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ABSTRACT With the simplicity of the synaptic structure and physiology at neuro-
muscular junctions (NMJs) of crayfish and the given transmitter being released in
quantal packets, a detailed assessment in the fundamental processes of chemical syn-
aptic transmission is possible. Since the quantal event is the basic element of trans-
mission, we consider an approach to further understand the characteristics of quantal
responses. In this study, we introduce a method for combining information across exci-
tatory postsynaptic potentials (EPSPs) that are quantal in nature. The method is
called self-modeling regression, known in the statistics literature as SEMOR. This
method illustrates that the differing timing and heights of EPSPs can be described
with four coefficients measuring affine (shift and scale) transformations of the x and y
axes. We demonstrate that this relationship allows us to provide a unified schema for
the many functionals currently used in the literature, such as peak amplitude, s, la-
tency, area under the curve, or decay time. Computer code in R is available on the
internet to perform the analysis. Synapse 60:32–44, 2006. VVC 2006 Wiley-Liss, Inc.

INTRODUCTION

To index synaptic efficacy, various statistical meas-
ures and derived parameters are used. Mean quantal
content (m) is commonly used as an index of the aver-
age number of events (or vesicles that fuse) that occur
per stimulus, with a parameter n representing the
number of sites where a vesicle fuses and a third pa-
rameter, p, representing the probability of an event
occurring at a fusion site (Del Castillo and Katz,
1954a,b). The values of n and p have been tradition-
ally hard to estimate, since the structural definition
of n is not clear; thus, the probability of release can-
not be defined well, unless it is clear as to what is a
site of vesicular fusion. Since the classical analysis of
quantal responses treats all single events equal, an
estimation of n and p is estimated by best fits, to
known distributions, by the occurrence of single, dou-
ble, or multiple quantal events (Del Castillo and Katz,
1954a,b; Dudel, 1981; Hatt and Smith, 1976; Johnson
and Wernig, 1971; Wernig, 1972).

Physiological measures of quantal responses, at
low frequency stimulation, at a low output neuro-
muscular junction in the crayfish reveal n ¼ 1 by
quantal counting methods, despite quite large varia-
tions in the sizes and shapes of single evoked quan-
tal synaptic currents. The physiological and struc-
tural data would indicate that multiple sites are
being utilized for vesicle fusion. In addition, the

standardized approach of obtaining n and p from
methods of directly counting quantal events and de-
termining their distribution of occurrence underesti-
mates the functional number of sites. For these rea-
sons, we devised a means with statistical methods
that incorporate differences in characteristics
in the single quantal responses, to allow for a better
estimate of n and p for quantal subsets in this
report.

We have shown earlier that quantal responses from
single events can be clustered into types of group-
ings, based on their characteristic shapes (Viele
et al., 2003). This current study provides a means to
aid in determining the types of parameters that can
be readily defined from a series of quantal events.
While this particular study does discuss clustering in
the Results section, it’s primary goal is not to intro-
duce a new clustering technique, but to allow the
current clustering methods to function better by (1)
unifying the discussion of ‘‘shape’’ in an excitatory
postsynaptic potential (EPSP) by illustrating a ‘‘self-
modeling’’ property of the EPSPs, (2) using the self-

Contract grant sponsor: NSF; Grant number: NSF-IBN-0131459.

*Correspondence to: Robin Cooper. E-mail: RLCOOP1@uky.edu

Received 16 August 2005; Accepted 8 November 2005

DOI 10.1002/syn.20274

Published online in Wiley InterScience (www.interscience.wiley.com).

VVC 2006 WILEY-LISS, INC.

SYNAPSE 60:32–44 (2006)



modeling structure to illustrate required relation-
ships between functionals that were previously used
independently, and (3) providing a way of producing
an ‘‘average shape’’ for an EPSP that can reveal fine
structure. We employ clustering methods previously
appearing in the literature, but the methods de-
scribed here reduce noise, and thus allow those meth-
ods to function better.

Using past counting methods, two currents, which
both indicate one evoked event, would be recorded
identically even if the two currents appear distinctly
different. Since differences in current sizes or shapes
may indicate multiple sites at work, this may be an
useful information in determining the overall num-
ber of sites utilized. Given that many synapses have
been serial-reconstructed for the crayfish opener
excitatory neuromuscular junction (NMJ), the nature
of synaptic size and its synaptic complexity is becom-
ing known (Atwood and Cooper, 1995, 1996a,b;
Cooper et al., 1995b, 1996a,b; Govind et al., 1994).
Direct structure–function studies of discrete regions
of motor nerve terminals have revealed that there
can be many synapses (30–40), each with multiple
active zones (AZs). It is possible that each vesicle
fusion site, in respect to the postsynaptic receptor
array, may provide a fingerprint of function during a
basal state of transmission. Even based on detailed
anatomical information of the synapse and the AZs,
assigning an n value is problematic in the simplest
of preparations since a single synapse is really not
equivalent to n ¼ 1, and a single AZ on a single syn-
apse might not necessarily be equal to n ¼ 1 since
vesicles can fuse on all sides of a dense body.

