total squared bias (

∑
j Bias

2(β̂j)) is a monotone increasing
sequence with respect to λ
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Existence theorem

Existence Theorem: There always exists a λ such that the MSE

of β̂
ridge

λ is less than the MSE of β̂
OLS

This is a rather surprising result with somewhat radical
implications: even if the model we fit is exactly correct and follows
the exact distribution we specify, we can always obtain a better
estimator by shrinking towards zero
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Bayesian interpretation

As mentioned in the previous lecture, penalized regression can be
interpreted in a Bayesian context:
Theorem: Suppose β ∼ N(0, τ2I). Then the posterior mean of β
given the data is (

XTX+
σ2

τ2
I

)−1

XTy.
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Degrees of freedom

Information criteria are a common way of choosing among
models while balancing the competing goals of fit and
parsimony

In order to apply AIC or BIC to the problem of choosing λ,
we will need an estimate of the degrees of freedom

Recall that in linear regression:

ŷ = Hy, where H was the projection (“hat”) matrix
tr(H) = p, the degrees of freedom
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Degrees of freedom (cont’d)

Ridge regression is also a linear estimator (ŷ = Hy), with

Hridge = X(XTX+ λI)−1XT

Analogously, one may define its degrees of freedom to be
tr(Hridge)

Furthermore, one can show that

dfridge =
∑ λi

λi + λ

where {λi} are the eigenvalues of XTX
If you don’t know what eigenvalues are, don’t worry about it. The main

point is to note that df is a decreasing function of λ with df = p at

λ = 0 and df = 0 at λ = ∞.
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AIC and BIC

Now that we have a way to quantify the degrees of freedom in a
ridge regression model, we can calculate AIC or BIC and use them
to guide the choice of λ:

AIC = n log(RSS) + 2df

BIC = n log(RSS) + df log(n)
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Introduction

An alternative way of choosing λ is to see how well
predictions based on β̂λ do at predicting actual instances of Y

Now, it would not be fair to use the data twice twice – once
to fit the model and then again to estimate the prediction
accuracy – as this would reward overfitting

Ideally, we would have an external data set for validation, but
obviously data is expensive to come by and this is rarely
practical
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Cross-validation

One idea is to split the data set into two fractions, then use
one portion to fit β̂ and the other to evaluate how well Xβ̂
predicted the observations in the second portion

The problem with this solution is that we rarely have so much
data that we can freely part with half of it solely for the
purpose of choosing λ

To finesse this problem, cross-validation splits the data into K
folds, fits the data on K − 1 of the folds, and evaluates risk
on the fold that was left out
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Cross-validation figure

This process is repeated for each of the folds, and the risk
averaged across all of these results:

1 2 3 4 5

Common choices for K are 5, 10, and n (also known as
leave-one-out cross-validation)
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Generalized cross-validation

You may recall from BST 760 that we do not actually have to
refit the model to obtain the leave-one-out (“deleted”)
residuals:

yi − ŷi(−i) =
ri

1−Hii

Actually calculating H turns out to be computationally
inefficient for a number of reasons, so the following
simplification (called generalized cross validation) is often
used instead:

GCV =
1

n

∑
i

(
yi − ŷi

1− tr(H)/n

)2
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Prostate cancer study

An an example, consider the data from a 1989 study
examining the relationship prostate-specific antigen (PSA)
and a number of clinical measures in a sample of 97 men who
were about to receive a radical prostatectomy
PSA is typically elevated in patients with prostate cancer, and
serves a biomarker for the early detection of the cancer
The explanatory variables:

lcavol: Log cancer
volume

lweight: Log prostate
weight

age

lbph: Log benign
prostatic hyperplasia

svi: Seminal vesicle
invasion

lcp: Log capsular
penetration

gleason: Gleason score

pgg45: % Gleason
score 4 or 5
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SAS/R syntax

To fit a ridge regression model in SAS, we can use PROC REG:

PROC REG DATA=prostate ridge=0 to 50 by 0.1 OUTEST=fit;

MODEL lpsa = pgg45 gleason lcp svi lbph age lweight lcavol;

RUN;

In R, we can use lm.ridge in the MASS package:

fit <- lm.ridge(lpsa~.,prostate,lambda=seq(0,50,by=0.1))

R (unlike SAS, unfortunately) also provides the GCV criterion for
each λ:

fit$GCV
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Additional plots
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Model selection criteria

Red=AIC, black=GCV, green=BIC:
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Ridge vs. OLS

Estimate Std. Error z-score
OLS Ridge OLS Ridge OLS Ridge

lcavol 0.587 0.519 0.088 0.075 6.68 6.96
lweight 0.454 0.444 0.170 0.153 2.67 2.89

age -0.020 -0.016 0.011 0.010 -1.76 -1.54
lbph 0.107 0.096 0.058 0.053 1.83 1.83

svi 0.766 0.698 0.244 0.209 3.14 3.33
lcp -0.105 -0.044 0.091 0.072 -1.16 -0.61

gleason 0.045 0.060 0.157 0.128 0.29 0.47
pgg45 0.005 0.004 0.004 0.003 1.02 1.02
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