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bstract

We provide both theoretical and computational improvements to the analysis of synaptic transmission data. Theoretically, we demonstrate the
orrelation structure of observations within evoked postsynaptic potentials (EPSP) are consistent with multiple random draws from a common
utoregressive moving-average (ARMA) process of order (2, 2). We use this observation and standard time series results to construct a statistical
ypothesis testing procedure for determining whether a given trace is an EPSP. Computationally, we implement this method in R, a freeware
tatistical language, which reduces the amount of time required for the investigator to classify traces into EPSPs or non-EPSPs and eliminates
nvestigator subjectivity from this classification. In addition, we provide a computational method for calculating common functionals of EPSPs (peak
mplitude, decay rate, etc.). The methodology is freely available over the internet. The automated procedure to index the quantal characteristics
reatly facilitates determining if any one or multiple parameters are changing due to experimental conditions. In our experience, the software

educes the time required to perform these analyses from hours to minutes.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Chemical synaptic transmission occurs by the release of
ransmitter in “packets” from the presynaptic nerve terminal
hich then gives rise to a postsynaptic current that may produce
synaptic potential depending on the electrochemical driving

radients of the ions. The synaptic potentials are incremental in
elation to the numbers of packets of transmitter released (Del
astillo and Katz, 1954a). For the most part, the incremental

ncrease in the excitatory synaptic potentials during an evoked
elease from the nerve terminal matches the average unitary size
f spontaneous excitatory synaptic potentials that are recorded
n the absence of stimulating the presynaptic nerve terminal.
his phenomenon occurs for postsynaptic cells that are non-
piking or for subthreshold conditions to the induction of gen-
rating action potentials. Such observations lead to the “quantal
ypothesis” proposed by Del Castillo and Katz (1954a). This

s generally accepted as a packet of neurotransmitter within a
lear core vesicle that when released from the presynaptic nerve
erminal into the synaptic cleft will produce a quantal postsy-
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aptic current that is manifested as a quantal potential across
he postsynaptic membrane. There is some variation to quantal
vents that can arise due to presynaptic as well as postsynaptic
actors. A number of investigations into the cause of quantal
ariation and reasons for non-linear addition of evoked synaptic
otentials have been undertaken (Del Castillo and Katz, 1954a,b;
insborg, 1973; Martin, 1955 and reviews by Faber et al., 1998;
cLachlan, 1978). In addition to understanding mechanisms in

uantal variations, it is also of interest to be able to index synap-
ic strength and to determine the characteristics of synapses such
s the number of places vesicles fuse with the presynaptic mem-
rane and with what probability vesicles will fuse at each site.
hus, synaptic preparations that allow analysis of the shapes
f quantal events and distributions in the numbers of evoked
uantal occurrences with a minimum degree of complexity pro-
ide insight in better understanding the principles of synaptic
ransmission.

Many previous analyses (Del Castillo and Katz, 1954b and
ee review article of Faber et al., 1998) have focused on estimat-
ng the number of release sites n and the probability of release

solely from the number of events in each current trace. Thus,

races were classified as “failures”, “singles”, “doublets”, etc.,
nd n and p were estimating using Binomial or Poisson sam-
ling methods. These methods are well known in the statistics

mailto:rlcoop1@uky.edu
dx.doi.org/10.1016/j.jneumeth.2006.07.014
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iterature to be unstable (Olkin et al., 1981; Viele et al., 2003)
eaning that while an accurate estimate of the mean quantal

ontent m = np may be accurately acquired, the separate esti-
ates of n and p are highly variable, meaning that even for large

ample sizes the estimates of n and p may separately be far from
heir true values. Olkin et al. (1981), in particular, presents an
xample where changing a single data point by one unit changes
he estimate of n from 99 to 190.

Fortunately, there is a large amount of information in the cur-
ent trace in addition to the number of events. Differences in
izes and shapes of the individual EPSPs may indicate multi-
le sites at work. Thus, for example, Viele et al. (2003) cluster
unctionals of the EPSPs such as peak amplitude and area under
he curve (AUC) and can produce precise estimates of n and p
here counting methods would fail (if one uses counting method

o compute, for example, 95% confidence intervals, then the re-
ulting confidence intervals will contain a very large number of
ossible values of n).

Unfortunately, large amounts of investigator preprocessing
ave been required to acquire this functionals for cluster analy-
is. In this paper we provide the following theoretical and com-
utational advances.