In this study, we make use of the crayfish opener
NMJ, since it is known to release transmitter in a
quantal nature in the same manner as observed for
NMJs of vertebrates, but with the exception that the
probability of vesicular fusion is extremely low along
the length of the entire nerve terminal and the mus-
cle is nonspiking within a normal physiological envi-
ronment. Thus, postsynaptic receptor poisons and
calcium channel blockers are not needed to study
quantal postsynaptic responses (Del Castillo and
Katz, 1954a,b; Dudel and Kuffler, 1961). An addi-
tional nicety of the crayfish opener NMJ is that the
AZs on synapses of the excitatory motor nerve ter-
minal are not arranged in a grid nor function as a
unit, as for many excitatory synapses within the
vertebrate CNS, but more as discrete AZs at low fre-
quencies of stimulation. However, as the stimulation
frequency is increased, there is computational evi-
dence that the synapses have a differential probabil-
ity of vesicular events since the synaptic complexity
is varied. Some synapses possess a single AZ while
others might contain one or two AZs (Cooper et al.,
1995a). It is presumed that the spacing among AZs
influences the probability of vesicular fusion. Synap-

ses containing AZs close together result in larger
presynaptic calcium domains as compared to synap-
ses with single AZs (Cooper et al., 1996a,b). Thus,
during evoked stimulation with single or trains of
stimuli, the probability is not consistent among
the synapses with varying synaptic structural com-
plexity.

These issues fall equally upon the postsynaptic tar-
get tissue, if one is using a response to measure
quantal responses. In considering the postsynaptic
receptor array being uniform in packing density and
the issues of the point-location, the vesicle fuses with
the plasma membrane, and the receptor area may
only receive a portion of the transmitter if fusion
occurred on the edge of the presynaptic synapse
(Uteshev and Pennefather, 1997). This could result in
a different size or shape of the unitary postsynaptic
current as compared to the release over the center of
the receptor array. In addition, if one considers the
possibility of the postsynaptic arrays of receptors
being saturated from the release of a single vesicle,
any release within the center would saturate,
whereas release on the edges might result in a non-
saturated array.

Prior studies have shown that analysis of function-
als, such as peak amplitude, s, area under the curve
(AUC), and others, may be used to cluster voltage
traces into groups potentially corresponding to multi-
ple sites (Viele et al., 2003). The aim of the current
research is as follows:

1. Illustrate that EPSPs follow what is called a
‘‘self-modeling’’ structure, meaning that if hi(t) is
the voltage for the ith EPSP at time t, then there
exists a single function g, and for each EPSP, a
set of coefficients ai, bi, ci, and di are given as
follows:

hiðtÞ ¼ aigðcitþ diÞ þ bi

Note that the same g is used for each EPSP. The
coefficients ci and di stretch and shift the time
axis, while the coefficients ai and bi stretch and
shift the voltage axis. This is described in the
Materials and Methods section.

2. The self-modeling structure of the data allows rela-
tionships between the previously used functionals
to be determined. For example, AUC, except for
noise, is proportional to the product of the peak
amplitude and s. Most of the commonly used func-
tionals can be described solely in terms of ai and ci
coefficients. This is discussed in the Materials and
Methods section.

3. The function g allows a noise-reduced estimate of
the EPSPs to be produced, alllowing fine structure
of the EPSPs to be seen that is not available in
the individual trace data because of the amount of
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noise in the individual traces. By combining the
information in all the EPSPs, we can observe this
fine structure. This is discussed in the Results
section.

MATERIALS AND METHODS
Materials

The preparation

All experiments were performed using the first
walking leg of crayfish, Procambarus clarkii, meas-
uring 4–6 cm in body length (Atchafalaya Biological
Supply Co., Raceland, LA). The opener muscle of the
first walking legs was prepared by standard dissec-
tion (Cooper et al., 1995a). The tissue was pinned out
in a Slygard dish for viewing with a Nikon, Optiphot-
2 upright fluorescent microscope using a 403 (0.55
noradrenaline) Nikon water dipping objective. Dis-
sected preparations were maintained in crayfish sa-
line (modified Van Harrevelds solution: 205 mM
NaCl; 5.3 mM KCl; 13.5 mM CaCl2; 2.45 mM MgCl2;
0.5 mM Hepes/NaOH, pH 7.4) at 148C.

Physiology: Field EPSPs

The stimulation of the excitatory nerve and the
EPSP recordings on the walking leg of the crayfish
opener muscle were performed by standard proce-
dures (Logsdon et al., 2005). The nerve was stimu-
lated at 1 Hz. Synaptic potentials were obtained with
focal macropatch electrodes (Dudel, 1981) by lightly
placing a 10–15 lm diameter, fire-polished glass elec-
trode directly over a spatially isolated varicosity. The
lumen of the patch electrode was filled with the same
solution as the bathing medium. The seal resistance
was in the range of 100 KX to 1 MX. All events were
obtained with an Axoclamp 2b (Axon Instruments)
0.13 LU head stage, acquired at 10 kHz without
additional filtering. The varicosities on the living ter-
minals were visualized by the use of the vital fluores-
cent dye 4-Di-2-ASP (Molecular Probes) (Cooper
et al., 1995a; Magrassi et al., 1987). The evoked field
EPSPs were recorded online to a Dell Latitude D600
computer via a PowerLab/4s interface.

Statistical methods

After preprocessing data from many EPSPs, we
arrive at a data set as in Figure 1. The preprocessing
consists of (1) aligning the curves to a common base-
line to remove DC drift, (2) removing the stimulation
artifact in the bath, (3) determining which currents
are EPSPs according to a thresholding algorithm, con-
sistent with visual inspection, and (4) removing dou-
blets, triplets, or other multiple EPSPs (determined
by visual inspection of the EPSPs) from the analysis.

