
R Workshop Module 3: Plotting Data
Katherine Thompson (katherine.thompson@uky.edu)

Department of Statistics, University of Kentucky

October 15, 2013

Reading in Data

Start by reading the dataset ’practicedata.txt’ into R. (Having trouble? See the instructions in Module 2.)

Plotting One Quantitative Variable

For this example, we will plot the variable respvar from the data set, practicedata. Remember than by

using a ’$’, we can refer to the variable as practicedata$respvar in the following code.

Histograms: One way to plot quantitative data is using a histogram.

hist(practicedata$respvar, # what the histogram is plotting

main='Histogram of Response Variable', # change the main axis title

xlab='Response Variable', # change the x-axis label

freq=TRUE # histogram is of counts

breaks="Sturges", # this can be changed to specify a series of points

for the breaks in the histogram

xlim=c(20,70), # sets the limits of the x-axis

ylim=c(0,25), # sets the limits of the y-axis

)

1

2

Boxplots: Another way to plot quantitative data is using a boxplot.

boxplot(practicedata$respvar, # what the boxplot is plotting

main='Default R Boxplot' # change the main title

)

30
40

50
60

Default R Boxplot

boxplot(practicedata$respvar, # what the boxplot is plotting

main='Nicer R Boxplot', # change the main title

ylab='Response Variable', # change the y-axis label

names='All Data', # change the name under the boxplot

outline=TRUE # Draw outliers if there are any in the data

)

30
40

50
60

Nicer R Boxplot

R
es

po
ns

e
V

ar
ia

bl
e

3

Plotting One Categorical Variable

To practice plotting one variable at a time, we will plot groupvar from practicedata. We’ll see what values

this variable takes and then plot the data. (You’ll notice that the variable has equal numbers of controls

and treatments, so it’s not very interesting, but here are the code to make a bar chart and a pie chart for

you to use in other situations.)

practicedata$groupvar

Bar Chart: If you have a categorical variable in one column in your data set (as we do here with groupvar),

R requires a table of the counts for that variable to create a bar chart.

plot.group<-table(practicedata$groupvar) # Create table of counts

plot.group # Look at the table

##

Control Treatment

50 50

barplot(plot.group, # Bar chart of the variable

main='Bar Chart of Groups', # change main title

col=c('green','blue') # change color of each bar

)

Control Treatment

Bar Chart of Groups

0
10

20
30

40
50

4

Pie Chart: As in the case of bar charts, if you have a categorical variable in one column in your data set

(as we do here with groupvar), R can use a table of the counts for that variable to create a pie chart.

plot.group<-table(practicedata$groupvar) # Create table of counts

plot.group # Look at the table

##

Control Treatment

50 50

pie(plot.group, # Pie chart of the variable

main='Pie Chart of Grouping Variable', # change main title

col=c('green','blue')) # change the color of each slice of the pie

Control

Treatment

Pie Chart of Grouping Variable

5

Plotting Two Variables

Plotting One Quantitative and One Categorical Variable: If you have one quantitative variable that

you want to compare across two (or many) groups, you can use two boxplots or two histograms.

boxplot(practicedata$respvar ~ practicedata$groupvar, main = "Default R Boxplots")

Control Treatment

30
40

50
60

Default R Boxplots

boxplot(practicedata$respvar~practicedata$groupvar,

main='Nicer R Boxplots',

names=c('Control Group', 'Treatment Group'),

col=c('green','blue'), # change color of boxes

ylab='Response Variable' # change y-axis label

horizontal=TRUE # change boxplots to horizontal

)

6

Control Group Treatment Group

30
40

50
60

Nicer R Boxplots

R
es

po
ns

e
V

ar
ia

bl
e

To create two histograms, we need to separate the observations for control and treatment individuals.

These two variables are sometimes called “dummy variables.” We are lucky that the control individuals are

the first 50 in the data set, but there are other ways to separate data that will keep you from sorting data

in another program.

