Model Selection and Multi-Model Inference: Big Picture

- Model Selection
 - Controversial topic
 - Lots of possible approaches (we will look at one)
 - Bayes Factors/Posterior Model Probabilities
 - Multiple implementations (we will look at one)
 - Using RJMCMC

- Multi-model inference
 - Approach for summarizing information (and uncertainty) across multiple candidate models
 - Bayesian model averaging
Posterior Model Probabilities

- Consider k models: M_1, M_2, \ldots, M_k
 - Model indicators
 - Associated with model i are (a vector of) parameters θ_i
- Of interest $p(M_1|y), \ldots, p(M_k|y)$
 - $p(M_j|y)$ is the posterior probability of model j being “true” conditional on the data
- Simple specification
 - Like most/all of Bayesian inference the devil is in the details
 - Require $p(M_1), p(M_2), \ldots, p(M_k)$
- Prior model probabilities
 - We will not talk a lot about these (but they are important)
Simple Example

- Collected data y_1, \ldots, y_n

- Hypothesize two possible models for the data:
 - Model 1: $y_1, \ldots, y_n \overset{iid}{\sim} \mathcal{N}(0, 1)$
 - Model 2: $y_1, \ldots, y_n \overset{iid}{\sim} \mathcal{N}(\mu, 1)$
 - μ is unknown with prior $\mu \sim \mathcal{N}(0, \kappa^2)$

- Comparing $p(M_1|y)$ and $p(M_2|y)$
 - Effectively comparing whether μ is zero or non-zero

- Look at this example in more detail later
Bayes Factors

- Bayes factors are an alternative way to present the posterior model probabilities
- The Bayes factor (between model i and model j) is

$$BF_{ij} = \frac{p(y|M_i)}{p(y|M_j)}$$

- What is this quantity?
- Define a marginal likelihood (for model i) as:

$$p(y|M_i) = \int p(y|\theta_i, M_i)p(\theta_i)d\theta_i$$

- *Marginal* likelihood ratio
 - Parameters have been integrated out
 - Prior distribution on parameter matters (more on this later)
 - cf traditional likelihood ratio where θ is set to some value $\tilde{\theta}$
Bayes Factors vs Posterior Model Probabilities

- Bayes factors have a direct relationship to posterior model probabilities

\[BF_{ij} = \frac{p(y|M_i)}{p(y|M_j)} = \frac{p(y|M_i)p(M_i)}{p(y)p(M_i)} \frac{p(y|M_j)p(M_j)}{p(y|M_j)p(M_j)} = \frac{p(M_i|y)p(M_j)}{p(M_j|y)p(M_i)} \]

\[= \frac{\text{Posterior odds}}{\text{Prior odds}} \]

- i.e. Bayes factors are the mechanism that turn prior odds into posterior odds
 - Posterior odds = BF × prior odds
Bayes Factors

- Jeffrey’s suggests the following scale for Bayes factors

<table>
<thead>
<tr>
<th>B_{10}</th>
<th>Evidence for M_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1</td>
<td>Negative: support for M_0</td>
</tr>
<tr>
<td>1 to 3</td>
<td>Barely worth mentioning</td>
</tr>
<tr>
<td>3 to 12</td>
<td>Positive</td>
</tr>
<tr>
<td>12 to 150</td>
<td>Strong</td>
</tr>
<tr>
<td>> 150</td>
<td>Very strong</td>
</tr>
</tbody>
</table>

- The Bayes factor (posterior model probabilities) can give you evidence in support of a hypothesis/model
Data: y_1, \ldots, y_n

- Model 1: $y_1, \ldots, y_n \sim \mathcal{N}(0, 1)$
- Model 2: $y_1, \ldots, y_n \sim \mathcal{N}(\mu, 1)$
 - μ is unknown with prior $\mu \sim \mathcal{N}(0, \kappa^2)$

We had $n = 100$ and $\kappa = 1$. We observed $\bar{y} = 0.5$

Before we look at Bayes factor

- First look at the posterior distribution of μ in model 2
Posterior of μ
BF for example

- Data: \(y_1, \ldots, y_n \)
 - Model 1: \(y_1, \ldots, y_n \overset{iid}{\sim} \mathcal{N}(0, 1) \)
 - Model 2: \(y_1, \ldots, y_n \overset{iid}{\sim} \mathcal{N}(\mu, 1) \)
 - \(\mu \) is unknown with prior \(\mu \sim \mathcal{N}(0, \kappa^2) \)

- We had \(n = 100 \) and \(\kappa = 1 \). We observed \(\bar{y} = 0.5 \)
- In this example we can evaluate the marginal likelihoods analytically (by hand):

\[
BF_{21} = (1 + n\kappa^2)^{-0.5} \exp \left(\frac{n^2\kappa^2}{2(1 + n\kappa^2)} \bar{y}^2 \right)
\]

- We need to plug-in some values!
 - \(BF_{21} \approx 23600 \)
 - Strong support for model 2
Caution I: Priors (on parameters) matter

- “Vague” / “non-informative” / “flat” priors can be problematic
- Plot posterior distribution for μ and BF_{21} over a range of κ values from 1 to 50,000
 - The prior for μ is becoming more and more flat
Posterior distribution for μ
Bayes factor

![Bayes factor graph](Slide 12)
Caution I: Priors (on parameters) matter

- When $\kappa = 1$ we have strong support for model 2
- When $\kappa = 50,000$ we have support for model 1
- **Priors matter when using Bayes factors**
 - Even though the prior has little effect on the posterior distribution for μ
Caution II: Model probabilities vs p-values

- Even though Bayes factors share a lot in common with traditional hypothesis testing
 - Not the same

- $p(M_j|y)$ is not the same as a p-value
 - $p(M_j|y)$ is the probability of model j given the data y
 - A p-value is the probability of observing data as (or more) extreme than that observed assuming the null hypothesis is true.