We performed these background steps with the com-
puter code provided in Lancaster et al. (2005), but
any method arriving at a dataset similar to Figure 1
is acceptable.

The goal of the current article is to demonstrate
that although the traces in Figure 1 have obvious dif-
ferences in terms of height, width, and latency, they
are similar in terms of shape. They are related
through what is called in the statistical literature
‘‘self-modeling’’ or ‘‘shape-invariant’’ functions (Kneip
and Engel, 1995; Kneip and Gasser, 1988; Lawton
et al., 1972; Lindstrom, 1995), where each EPSP can
be overlaid on the others through affine (linear
stretching and shifting) transformations of the time
and voltage axes.

This self-modeling structure provides methodologi-
cal advantages in terms of analyzing EPSPs. First
and foremost, the shape-invariant structure allows
regression methods based on splines to be used to
estimate smoothed versions of the traces, resulting in
noise reduction for subsequent analyses. Second, the
functionals discussed earlier (peak amplitude, AUC,
etc.) can all be placed in a unified framework, demon-
strating the relationships between these functionals.
Third, information from multiple curves can be com-
bined to show ‘‘fine structure’’ aspects of the curves
that are visually obscured by noise in the individual
curves.

Fig. 1. A set of single quantal EPSPs obtained by focal macro-
patch recordings, over a defined region of the motor nerve terminal.
Note that some have a delayed rise time and that there is variabil-
ity to the quantal nature of he events. Voltage is relative for the
analysis presented.
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Self-modeling functions—main idea

In this section, we discuss self-modeling functions
observed without noise. In the next section, we
include the noise and discuss estimation techniques.
Suppose we have I functions h1,. . ., hI. A self-model-
ing assumption states that there is an underlying
function g for which the equation is given as follows:

hiðxÞ ¼ aigðcixþ diÞ þ bi ð1Þ

Thus, for each function of hi there is a set of coeffi-
cients (ai, bi, ci, di), called the self-modeling coeffi-
cients, which relates hi to g. The coefficients ci and di

stretch and shift the x-axis, while the coefficients ai
and bi stretch and shift the y-axis.

Figure 2 provides a graphical example. The upper-
left plot shows the function g. Note that this is equiv-
alent to using a ¼ 1, b ¼ 0, c ¼ 1, and d ¼ 0 in Eq.
(1). The upper-right plot shows a ¼ 0.2, b ¼ 2, c ¼ 1,
and d ¼ 0. Since c ¼ 1 and d ¼ 0 are the ‘‘default’’
values, there is no change to the x-axis, and so the
features, such as the peak of the curve, appear in the
same place with respect to time. However, the values
of a and b stretch and shift the y-axis. The value a ¼
0.2 shrinks the function to 20% of its original value,
and the value b ¼ 2 increases the baseline value by 2.
The bottom-left plot shows a ¼ 1, b ¼ 0, c ¼ 0.5, and
d ¼ �0.4. Thus, in the bottom-left plot the y-axis is
unchanged (and so the peak amplitude and baseline
values are the same), but the time axis has been
adjusted. The value c ¼ 0.5 has stretched the x-axis

Fig. 2. Example of self-modeling functions. The time point 0 in each plot corresponds to the con-
clusion of the artifacts prior to the EPSP. Note that here all the functions have been shifted to the
right, indicating latency. The mathematics allows for the shift to be to the left, but this does not
appear in practice with EPSPs. Note that in the analysis both the voltage and time scales are relative,
and their absolute scale is unimportant. The analysis works on their ratios to each other.
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by a factor of 2 (corresponding to 1/c) and the value
d ¼ �0.4 has moved the resulting curve by �0.4.
Thus, the x-axis shifts change the width of the curve
and the location of the peak amplitude. The bottom-
right plot shows all four coefficients adjusted from
their default values. Note that the values chosen for
c and d shift the trace to the right. While the mathe-
matics allow the trace to be shifted to the left or to
the right, in practice with EPSPs there is only la-
tency, resulting in a shift to the right.

Including noise in the formulation

Let i ¼ 1, . . .,I index the EPSPs. For each trace,
there is a true amount of voltage present in the nerve
terminal at a particular time t. We refer to this true
amount as hi(t). Voltage measurements are observed
discretely (though at very close time points), and are
observed with error. For each trace i, let ti1,. . .,tiJi
denote the time points where the voltage is observed
(thus we observe Ji voltages for the ith trace), and let
vi1,. . .,viJi be the observed voltages. With the mea-
surement error included,

vij ¼ hiðtijÞ þ eij

where eij is the measurement error and hi(tij) refers
to the true voltage for the ith trace at time point tij.

We assume that for the purpose of fitting the curves
the errors are independent and distributed, with each
eij � N(0,r2) for some unknown r2. A time series analy-
sis of the residuals indicates that the errors are in fact
correlated, with an ARMA (2,2) structure (an autore-
gressive, moving average process with order two on
both components). Nevertheless, for our present pur-
pose, we continue with the independent errors assump-
tion because (1) our central goal is fitting, and as seen
through the graphs and predictive correlations, the fit
is quite good with this assumption, and (2) incorporat-
ing the more realistic error structure complicates the
fitting process without providing a significant improve-
ment in fit. We hope to find efficient ways to include
the more realistic error structure in future work.