Create a two data subsets for control and treatment individuals

n.controls=50

n.treatments=50

Extract the first n.controls rows from the data

controldata=practicedata[1:n.controls,]

Extract everything except the first n.controls rows from the data

treatmentdata=practicedata[-(1:n.controls),]

Histograms for each group

hist(controldata$respvar,

main='Control Group', # change the main title

xlab='Response Variable'

)

7

Control Group

Response Variable

F
re

qu
en

cy

20 30 40 50 60

0
4

8
12

hist(treatmentdata$respvar,

main='Treatment Group', # change the main title

xlab='Response Variable'

)

Treatment Group

Response Variable

F
re

qu
en

cy

30 40 50 60

0
2

4
6

8
12

8

Scatterplots: If you have two quantitative variables that you want to compare, a scatterplot is a good way

to explore the relationship. Here, we will investigate the relationship between practicedata$respvar and

practicedata$toyvar.

plot(practicedata$toyvar,practicedata$respvar, # x variable, y variable

main="Default R Scatterplot")

plot(practicedata$toyvar,practicedata$respvar, # x variable, y variable

main="Plot of Response Variable vs. Toy Variable", # change main label

ylab='Response Variable', # change y-axis label

xlab='Toy Variable', # change x-axis label

pch=20, # change the plotting symbol

9

type='l', # instead of pch, you can create a line plot

(make sure your x's are ordered if you do this.)

col='black' # change color of plotting symbol

)

Plots Showing More than Two Variables

What if we are interested in the relationship between the response variable and both the grouping variable

and toy variable? We can add this information into our plot using different plotting symbols and/or colors,

along with a legend.

We can start with the same plot as before, but only plotting the data from the control group. To make

sure the plot shows all of our data, we will find the range of the variables we are plotting in the original data

10

set using the range() function.

Now, we can add the observations from the treatment group onto the plot using the points() function.

11

It would be good to add a legend to this plot. We can do so using the legend() function as follows.

12

Find the range of the variables we are plotting for BOTH groups

ydatarange=range(practicedata$respvar,na.rm=TRUE)

xdatarange=range(practicedata$toyvar,na.rm=TRUE)

Creating the plot and adding points for the control group

plot(controldata$toyvar,controldata$respvar, # x variable, y variable

main="Plot of Response Variable vs. Toy Variable", # change main label

ylab='Response Variable', # change y-axis label

xlab='Toy Variable', # change x-axis label

pch=20, # change the plotting symbol

col='green', # change color of plotting symbol

xlim=xdatarange, # change the x-axis to cover the range

13

of both the treatment and control groups

ylim=ydatarange # change the y-axis to cover the range

of both the treatment and control groups

)

Add observations for the treatment data to the plot

points(treatmentdata$toyvar,treatmentdata$respvar, # x variable, y variable

pch=20, # change the plotting symbol

col='blue', # change color of plotting symbol

)

Adding a Legend to the Plot

legend('topleft', # location of legend

legend=c('Control Group','Treatment Group'), # lines of text in the legend

pch=20, # symbol used in the legend

col=c('green','blue') # colors of the symbol in the same

order as the lines of text in 'legend'

lty=1, lwd=1 # change the line type and width if lines are on the plot

)

Using par()

In addition to changing parameters within each plotting function (for instance, within boxplot(), hist(),

barplot(), pie(), or plot()), you can also change other features of the plotting area. We will look at two

such features here, and many, many more are described at this website: http://www.

One thing that is often helpful is creating more than one plot simultaneously. The option, mfrow(),

inside par() does this. Take the histograms we made earlier. We can plot these simultaneously so that they

are easier to compare. Once we set a value in par(), we either need to reset it or close the plotting window

to return it to its default.

#Using the par function

par(mfrow=c(1,2))

#mfrow=c(1,2) creates a plotting window with 2 rows and 1 column of plots

#mfrow=c(2,1) creates a plotting window with 1 row and 2 columns of plots

Histograms for each group

hist(controldata$respvar,

main='Control Group', # change the main title

xlab='Response Variable'

)

hist(treatmentdata$respvar,

main='Treatment Group', # change the main title

xlab='Response Variable'

)

14

http://www.

15

