
R Workshop Module 1: Introduction to R and RStudio
Katherine Thompson (katherine.thompson@uky.edu)

Department of Statistics, University of Kentucky

September 23, 2016

Introduction to R

• Getting Started: R is a free software environment for statistical computing and graphics and can be
downloaded from http://www.r-project.org/.

• According to wikipedia.com: “The R language is widely used among statisticians and data miners for
developing statistical software and data analysis. Polls and surveys of data miners are showing R’s
popularity has increased substantially in recent years.”

• Advantages of R: The R language is part of the GNU project which means that

– the program is freely distributed,
– the source code is available, and
– any users can submit code/libraries so that other users can use the methods they have developed

• There are two (related) ways you can use R:

1. you can simply write commands and use the preloaded functions already included, or
2. you can write your own functions.

• In either case, it is generally a bad idea to type commands directly into R, since these commands are
often hard to track. Also, if a mistake is made in a command, it is hard to find and fix.

• Instead, use a text editor to write a script (e.g. filename.R) and either copy and paste the commands
into R or use the source() function to run the script in R. If you use Windows, editors such as RStudio
exist.

Introduction to RStudio

• Getting Started: RStudio is a free R-editor that can be used along with R. It can be downloaded from
http://www.rstudio.com/. RStudio can be found under the start menu and the programs tab.

• There are four panels in the main RStudio window.

1. Console: This is the place you can type R commands line-by-line.

2. Script Window: This is where you can type R commands and save them so that you can reproduce
or reanalyze your results.

– To run commands, highlight the code you want to run and press Ctrl + R or click “Run” in
the upper right hand corner of the panel.

3. Workspace/History: Workspace shows all of the variables currently loaded in RStudio. History
gives a list of all of the commands you have typed in this R Session.

4. Various Extra Features: The two tabs I use most often are “Plots,” which shows the current plot
from R, and “Help,” which displays the help for a function already built-in to R.

Help within R

The help files (as well as google) are very useful when learning about functions.

• If you know a function name (for instance, mean()) you can use either help(mean) or ?mean.
• If you do not know a function name, search for applicable functions for what you want to do using

either help.search("mean") or ??mean.

There are many other resources for general help with R.

1

http://www.r-project.org/

Setting the Working Directory

Before reading in data, it is convenient to set a “working directory.” This specifies a default location for you
to read files in from and write files to during a session. Using RStudio, you can set the working directory in
two ways, a menu-driven way or by command.

Using Menus:

• In the bottom right window of the console, check to make sure the folder containing the data is shown.
(If the folder is not shown, click “...” in the upper right corner of this window, and browse to the
location of the folder.) Click “More” and “Set As Working Directory”.

Using Commands:

Use the function setwd() to set the working directory path (see example below).

setwd("C:/Users/ukystat/Dropbox/R_Workshop_2016/") # Command to set working directory

getwd() # Displays current working directory

[1] "C:/Users/ukystat/Dropbox/R_Workshop_2016"

Notes:

• The “/” are forward slashes instead of backslashes here! Two backslashes, “\\” will also work.
• The function getwd() will display your current working directory.
• Using file.choose() will bring up a window so that you can browse directly to the file you are reading

in and use this path.
• Notice that some of the lines here start with a # symbol. This is the comment character in R. If a

symbol is found, R prints the rest of the line, but does not evaluate the code. This is so users can
make notes and comments in their code about what their script is doing.

Reading in data

Each time you analyze data in R, you will need to call in the data at the beginning of your script. The two
functions I most commonly use are read.table() and write.table().

read.table() # Reads data into R from a file

scan() # Reads data into R from a file (good when you need to specify a data type

for each column.)

write.table() # Writes data from R to a file

Note: There are other “flavors” of read.table that we will not use (such as read.csv) since read.table is
flexible enough (if you change the arguments) to include comma delimited data.

In RStudio: Select Tools – Import Dataset – From...

Example: Let’s read in some practice data. The data file is ’practicedata.txt’ and can be downloaded
from http://web.as.uky.edu/statistics/users/klthomd/practicedata.csv.

practicedata = read.table('practicedata.csv', # Give filename first

header=TRUE, # If filename has variable names, set header to TRUE.

Otherwise, use header=FALSE

sep=",", # Symbol separating data values (comma here)

na.strings="NA", # Characters used to denote missing values

#comment.char='#', # Character used to indicate comments in your file

#skip=0, # number of lines of data file to skip before reading in data

2

http://web.as.uky.edu/statistics/users/klthomd/practicedata.csv

#nrows=1000 # maximum number of lines of data file to read in

)

Once the data is read in, we can check to see what it looks like by clicking on ’practicedata’ in the upper
right panel of the RStudio window.

practicedata[1:5,] # Prints first 5 rows of the data

practicedata[,1:2] # Prints first 2 columns of the data

practicedata[,"expvar"] # One way to call the variable, expvar

practicedata$expvar # Another way to call the variable, expvar

Suppose the first 50 data points are from a control group and the last 50 are from a treatment group, and
you want to consider only the treatment group. This means you need to define a new variable (we’ll call it
trtmtdata) containing only the data associated with the treatment group.

k=50 # number of observations in each group

n=100 # total number of observations

trtmtdata = practicedata[(k+1):n,] # Save the 51st through 100th rows of the data

Alternatively, we can use the subset function to subset the data according to the group variable. This does
not depend on the ordering of the data.

trtmtdata = subset(practicedata , groupvar=='Treatment')

controldata = subset(practicedata , groupvar=='Control')

Writing Data to Files

To write data to a file, the function write.table() is very flexible in terms of data formatting in the new
file. As a default, the new file is created in the current working directory. For example, suppose you want to
write the variables, expvar, groupvar, and the natural log of respvar to a new file. (Although, by saving
your R script, it is not necessary to save the natural log of your data. If you need it again, you can re-run
that line of code.)

getwd() #Check current working directory

[1] "C:/Users/ukystat/Dropbox/R_Workshop_2016"

resp.log=log(practicedata$respvar) # take the natural log of the response variable

data.to.write=cbind(practicedata$expvar,practicedata$groupvar,resp.log)

Binds the columns (variables) together

colnames(data.to.write) # print out column names of the new data

[1] "" "" "resp.log"

colnames(data.to.write)<-c('expvar','groupvar','logrespvar') # rename the columns of

the new dataset

colnames(data.to.write) # print out column names of the new data again

[1] "expvar" "groupvar" "logrespvar"

3

##To write data to a new .csv file:

write.table(data.to.write, # data to write to a file

file='logdata.csv', # name of file you want to save data in

quote=FALSE, # whether or not to put quotations around data

col.names=TRUE, # whether or not to write column names to file

row.names=FALSE, # whether or not to write row names to file

sep=',', # what you want to put between data entries (commas and spaces are common)

append=FALSE, # whether or not to append existing data to the current file

na='NA' # string to use for missing values

)

Applied Statistics Lab (ASL):

The primary purpose of the ASL is to build bridges between statisticians and other investigators. We
provide statistical assistance for grant submissions, study design, translational research, pilot studies,
presentations, and publications.

• To submit a request: https://redcap.uky.edu/redcap/surveys/?s=UurTv2mN49

• Email: asl@uky.edu

4

https://redcap.uky.edu/redcap/surveys/?s=UurTv2mN49