If the hi functions follow a self-modeling structure
as in Eq. (1), then the equation is given as follows:

vij ¼ hiðtijÞ þ eij þ aigðcitij þ diÞ þ bi þ eij

and thus each vij is independent and distributed.

vij � Nðaigðcitij þ diÞ þ bi;r
2Þ

Given g, the self-modeling coefficients may be esti-
mated for each EPSP through maximum likelihood
(discussed in the appendix). Given all the self-model-
ing coefficients for each EPSP, the underlying func-
tion g may be estimated by weighted linear regression
(discussed in the appendix). Overall, the underlying

function g and the self-modeling coefficients can be
estimated through an iterative procedure discussed in
the appendix.

Using g to estimate functionals for each EPSP

After estimating g and the self-modeling coefficients,
we have an estimate of the true voltage at each time
point for each trace, with the noise smoothed out, just
like a linear regression line (in fact, the spline estimate
of g is a multiple regression estimate itself, with simi-
larities to polynomial regression). This line may then
be used to estimate the functionals discussed in prior
papers.

Prior analyses, without the machinery to smooth,
did not eliminate noise when computing functionals,
such as peak amplitude, AUC, rise time, or others.
With the current smoothed estimate of the underlying
equation,

hiðtijÞ ¼ aigðcitij þ diÞ þ bi

we may compute functionals from each hi and acquire
noise reduced estimates of the corresponding func-
tionals. This sections relate computation of those
functionals to the corresponding functionals of g and
the self-modeling coefficients.

1. AUC: the area under the curve is just the integral
of the function,

AUCi ¼
Z

hiðtÞ dt ¼
Z

aigðcitþ diÞ dt

¼ aici

Z
gðtÞ dt ¼ aiciAUCg

where AUCg is just the area under the curve g.
2. Peak amplitude: the peak amplitude is just scaled

by the constant ai, and so

maxt hiðtÞ ¼ ai maxt gðtÞ

3. Location of peak amplitude: Let tmax
g be the loca-

tion of the peak of g, so tmax
g ¼ arg maxt g(t). The

location of the peak amplitude for hi occurs at the
point t, which maps to tmax

g through the transfor-
mation cit þ di ¼ tmax

g , and thus the maximum for
hi occurs at

tmax
hi

¼ tmax
g � di

ci

4. Latency: We define latency as the time between
the end of the last artifact (removed in the prepro-
cessing) and the beginning of the rise of the curve.
The start of the base function g occurs when t ¼ 0.
The start of the transformed function is the point t
where ct þ d ¼ 0, corresponding to t ¼ �d/c.
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5. Decay time: The decay time is the time between
when the peak amplitude occurs and when the
curve has descending to p times the peak ampli-

tude (p is often chosen to be 0.37, see Hille, 2001).
The coefficient ci determines the stretching of the
time axis, and so if sg is the decay time for g, the
corresponding decay time for hi is

shi
¼ cisg

6. Rise time: The rise time is similar to the decay
time, in which you take the rise time for g and
multiply it by ci.

RESULTS
Fitted self-modeling coefficients and

estimated g

Implementing the numerical procedures in the ap-
pendix, we estimated g and the self-modeling coeffi-
cients for each trace in Figure 1. For each curve, this
results in estimated coefficients âi, b̂i, ĉi, and d̂i. The
results may be viewed in two ways. First, Figure 3
shows the adjusted curves laid atop each other. This
plot was constructed by finding

t0ij ¼ ĉitij þ d̂i v0ij ¼
vij � bi

ai

for each i and j. This produces data governed by the
equation,

v0ij � Nðgðt0ijÞ;r2/a2
i

Thus, all the (t
0
ij,v

0
ij) values have expectations along the

function g, though their variances are inversely propor-

Fig. 3. Aligned data (aligned in both time and voltage), where
all EPSPs are superimposed on each other. The red curve is the esti-
mated function g, while the gray/black curves correspond to the
aligned traces. Larger original EPSPs are darker, illustrating which
curves are given more weight in the alignment process.

Fig. 4. Fitted data showing
the fits to four of the traces. Time
0 corresponds to the conclusions
of the artifacts prior to the EPSP.
Except for an affine transforma-
tion of the time axis, each subplot
is identical to Figure 1, with an
individual trace in green and the
fitted estimate of that same trace
in red.
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tional to a2i. Intuitively, this is reasonable. Smaller
curves must be scaled up relative to larger curves, and
thus the noise in smaller curves is scaled up. Aligned
curves from smaller original curves have more noise
than aligned curves from larger original curves. Figure
3 incorporates this weighting by gray-scaling the results
according to their weight. Curves that were originally
taller are darker than curves that were lighter. Note the
darker curves have less variation. The estimated g is
shown in red atop the scaled curves. As can be seen, the
curves fit over each other well when scaled.

Figure 4 shows an alternative method for viewing
the results. Each of the four plots shows the raw data
from Figure 1 in black. In each plot, the data from a
single EPSP is shown in green, and the fitted curve
hi(t) is plotted in red. Thus, the four green curves rep-
resent four noisy EPSPs, and the four red curves are
all self-modeling transformations of the estimated
underlying g.

Note that we make no claims that this is an exact
fit of the data, simply that self-modeling transforma-
tions of g account for the overwhelming majority of
the variance of this dataset. The correlation between
the actual data and the fitted values (i.e., between
the red and green curves in Figure 4, only applied to
all the traces) is 0.982.