. Previous analyses (Silver, 2003) have noted the voltage ob-
servations within an EPSP are strongly correlated. However,
these previous analyses have not investigated whether the
correlation structure is fixed over time. We demonstrate that
a single autoregressive, moving-average (ARMA) process of
order (2, 2) describes the variation seen in the correlation
structure over time, indicating that any variation over time is
simply due to chance, not temporal changes.

. We use the ARMA process develop a statistical hypothesis
test for classifying traces into EPSPs or failures. Demonstrat-
ing the ARMA process has no temporal shifts is fundamental
to this procedure, since the parameters of the ARMA process
can then be estimated by aggregating all the traces to produce
a single estimate. This single estimate, since it is estimated
from a very large sample size, is quite precise.

. We provide an implementation of the statistical hypothesis
test in R R Development Core Team (2004), a freeware statis-
tical language. This implementation is freely available from
the internet. The result is that the investigator is freed from
having to manually classify traces as either EPSPs or failures.

. Finally, we provide an automated method for computing sev-
eral commonly used EPSP functionals. These are the peak
amplitude, the latency, the decay time τ, the rise time, and
the area under the curve (AUC). These methods are entirely
automated, unlike current software which require the user to
manually locate begin and end points for each EPSP.

Overall, in our experience the software reduces the task of
rocessing 1000 traces from hours to minutes by eliminating
he tedious viewing of all traces, even the failures, as well as not

aving to place cursors for measures of evoked events.

In this study a sample data set is used to illustrate the de-
ailed procedures implemented by the software for analysis of
he evoked quantal events. This analysis method and related soft-
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are can be used for a wide variety of synaptic preparations and
xperimental procedures. The software is readily modifiable by
user familiar with the common statistical “R” language. The

tandard export format allows easy use of the obtained quan-
al measures for statistical analysis in any commercial available
oftware package.

. Methods

.1. The preparation

All experiments were performed using the first walking leg of
rayfish, Procambarus clarkii, measuring 4–6 cm in body length
Atchafalaya Biological Supply Co., Raceland, LA). The opener
uscle of the first walking legs was prepared by the standard

issection (Cooper et al., 1995). The tissue was pinned out in
Slygard dish for viewing with a Nikon, Optiphot-2 upright

uorescent microscope using a 40× (0.55 NA) Nikon water
mmersion objective. Dissected preparations were maintained
n crayfish saline (modified Van Harreveld’s solution: 205 mM
aCl; 5.3 mM KCl; 13.5 mM CaCl2; 2.45 mM MgCl2; 0.5 mM
epes/NaOH, pH 7.4) at 14 ◦C.

.2. Physiology: field excitatory postsynaptic potentials
fEPSPs)

Synaptic potentials were obtained with a focal macropatch
lectrode Dudel (1981) by lightly placing a 10–15 �m diameter,
re polished, glass electrode directly over a spatially isolated
aricosity. The lumen of the patch electrode was filled with the
ame solution as the bathing medium. The seal resistance was in
he range of 100 K� to 1 M�. All events were obtained with an
xoclamp 2b (Axon Instruments) 0.1× LU head stage acquired

t 20 kHz without additional filtering. The varicosities on the
iving terminals were visualized by the use of the vital fluores-
ent dye 4-Di-2-ASP (Molecular Probes) (Cooper et al., 1995;
agrassi et al., 1987). The evoked field excitatory postsynaptic

otentials (fEPSPs) and field miniature excitatory postsynaptic
otentials (fmEPSPs) were recorded. The data sample shown
or description of the methodology was stimulated at 1 Hz.

. Statistical analysis of quantal events

.1. Motivation for examining functionals of current trace

A common classical method for obtaining the quantal pa-
ameters (n) and (p) is based on direct counts of the number of
ailures, single events, double events, etc. As discussed previ-
usly (Viele et al., 2003) the direct count method may be used to
stimate the mean quantal content (the mean number of events
er stimulus, usually denoted as m), or they may be used to esti-
ate (n) and (p) by fitting various discrete distributions such as a
oisson or some type of binomial to the count data, thus predict-
ng the distribution of the number of events resulting from each
timulus. It is much easier to estimate (m) than simultaneously
stimate the parameters n and p. Olkin et al. (1981) described
he issue that if both n and p are unknown in a binomial distri-
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ution, then the mean np may be accurately estimated (the mean
uantal content m) but estimates of the individual parameters n
nd p are unstable.