- They are different quantities

- They often disagree
 - Referred to as Lindley’s paradox
Problem

- It is easy to define a Bayes factor in terms of marginal likelihoods
 - Difficult to calculate it

- To find the marginal likelihood we need to evaluate the (nasty) integral that led us to use MCMC in the first place

- One approach is to once again avoid evaluating this interval using MCMC
 - Use a special flavor of MCMC called trans-dimensional MCMC
 - e.g. reversible jump MCMC
Trans-dimensional MCMC

- Include a model indicator
- Another unknown
 - Switch between models in different iterations
 - e.g. move from model 1 in iteration 1 to model 4 in iteration 2, etc
 - Find relative support for each model
 - Posterior model probability is estimated as the % of iterations in each model
- Why is it special/difficult?
 - Have to take into account differences in the dimension of parameters between different models
Approach of Carlin and Chib

- Complete parameter space
 - Make one “super” model that includes all parameters from every model
 - Model indicator that specifies which parameters are included in the likelihood function
 - Necessary to specify “pseudo-priors” for all parameters for when they are not included in likelihood
 - These can be chosen to “optimize” the algorithm (or chosen for convenience)
Reversible jump MCMC (Green)

- Consider moves between each pair of models separately
 - Have to specify how parameters in model i correspond to parameters in model j
 - Take care when the dimension of the parameters differs
 - Specify an “augmenting variable” that balances the dimension

- Various other approaches
 - Show that the two approaches mentioned are more similar than it appears

- Best seen with an example (in JAGS)
Example: Return to Lake Brunner¹

Return rates for brown trout in Lake Brunner, New Zealand

Tag and release trout. Observe which trout return one year later.

Five candidate models:

1. \(\text{logit}(\pi_i) = \beta_0 \)
2. \(\text{logit}(\pi_i) = \beta_0 + \beta_1 S_i \)
3. \(\text{logit}(\pi_i) = \beta_0 + \beta_2 L_i \)
4. \(\text{logit}(\pi_i) = \beta_0 + \beta_1 S_i + \beta_2 L_i \)
5. \(\text{logit}(\pi_i) = \beta_0 + \beta_1 S_i + \beta_2 L_i + \beta_{12} S_i L_i \)

In JAGS

¹Example from Link and Barker (2010)
Logistic regression

```jags
for (i in 1:n){
    returned[i] ~ dbern(p[i])
    logit(p[i]) <- beta0 + in.mod.sex*beta1*S[i] +
                      in.mod.len*beta2*L[i] +
                      in.mod.int*beta12*SL[i]
}
```
JAGS code: part II

Priors

\[
\begin{align*}
\beta_0 & \sim \text{dt}(0, 0.04, 3) \\
\beta_1 & \sim \text{dt}(0, 0.25, 3) \\
\beta_2 & \sim \text{dt}(0, 0.25, 3) \\
\beta_{12} & \sim \text{dt}(0, 0.25, 3)
\end{align*}
\]
Model indicator

mod ~ dcat(p.model[1:5])

Determining whether terms are in the model

mod4 <- (mod==4)
mod5 <- (mod==5)
in.mod.sex <- (mod==2) + mod4 + mod5
in.mod.len <- (mod==3) + mod4 + mod5
in.mod.int <- mod5
Results

- $p(M_1|y) \approx 0.837$
- $p(M_2|y) \approx 0.045$
- $p(M_3|y) \approx 0.110$
- $p(M_4|y) \approx 0.006$
- $p(M_5|y) \approx 0.003$
Model Averaging

- Suppose we have K candidate models
 - e.g. linear regression with various possible predictor variables
- In all models a quantity of interest γ is well defined
 - e.g. prediction at a certain value
- We could find the best model
 - Make the prediction under that model
- Suboptimal
 - Not taking all uncertainty into account
 - Uncertainty in the model selection process
 - Interval estimate will be too precise
- Make the prediction averaging across the models
Model Averaging

- Suppose for each of K models we have $p(\gamma|y, M_i)$
 - Posterior distribution of γ under model i
- We want the “model averaged” posterior distribution
 \[
 p(\gamma|y) = \sum_{i=1}^{K} p(\gamma|y, M_i)p(M_i|y)
 \]
- This distribution takes into account the model uncertainty
 - i.e. that we do not know the correct model M_i
Example

- We can do this for the Lake Brunner trout example.
- Predict the return probability for a trout with sex 0 of (standardized) length 1.5.
- Either do this directly in JAGS (see model) or in R after model is fitted (if we have stored the appropriate parameter values)
Predicting the observation

\[
\text{logit(pred.prob)} \leftarrow \beta_0 + \text{in.mod.sex} \times \beta_1 \times \text{sexpred} + \\
\text{in.mod.len} \times \beta_2 \times \text{lenpred} + \\
\text{in.mod.int} \times \beta_{12} \times \text{sexlenpred}
\]
Results

Predicted probability of return

Model 1
Model 2
Model 3
Model 4
Model 5
Model Averaged