Illustration of relationships between
previously used functionals

The relationships in Materials and Methods section
imply there is a limit to how valuable it is to look at
multiple functionals of the traces. For example, the
rise and decay times are both proportional to the ci
values. If one is already looking at decay time (pro-
portional to ci) and peak amplitude (proportional to
ai), then AUC is proportional to the product of these
values (realizing that all these values have noise
attached when computed directly from the data).

To illustrate this, Figure 5 shows the relationships
between unsmoothed estimates of the AUC, peak ampli-
tude, and decay time. We computed these functionals
using the method described by Lancaster et al. (2005),
but any method could be used to obtain these
unsmoothed functionals. The point is that the data in
Figure 5 have not been run the self-modeling algorithm,
but rather were computed from the raw data. Figure 5
shows the AUC for each of the 61 EPSPs in Figure 1,
plotted against the product of the peak amplitude and
decay time. According to the aforementioned results,
these values should be similar, which is apparent from
the plot. There are differences due to noise, but the cor-
relation between the values in the plot is 96.2%.

Combining information across several curves

Using the self-modeling structure can also allow
some fine structure to be observed, which cannot be

observed in individual curves. This is because the
base function g is estimated using information from
all the individual curves, an operation which averages
out noise. A structure that may be obscured by noise
in any single curve may be more clearly observed
when the curves are overlaid atop each other.

Returning to Figure 3, note the bend that occurs on
the downslope when the adjusted time is around 0.15
(adjusted time, would have to be rescaled to get on
the time scale of the original curves). This feature is
not readily observed in the original curves. In the
aligned curves, we can see that it is both reflected in
the ‘‘mean’’ curve g and that it is present in the gray
aligned curves. We do not have a ready explanation
for what causes this bend biologically, but having this
information allows us to ask new questions and will
perhaps lead to new insights.

Code available on the internet

The methods herein are implemented in a statisti-
cal language called ‘‘S,’’ using the freeware software
‘‘R.’’ ‘‘R’’ is maintained by a consortium of statisticians
and others, and may be downloaded at http://www.r-
project.org/. The code used here may be found at
http://www.ms.uky.edu/�viele/epsps/selfmodel/selfmodel.
html, which contains the following files (and a more
detailed description).

Fig. 5. Agreement between AUC and the product of peak ampli-
tude and decay time. The self-modeling structure predicts that,
except for noise, these two quantities should be equal. The values
shown here were computed numerically using the raw data, without
the self-modeling structure. The correlation here is 0.962, indicating
that the prediction of the self-modeling structure is accurate.
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1. selfmodel.pdf: contains a preprint of this paper in
pdf format.

2. selfmodel.RData—an R data file: After installing
the freeware program R (instructions given later),
double clicking on this file will open R, with the
data and code preloaded.

3. start.r: a text file of R commands that contains
commands to initialize the information in the self-
model.RData file. The purpose of this arrangement
is that the initial commands generate a very large
amount of calculations. The file sizes would be
large (�20 MB), if these calculations were done in
advance. With the current scheme, the files can be
much smaller.

4. epsps.txt (optional): a text file of the data from the
paper (61 traces with 200 observations each). This
data is preloaded into selfmodel.RData.

5. selfmodel.r (optional): a text file of the code with
documentation. The code is already preloaded in
selfmodel.RData as well, but this file also contains
documentation.

You will need to download R from the internet and
install it on your computer. This is described in more
detail on the web page. After you have installed R
and loaded the necessary files (again instructions pro-
vided on the web page), you may replicate the results
in this article or analyze your own data. We have set
up the file selfmodel.RData so that R is preloaded
with the results of alignment. You can either explore
those results and replicate some of the figures in the
manuscript, or run the algorithm on a data (either
your own or the data preloaded from the article). We
have implemented it this way because the code takes
so long to run (hours), and we wanted to allow people
to look at results immediately. More detailed instruc-
tions are available at the web site, but after reading
data into a variable epsps, it may be aligned with a
single command

myalignment 5 alignall ðepsps; numiter 5 5Þ

To see the results as in Figures 3 or 4, type either or
both of

plot:alignment ðmyalignmentÞ
plot:fitmat ðmyalignment; pause 5 TRUEÞ

The latter command shows the curves one at a
time. You have to hit return to go from one curve to
the next. Again, more detailed instructions are avail-
able on the web site.

S is not intended as a fast language, and depending
on the number of EPSPs the code may take a moder-

ate time (20–25 min on a 3 GHz Pentium 4) to exe-
cute. To pass the time, the code will print updates
concerning which iteration of the algorithm it is per-
forming and which trace is being aligned. There are
also graphical updates of the progress of the differen-
tial evolution (DE) algorithm described in the appen-
dix. NOTE: the code will produce several warning
messages stating that ill-conditioned bases have
appeared. This is due to evaluating the spline outside
the interval (0,1). The warning messages may be
safely ignored.

Grouping the self-modeling coefficients

The self-modeling coefficients can be clustered
according to the same methods discussed by Viele
et al. (2003). Figure 6 shows a histogram of the ai
coefficients (recall these are proportional to the peak
amplitudes) for the alignment of the original data in
Figure 1. For these data, there is no indication that
the data come from distinct subgroups. Using the BIC
method from Viele et al. (2003), we conclude n ¼ 1 (it
is important not to overestimate the importance of
chance peaks in a histogram, the BIC criteria
accounts for the fact that peaks may occur by chance).
The BIC method thus concludes there is only type on
EPSP in these data.