Essentially, the difficulty lies with the fact the different val-
es of n and p which have the same mean quantal content np are
lmost indistinguishable on the basis of count data alone. As-
uming a binomial likelihood, If n = 2 and p = 0.1, the prob-
bility of getting a failure is 0.810, the probability of a single
s 0.180, and the probability of a double is 0.010. In contrast, if
= 10 and p = 0.02, the probability of a failure is 0.817, the

robability of a single is 0.167, and the probability of a doublet
s 0.015 (there is limited probability of getting a triple or more).
hese probabilities are so close that one requires extremely large
ample sizes to distinguish them, and thus to distinguish the un-
erlying n and p. Note that both distribution have the same value
f np = 0.2.

The purpose of the current research is to examine informa-
ion within each trace to refine the coarse classifications such
s “single release event” with information from the underlying
race. Previously, we used a method to determine if clusters of
voked quantal potentials occurred by only using the entire area
f the fEPSPs from single evoked events (Viele et al., 2003). In
his current report, we have automated the computation of the
eak amplitude and provided an automated method for comput-
ng other functionals such as the latency time, the rise time, and
he decay time of the release events.

.2. Classification of traces into release events and failures
Fig. 1 shows the raw data obtained from an experiment in
hich the preparation was only exposed to saline and stimu-

ated at 1 Hz. Fig. 2 contains a closeup of the area “A” in Fig. 1
orresponding to the area where EPSPs occur. In this prepara-

ig. 1. Raw data. The y-axis (voltage) has been clipped to remove a stimulation
rtifact just before 20 ms. The area marked “A” corresponds to the area where
PSPs occur. The area marked “B” corresponds to the area used to estimate the
rror structure of the data.
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ig. 2. Closeup of the region “A” from Fig. 1 where the EPSPs occur. The EPSPs
re preceded by artifacts which are removed automatically as part of the analysis.

ion, there are two artifacts common to all the traces. The first
ne is the stimulus artifact that is recorded as the stimulus travels
n the saline bath. This first artifact dominates the voltage axis of
he plot and thus we have “clipped” the voltage axis of the plot.
he second artifact is the extracellular recording of the action
otential monitored over the nerve terminal, also referred to as a
pike. This artifact is more easily viewed in Fig. 2, the closeup.
he portion of the graph that holds our interest is immediately
fter the second artifact. The nerve terminal may or may not
espond by vesicle fusion to the voltage stimulus. If a release
vent occurs, it will occur within a 20–30 ms window after the
erve terminal is depolarized.

Some traces are obviously release events and some are not.
ig. 3 shows three traces within the zoomed in area from Fig. 2.
ig. 3A shows an obvious release event (the artifact is followed
y a large increase), while Fig. 3C shows an obvious failure
except for the artifact there is no obvious change in voltage be-
ides noise). Unfortunately, there is a continuum of magnitudes
or the release events, which results in some traces that are not
bviously either release events or failures. Fig. 3B shows a trace
hat is ambiguous in that the largest voltage values of the trace
ccur just after the artifact. It is unclear whether this increase
s due to noise (e.g. an increase in voltage appeared by chance)
r due to a “small” release. It is possible that some may con-
ider the particular trace in Fig. 3B to be an obvious failure, but
or everyone some of the traces will be ambiguous. One of the
urposes of this paper is to recognize that different investigators
an have different subjective definitions of what is questionable
nd what is not, and thus a well justified method for automating
he classification into release or non-release events is valuable.
n what follows, our automated procedure classifies the trace
n Fig. 3B as a failure, but it is just on the borderline of being

eclared a release.

To classify the release events, there are a few computational
ssues that must be considered, in order.
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ig. 3. The classification problem—which are release events? Some traces are o
in between”. We propose here an objective classification mechanism based on

. dc drift. Often, as the data from the nerve is recorded, the im-
age received will drift vertically on the oscilloscope. Thus,
we first align the curves in the y axis by using trimmed
means.

. Artifact removal. The stimulation artifact within the saline
bath and spike of the extracellularly recorded action potential
need to removed from the trace.

. Release event classification. Each curve is determined to be
a release event or failure on the basis of a significance test on
the maximum value. This divides the data set into “release
events” and “failures”.

. Removal of doublets, triplets, etc. This is still done manually

by the investigator from the traces that are classified as “re-
lease events”. Often these are obvious because of multiple
non-artifact peaks in the trace. In the data used here, only
one release event was deemed a “doublet” by the investiga-

3

b

s release events and some are obvious failures. However, there are always traces
series results.

tor (AFMJ). This trace is shown in Fig. 6. While the method
for classification to “release/failure” still works if there are
many multiple release events in a single trace, the computa-
tion of the functionals currently only works for single release
events. We do not currently have a computational method for
separating a multiple release event into its constituent pieces;
however various approaches have been develop to use decon-
volution techniques of multi-quantal evoked events at NMJs
(Bykhovskaia et al., 1996).

n the remainder of this section we describe each of these tasks
n order.
.2.1. Removing dc shift
The first task is to align all traces vertically to a common

aseline of 0. Since there is no standard for reference (i.e., there
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Fig. 4. Example of removing dc drift with a 40% trimmed mean. The trimmed
means removes the highest 20% and lowest 20% observations from the trace and
averages the remaining observations. For this trace, the observations between
the dashed lines are averaged to produce a baseline value for the trace. As with
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viations (firings, artifacts, minis, etc.) should take less than the
trim factor of the trace, and (2) ideally several hundred observa-
tions should remain after trimming, so the baseline is accurately
estimated.

3.2.2. Removing the artifacts
One of the assumptions of our current methodology is that

the traces contain one artifact near the region where the EP-
SPs occur. The data in Fig. 1 clearly contain two artifacts, the
artifact near the EPSPs (most visible in Fig. 2) and the large
stimulus artifact that has been clipped in Fig. 1. The large
stimulus artifact, fortunately, is well separated from the release
events. Thus, without adding subjectivity into the analysis, we
can simply remove the time values that include this artifact and
focus on the area shown in detail in Fig. 2. Note that we re-
moved dc drift before focusing on the area around the release
events because the “deleted” area of the traces provided in-
formation on dc drift. By focusing on the area emphasized in
Fig. 2, we have reduced the data to contain a single artifact.
In the code described later, the user may select the time values
for the rectangular region. Thus, the user must identify the x-
axis bounds of the window “A” in Fig. 1. This task is typically
not difficult. The left edge occurs between the two artifacts,
and the right edge is selected so that “A” contains all the EP-
SPs.

The remaining artifact must then be removed. Fortunately,
in the datasets we are considering the minimum of the curve
occurs at the beginning of the artifact, and is then succeeded
with an upward and then downward oscillation before we resume
either noise or a release event. Thus, to remove the artifact, we
find the minimum of the curve and then the next subsequent
maximum and minimum. That second minimum is then declared
the beginning of the trace for further calculation. The minimum
of the curve and the succeeding maximum and minimum are
marked in Fig. 5. The area before the “cut before here” is then
removed before further calculations.
ig. 1, the stimulus artifact has been clipped for better viewing of the EPSP. The
verage of the data between the dashed lines is 0.0493, which is then subtracted
rom every voltage value to give the trace baseline value 0.

s no way to record the dc shift over time during the experiment),
e used features inherent to the curve itself in order to obtain

he baseline. Within each trace, there is very little movement
ertically (only two artifacts and the occasional release event).
ince most of the graph is noise, we take a 40% trimmed mean
nd use that value in order to shift that curve to a baseline
alue of 0.

In order to calculate a 40% trimmed mean for a single trace,
ne first takes all 2560 observations in the trace and then sorts
hem in increasing order. From that, the bottom 20% and top 20%
f those observations are removed, and the remaining middle
0% are averaged. Based on 2560 observations, we would only
se the sorted values between the 512th and 2048th to calculate
he mean.

Fig. 4 shows how this works graphically. For this particular
race, the 512th largest voltage value is 0.047 and the 2048th
argest voltage value is 0.0515. These voltage values are shown
ith dashed lines (red in web version). The data whose volt-

ge values are between the two horizontal dashed lines are then
veraged, resulting in a trimmed mean voltage of 0.0493. The
rimmed mean is then subtracted from every voltage value in the
race, thereby aligning the trace to a baseline voltage of 0. These
ines are difficult to identify on the graph because they are so
lose to the data, but this is the point. The trimmed mean avoids
he areas where there are deviations from baseline and averages
he rest. This process is repeated separately for each trace (thus
different value is subtracted from each curve, accounting for
he dc drift).
Our accompanying software allows for a different percentage

other than 40%) for the trimmed mean. The central issues to
onsider in resetting this parameter are: (1) all systematic de-

Fig. 5. Demonstration of points used to remove artifacts. The oscillation imme-
diately following the minimum of the trace is removed.
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we repeatedly sample from Eq. (2) and record the maximum for
each simulation. The resulting maxima provide an estimate of
the underlying distribution. After choosing a size (α-level) of
the test, our threshold T is the value such that the proportion of
simulated maxima who exceed T is α.