It is not always the case that there is no evidence
of clustering. A second set of data, from a separate
experiment, is shown in Figure 7. After performing

Fig. 6. Histogram of the ai coefficients from the alignment of
the data in Figure 1.

39EVOKED POSTSYNAPTIC POTENTIALS

Synapse DOI 10.1002/syn



all the same manipulations discussed in the Materials
and Methods section, we can align these 110 traces
and acquire the self-modeling coefficients for each
trace. The histogram of the ai coefficients in Figure 8
clearly shows multiple peaks, indicating that ai coeffi-
cients cluster into subgroups.

Applying the mixture model discussed by Viele
et al. (2003), we conclude n ¼ 2, with the correspond-
ing probabilities being p1 ¼ 0.39 and p2 ¼ 0.61. The
two peaks are apparent in Figure 7.

DISCUSSION

Any type of statistical analysis, including mixture
modeling, benefits when the signal to noise ratio of
the data is increased. The spline smoothing here
decreases the noise involved in computing function-
als, such as peak amplitude and decay rate, which
should provide a methodological improvement to all
analyses of these functionals. As an example, mixture
modeling attempts to fit underlying subpopulations to
the overall distribution of the functional. Suppose the
peak amplitudes appeared as in Figure 9A, the
underlying subpopulations are shown with dashed
lines while the overall population is shown with a
solid line. Here, it is difficult to discern from the solid
black curve that there are two underlying subpopula-
tions. If the noise in the data is reduced, however
(corresponding to decreasing the variation in the
underlying subpopulations), we arrive at Figure 9B,

where the underlying subpopulations are readily
apparent as multiple modes in the overall solid curve.

In this study, we have shown a relatively rapid
method to characterize quantal responses with a va-
riety of parameters. Such parameters are significant
for indexing changes in receptor sensitivity, density
of receptors, and examining mechanisms of pharma-
cological agents at synapses. In addition, the rela-
tionship of the parameters to each other offers a fur-
ther ability to examine their relationships. For
example, if an agonistic compound had a high affin-
ity for the postsynaptic receptors, the peak ampli-
tude might increase, but perhaps the compound
enhanced desensitization which would then lead to a
shorter decay and potentially a reduction in the area
of the quantal event. The procedures presented also
offer a quick ability to assess the potential changes
presynaptically in vesicle filling rates, during rapid
stimulation or experimental pharmacological manip-
ulations (Logsdon et al., 2005). The analysis is not
only relevant to the glutamate-ergic synapses at the
crayfish NMJ but also to all chemical synapses
across species. The relatively new views of why syn-
aptic responses do not fit precisely in quantal pack-
ets due to membrane traffic and glycocalyx within
the vesicle as well as the synaptic matrix can also be
addressed readily by the use of computational
assessments presented (Kriebel et al., 2001; Vautrin
and Barker, 2003).

The ‘‘hump’’ on the decay of the discrete events is
also depicted in the averaged fitted spline curve g.

Fig. 7. A second dataset used in the Results section is used to
illustrate how the self-modeling coefficients can be clustered. Fig. 8. Histogram of the ai coefficients from the alignment of

the data in Figure 7.
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This observed phenomena have been observed
before, since decay of quantal event has been shown
to be fitted by two exponential curves. The initial
decay is rapid followed by a slower decay, which
has not only been documented to occur at the crus-
tacean NMJ (Parnas et al., 1991) but also at gluta-
mate-ergic NMJs in Drosophila (Pawlu et al., 2004).
The glutamate receptor subtypes are slightly differ-
ent in kinetic properties and pharmacology between
these species (Bhatt and Cooper, 2005; Dudel et al.,
1992; Shinozake and Ishida, 1981). The variation in
the decay ‘‘hump’’ has been postulated to be due to
fusion pore kinetics of the vesicle with the presyn-
aptic membrane. The time of fusion determines the
time course of glutamate discharge and the quantal
decay (Pawlu et al., 2004). This would manifest to a
variable concentration of glutamate at the receptors
and altering the desensitization during the overall
transmission process. So there does appear to be a
physiological relevance, thus it is of interest to
characterize the hump in the decay (Pawlu et al.,
2004).

The self-modeling structure described earlier
accounts for the 99.4% of the variation (R2) of the full
dataset we examined in this article, and thus simpli-
fies the data from I separate traces into one baseline
trace g and four coefficients ai, bi, ci, di for each trace
representing their alignment to g. These four coeffi-
cients have clean relationships to all the functionals
commonly used in the literature, such as peak ampli-
tude, T, or AUC. In addition, since all these function-
als are related through the same set of four coeffi-
cients, the self-modeling structure allows us to see
relationships between the functionals, such as AUC,
being proportional to peak amplitude times T, as in
Figure 5.

By performing a regression analysis (the spline fit
to g is a multiple regression), we also get a smoothed,
and hence less variable, fit to the data. This removes
noise, and thus any subsequent analyses should be

more statistically powerful. As shown in Results sec-
tion, we may also observe fine structure in the curves
that may motivate further research questions.