Because we are performing a hypothesis test on each trace,
we need to address multiple hypothesis testing issues (see for
example Benjamini and Hochberg, 1995). We emphasize here,
however, that we are not interested in controlling the family-
wise error rates, but simply are using the hypothesis tests as a
classifier. Thus, our concern is about the rates of correct classifi-
cation (true release events should be classified as release events,
and failures should be classified as failures). Our choice of α

is motivated by classification. If we used α = 0.05, for exam-
ple, we would expect 50 out of ever 1000 failures (α = 0.05
multipled by 1000 traces) to be incorrectly classified as a re-
lease event, which would typically imply a large proportion
of the identified release events are actually incorrectly identi-
fied. Note α is just the rate of falsely identified traces. Thus,
if you want to expect only 1 failure out of 1000 to be falsely
identified as a release event, choose α = 1/1000 = 0.001. This
is our standard choice in practice. Thus, we can be reason-
ably confident few failures are incorrectly classified as release
events.

3.3. Removing multiple events

One aspect that is not automated in our procedure is the re-
moval of doublets, triples, etc., from the traces classified as re-
lease events. These are determined by visual inspection, where
a trace was classified as a multiple release if it contains mul-
tiple non-artifact peaks in voltage. In this dataset, only one
doublets was found. It is shown in Fig. 6. While this pro-
cess is not automated, the investigator needs to only look at
the traces classified as release events, rather than the entire
30 M. Lancaster et al. / Journal of Neu

In the code that accompanies this paper, certain other artifact
tructures are possible. In particular, it is possible to analyze data
ith no lead artifact.

.2.3. Determining a cutoff for release versus failure
With the data vertically centered and time-trimmed, we then

egin the process of classifying the data into release events
nd failures. Thus, we construct a statistical hypothesis test
f:

0. The trace is a failure versus.

1. The trace is a release event.

We construct this test based on whether the maximal value
f the trace exceeds a threshold T. To find the appropriate value
f T, we need the sampling distribution of the maximal value of
he trace.

As has been noted by other others in different context (Sacchi
t al., 1998), the current traces are composed of dependent
ata that can be modelled by an autoregressive, moving-average
ARMA) process (Brockwell and Davis, 1991). Specifically, if
ij is the jth voltage value from the ith trace, then the Vij values
ay be described by the equation:

ij =
p∑

k=1

φkVi,j−k + Zij +
q∑

k=1

θqZi,j−k (1)

here the φk values are called the autoregressive coefficients,
he θk values are the moving-average coefficients, and the Zij

alues are all jointly independent and each distributed N(0, σ2)
i.e., are white noise). Typically p = q = 2 is sufficient for a
ide variety of purposes (Brockwell and Davis, 1991). Note in

he results section we investigate fitting separate φ and θ param-
ters for each trace, and demonstrate a single set of coefficients
imultaneously fits all the traces well.

Thus, we fit the model:

ij = φ1Vi,j−1 + φ2Vi,j−2 + Zij + θ1Zi,j−1 + θ2Zi,j−2 (2)

We use the data in Fig. 1 contained in the rectangle marked
B”. This region contains the last 25% of the observations (640
or our sample data) in each trace. This is a sufficient number
f observations per trace to acquire accurate estimation of the
ime series coefficients, and in addition there are few systematic
eviations from baseline such as miniature EPSPs (mEPSPs). In
he software provided, the user has control over the size of the
ectangle in “B”.

Estimating the coefficients φ1, φ2, θ1, θ2, and innovation
ariance σ2 requires numerical methods available in many
tatistical software packages. We use R, a freeware pack-
ge, which estimates the coefficients by maximum likelihood
Casella and Berger, 2001). After estimating the coefficients
note we typically have several hundred thousand observa-
ions available, so these coefficients can be estimated quite
ccurately).
For each “artifact-removed” trace isolated in Section 3.2.2,
et n be the number of observations in each trace. Given the trace
s not an EPSP, the n observations in each trace arise from Eq.
2). To determine the sampling distribution of the maximum,

Fig. 6. This trace was classified as a firing, but was manually determined to be a
multiple firing and not included in the subsequent calculation of the functionals.



roscience Methods 159 (2007) 325–336 331

s
b
t

3
r

d
t
s
n
h
c

a
a
p
t
i
a
m
o
u

1

2

3

Fig. 7. Components of a release event. Here, we define latency as the time
between the beginning of the trace and the first point where the trace exceed two
standard above baseline. The rise time is the time following the latency period
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et of traces as was previously required. Typically the num-
er of release events is substantially smaller than the number of
races.

.4. Computing functions (area, rise time, etc.) for each
elease event

Computation of the area under the curve, the time to peak, the
ecay rate, and other functionals is very time consuming to de-
ermine by hand even with current software packages marketed
ince the cursors still have to be placed by hand at the begin-
ing and end of each event. The automated procedure described
erein eliminates the placement of cursors for every quantal oc-
urrence.

Once the traces are classified, we calculate several function-
ls for each of the traces classified as release events. These are
rea under the curve, peak of the curve, time to curve peak (we
rovide two versions, either latency based or rise based), and
he decay time. This section describes the computational details
nvolved in each functional. For each, assume that the second
rtifact has been removed, so the first time point represents the
inimum shown in Fig. 5. Let the voltage values observed, in

rder, be v1, . . . , vn (the code allows n to be specified by the
ser).

. Area under the curve (AUC). We use the trapezoidal rule,
where

AUC = 1

2Δ
(v1 + 2v2 + 2v3 + · · · + 2vn−2 + 2vn−1 + vn)

where Δ is the common width between two successive time
points. The trapezoidal rule essentially “connects the dots”
of the voltage values and computes the resulting area. Note
that when values are observed with error, there is little to be
gained by using Simpson’s rule (as opposed to when function
values are known exactly, when Simpson’s rule is superior).
Determining the start and end of the firing cannot be done
exactly because of the electrical noise. We provide a user
specifiable parameter auc.threshold which determines how
many standard deviations above baseline are required to de-
termine these points. The beginning and end of the event are
defined as the points, moving away from the peak in each
direction, where the adjusted (versus baseline) voltage first
falls beneath auc.threshold standard deviations. The default
value of auc.threshold is 0, indicating the event begins and
ends when the voltage returns to baseline in each direction.

. Peak of the curve. This is simply the highest voltage value
observed in v1, . . . , vn.

. Time to curve peak. This is the time between the “start of the
curve” and the time the maximum is achieved for the first
time (typically the maximum is achieved only once, but in
some cases the same maximum appears in successive time
points, for example).
We implemented two different definitions of the “start of
the curve”. This is due to the fact that while many release
events occur immediately after the second artifact, some re-
lease events have a “latency” period of a few milliseconds.
ntil the maximum, and the decay time is the time from the maximum until the
race falls below 37% of the maximum.

The two definitions are based on whether or not to include
the latency as part of the “time to curve peak”.

Unfortunately, it is not possible to identify exactly where a
release event begins, because of the random noise associated
with the recording. We estimate the beginning of the release
event by working backward from the peak of the release event
until the first time point where the trace falls below 2s, where
s is the sample standard deviation of the data in region “B” of
Fig. 1. We call the time period between the estimated start of
the release event and the peak as the “rise time”. It is shown
as a dotted line in Fig. 7 (note we are measuring time here,
so only the x-axis difference is measured). Horizontal lines
in Fig. 7 show the maximum and two standard deviations
cutoffs. We call the period before the estimated start of the
release event, beginning at the end of the second artifact, the
“latency time”. The latency time is shown as a dashed line in
Fig. 7.

Our functional “time to curve peak” is thus calculated in
two ways. The first way is to include both the latency and
rise periods together, producing the time from the end of the
second artifact to the peak of the release event. The second
way only includes the rise time.

. Decay time. This is the time elapsed between the maximum
(again, the first maximum in case of ties), and where the
descent first falls below p × max, where p is the percent
decay and ‘max’ is the maximum value. The user may choose
p, by default we choose p = 0.37 as used in prior studies
(Hille, 1992). Fig. 7 contains a horizontal line at 37% of the

release event maximal voltage and shows the decay period
as a dashed and dotted line (green in web version). The time
elapsed in the decay period is the decay time, commonly
referred to as τ.
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2. traces.txt: contains the functions used to process the traces.
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. Results

.1. Time series results

In Section 3.2.3 we use only one set of φ and θ values, rather
han separate parameters for each trace. In this section we illus-
rate that this is consistent with the data.