For further analyses, it would be useful to incorpo-
rate dependence among the residuals, perhaps using
a method similar to Altman and Villareal (2004), and
also examine any structure in the residual curves
(the functions remaining after hi has been removed).
Often useful information is gleaned only after the
‘‘main structure’’ of the data has been removed (Viele,
2001).
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APPENDIX

This appendix provides the technical details
involved in aligning the curves. We first assume that
a transformation of the x-axis has occurred, so that
all the time values are strictly between 0 and 1. This
transformation may be inverted at the end of the
analysis to get back on the scale of the original data.
The purpose of this transformation is to provide a
unified system of starting values for the numerical
algorithms. If a matrix of voltage values is provided
to the algorithm available on the internet, the algo-
rithm automatically performs this transformation by
default.

Aligning a single trace to a fixed function g

Suppose we are working to align a single trace to a
function g. The mathematical structure assumed
states that the voltage values observed, v ¼ (v1,. . .,vJ),
are independent, with each vj � N(ag(ctj þ d) þ b,
r2), where tj is the time vj is observed. Our goal here
is to estimate the coefficients (a, b, c, d). We choose to
do this by maximum likelihood, thus choosing the (a,
b, c, d) that maximizes the likelihood function.

f ðvja;b;c;dÞ¼
Yj
j¼1

NðagðctjþdÞþb;r2ÞðvjÞ¼ð2pr2Þ�J=2

3exp
�1

2r2

Xj

j¼1

ðvj�agðctjþdÞ�bÞ2
( )

ð2Þ

Note that r2 is irrelevant to the maximization of the
likelihood with respect to (a, b, c, d), and so we may
treat r2 as a constant. Thus, the maximization prob-
lem reduces to minimize the squared differences.

hða; b; c;dÞ ¼
XJ
j¼1

ðvj � agðctj þ dÞ � bÞ2

Unfortunately, we can only get part of the way ana-
lytically. Taking derivatives and setting to 0 results
in the equations,

@hða;b;c;dÞ
@a

¼ð�2Þ
XJ
j¼1

ðvj�agðctjþdÞ�bÞ gðctjþdÞ¼ 0

@hða;b;c;dÞ
@b

¼ð�2Þ
XJ
j¼1

ðvj�agðctjþdÞ�bÞ¼ 0

@hða;b;c;dÞ
@c

¼ð�2Þ
XJ
j¼1

ðvj�agðctjþdÞ�bÞa g0ðctjþdÞtj ¼0

@hða;b;c;dÞ
@d

¼ð�2Þ
XJ
j¼1

ðvj�agðctjþdÞ�bÞag0ðctjþdÞ¼ 0

It is not possible to simultaneously solve these four
equations analytically. However, it is possible to solve
for a and b in terms of c and d. For fixed c and d
defining

�v¼J�1
XJ
j¼1

vj g¼J�1
XJ
j¼1

gðctjþdÞ

Then,

b̂ ¼ J�1
XJ
j¼1

ðvj � agðctj þ dÞÞ ¼ v� âg
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Replacing this in the equation for a,

XJ
j¼1

ðvj � âgðctj þ dÞ � vþ âgÞ gðctj þ dÞ ¼ 0

XJ
j¼1

ðvj � v� â½gðctj þ dÞ � g�Þ gðctj þ dÞ ¼ 0

â ¼
PJ

j¼1ðvj � vÞgðctj þ dÞPJ
j¼1½gðctj þ dÞ � g�gðctj þ dÞ

If one assumes a common baseline value b ¼ 0, then

â ¼
PJ

j¼1 vjgðctj þ dÞPJ
j¼1½gðctj þ dÞ�2

If g(ctj þ d) is identical for all values of tj (this
occurs, for example, if c and d are such that the
transformation moves the ctj þ d values completely
outside (0,1), then one faces division by zero errors in
the earlier calculations. However, let g0 be the con-
stant value of g and note the loglikelihood, in which
case

f ðvvja; b; c;dÞ ¼
YJ
j¼1

Nðag0 þ b;r2ÞðvjÞ

¼ ð2pr2Þ�J=2 exp
�1

2r2

XJ
j¼1

ðvj � ag0 � bÞ2
( )

Maximizing the loglikelihood is equivalent to mini-
mizing XJ

j¼1

ðvj � ag0 � bÞ2

which occurs when ag0 þ b ¼ �v. Note that there are
several cases. If no baseline is being set (so b ¼ 0),
then a ¼ �v/g0 if g0 = 0, otherwise the value of a is
irrelevant to the likelihood (so setting a ¼ 0 is accept-
able). If a baseline is being set, the easiest solution is
to set b ¼ �v and a ¼ 0. For the actual maximum of
the likelihood, these special cases are typically not
necessary (the maximum occurs for a value for g(ctj þ
d) is not constant), but they may be useful when run-
ning the numerical algorithms.

There is no way to analytically solve for the
remaining coefficients, c and d. However, we may still
find estimates through numerical maximization. We
attempted to use Newton Raphson maximization orig-
inally, but found that the NR algorithm, while fast, is
particularly sensitive to the choice of starting values.
NR works best for quadratic likelihoods, something
we do not observe here. For many seemingly reasona-

ble starting values (starting values that visually lined
up the trace and the function g), the NR algorithm ei-
ther diverged or converged to a stationary point that
is obviously inferior. This is a common problem with
NR in many contexts.

Thus, we choose a more robust, but slower, numeri-
cal algorithm called DE (Price et al., 2005). DE is an
example of a genetic algorithm, which begins with a
set of parameter points and then iteratively improves
(‘‘evolves’’) those values toward the best point avail-
able. For best performance, DE requires that we
begin with a rectangular region that contains the best
values of c and d (recall a and b can be found from c
and d, and so technically we are maximizing a profile
likelihood).

We have found that maximizing a transformation of
(c,d) is more stable than estimating (c,d) directly. We
estimate (c,t0), where t0 measures the location of the
transformed peak. If the peak of g occurs when t ¼
t*, then the peak of h will occur when ct0 þ d ¼ t*,
resulting in t0 ¼ (t* � d)/c. After the maximum likeli-
hood using (c,t0) has been found, one can transform
back to (c,d) using d ¼ t* � ct0.

The DE algorithm we specify requires an initial
‘‘rectangle’’ of values. We specify t0 [ (0, 1) , since we
assume that the transformed peak is within the range
of the observed time values. Note that the coefficient
c is a ‘‘stretching’’ coefficient that either enlarges or
shrinks the time axis. Thus, an estimate of c may be
constructed by examining the width of the peak
for the EPSP and the width of the peak for the func-
tion g.

Recall t* as the time point where g is maximized
and t0 as the point where h is maximized. Define w0

as the first time point past t0 where vj is less than
half the maximal vj. Define w* as the first point past
t* where g is half the maximal value of g. Thus, the
distance w* � t* is a measure of the decay time of g,
while w0 � t0 is the corresponding measure of the
decay time of h. The coefficient c measures the ratio
of these decay rates. Thus, a crude estimate of c is

c� ¼ w� � t�

w0 � t0

In addition to our assumption t0 [ (0, 1), we also
assume c0 [ (0, 5c*). The lower bound c > 0 comes from
assuming that there are no ‘‘mirror image’’ traces while
the constraint c < 5c* is motivated simply by allowing
a fair amount of error in the estimate c*.

Our implementation of DE is simpler than the gen-
eral version. We

1. Choose a starting set of points p1 ¼ (c1,t1),. . .,pM ¼
(cM,tM) randomly from within the rectangular
region, with c0 [ (0, 5c*) and t0 [ (0, 1), where M can
be chosen by the user. We typically useM ¼ 40.
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2. Iterate the following until both (maxmcm � minm

cm)/5c* and (maxmtm � minmtm) are less than e for
some small e (we typically chose e ¼ 0.0001. This
says let the system evolve until the set of points
have converged to a region 1/10,000 as wide as the
original window in both dimensions (c and t). The
iterations consist of
a. for each m, generate j1m and j2m randomly from

the integers (1,. . .,M). Let

p0
m ¼ ð1� driftÞ½pm þ aðpj1m � pj2m � þ drift pmax

where drift and a are user controlled parame-
ters (by default, we choose drift ¼ 0.05 and a ¼
0.2), and pmax is the point that currently has
the largest function value.
These p0

m points are ‘‘candidates.’’ The equation
given earlier represents adding random noise to
each of the current points, with a slight ‘‘drag’’
toward the point where the current maximum
has been achieved.

b. For any point pm such that the loglikelihood
(equivalent to using Eq. (2)) is higher at p0

m than
pm, set pm ¼ p0

m (so move the point to the candi-
date value). For all other points, do nothing (the
candidate offers no improvement).

c. Find the points pmax and pmin corresponding to
the maximal and minimal function values. Then
move the point pmin to (driftmin)pmax þ (1 �
driftmin) pmin, where we set driftmin ¼ 0.5 by
default. The purpose of this step is to speed con-
vergence, but this requires that M is sufficiently
large.

3. Find the (cm,tm) pair among the points that has
the largest value of the loglikelihood. This is the
approximate maximum likelihood estimate. Trans-
form the result back to (c,d).

With known c and d for each function,
estimating the function g

Note that g is not a known quantity, and must be
estimated from the data. Thus, this section describes
how to compute an estimate of g, given that all the
self-modeling coefficients are known.

Let (a1, b1, c1, d1), . . ., (an, bn, cn, dn) be given (if
only c and d are given, find the MLEs of a and b as
in the previous section), where the subscript refers to
the trace. The assumption here is that

vij � Nðaigðcitij þ diÞ þ bi;r
2Þ

Performing a linear transformation, this implies

v0ij ¼
vij � bi

ai
� NðgðCitij þ diÞ; r2=a2

i Þ

Thus, the v
0
ij values are on the same mean scale,

though not each transformed trace now has a differ-
ent variance r2/a2i. Defining t

0
ij ¼ citij þ di, we find

v0ij � Nðgðt0ijÞ; r2=a2
i Þ

Thus, to fit the spline model, if you have a spline
basis for g, you need to compute v0ij and t0ij for each i
and j, and then perform a weighted regression, where
the weights are the a2i values.

A complete algorithm

Obviously, both g and the self-modeling coefficients
must be esimated from the data. The previous sec-
tions have described how to get estimates of the self-
modeling coefficients from a known g and how to get
an estimate of g from the self-modeling coefficients.
Our complete algorithm consists of iterating these
two steps until convergence. Thus, the complete algo-
rithm is given as follows:

1. Estimate g with a spline fit to the trace with the
largest peak amplitude (this is chosen, because it
has the largest signal to noise ratio). This is just
used as a starting value for the algorithm.

2. Iterate the following two steps until convergence
(typically five steps is sufficient, and often fewer
are required for reasonable results).
a. With g fixed, estimate (ai, bi, ci, di) for each

trace, using the method described in the Discus-
sion section.

b. With the self-modeling coefficients fixed, esti-
mate g using the method described in the Dis-
cussion section.
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