We make this argument on two grounds, first through a formal
ypothesis test and next through an exploratory study indicating
he sampling distribution of individual time series coefficients
ollows the pattern that would be expected from a common value.

First, expand Eq. (2) to allow for the possibility of each trace
aving its own set of time series coefficients φi1, φi2, θi1θi2, so
he model is now

ij = φi1Vi,j−1 + φi2Vi,j−2 + Zij + θi1Zi,j−1 + θi2Zi,j−2

etting s be the number of traces, a formal hypothesis test can
hen be conducted by testing:

0.

11 = · · · = φs1, φ12 = · · · = φs2,

11 = · · · = θs1, θ12 = · · · = θs2.

1. All coefficients are separate.

Because of the large number of observations, we use Bayesian
nformation criteria (BIC) for this test (Kass and Raftery, 1995).

aximizing the likelihood under each hypothesis and comput-
ng the BIC, we find the approximate log Bayes factor to be

17,900, which is overwhelming evidence in favor of H0. Thus,
he hypothesis test concludes that a single set of coefficients is
trongly preferred over separate coefficients.

Second, suppose H0is true and a common set of coefficients
xists. Under this assumption, we estimated the coefficients us-
ng all the data and the associated information matrix (Casella
nd Berger, 2001). Using these, we can derive out the sampling
istribution of estimates derived from each individual trace. In
ig. 8, these are shown as the elliptical contours. The left pane
hows the autoregressive (AR) coefficients, while the right pane
hows the moving-average (MA) coefficients. There are three
llipses in each pane, showing 90%, 95%, and 99% contours.

The points in each pane are the individual estimates arrived
t by fitting a separate set of coefficients for each trace. While
here is certainly variation about the individual estimates (es-
imates differ from trace to trace), the pattern of variation is
uite consistent with the expected sampling variability from the
ommon estimate. Thus, we conclude there is a single set of
oefficients, and the differences observed from trace to trace are
ormal sampling variability.

.2. Sample run through the software

.2.1. Getting started

The routines herein are implemented in a statistical lan-

uage called “S” using the freeware software “R”. “R” is main-
ained by a consortium of statisticians and others, and may
e downloaded at: http://www.r-project.org/. “R” is available 3
ling distribution expected from a common estimate. The ellipses correspond to
he sampling distribution expected from the common estimate. The points cor-
espond to estimates of the time series component from each individual trace.

n all common operating systems. We avoid a detailed “user
uide” here, instead emphasizing features and the effect of
ser controlled parameters. The code, with instructions both
pecific to the methods here and on R in general, may be
ound at: http://www.ms.uky.edu/∼viele/epsps/epsps.html and
onsists of the following files:

. traces.RData: a shortcut that allows you to start R with all
the required functions preloaded.
This file is not necessary unless you intend on modifying
the code. All the code in this file is preloaded into traces.
RData.

. output05g.txt: contains the sample dataset used in this paper.

http://www.r-project.org/
http://www.ms.uky.edu/~viele/epsps/epsps.html
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Data may be loaded from either a single column file, where
he voltages for each traces follow one after the other (some
oftware refers to this as a “scope” file), or from a matrix file.
he software provides functions which plot the raw data either

ogether, as in Fig. 1, or separately. The software provides op-
ions for zooming in on particular areas of the traces, as in Fig.
or 4.

.2.2. An “all in one” method
The software provides an all-inclusive function ana-

yze.traces which allows the user to remove artifacts, adjust for
c drift, find a threshold for classification into firing/failure, clas-
ify traces, and compute functionals in one step. Thus, with one
ommand one can perform all the functions described below,
nd still retain the ability to change any of the user specifiable
arameters described below.

Similarly, while separate functions are provided for each step
escribed in Section 3, we have provided “combination” func-
ions that simultaneously adjust for baseline drift, remove the
rtifact, and so on. The intent of the separate functions is to allow
or future enhancements and give a user wishing to perform their
wn analysis freedom to do so, while the combined commands
ave time for the user who wants a fully automated analysis. In
hat follows we describe the separate functions which allow us

o focus on each of the user specifiable options.

.2.3. Baseline adjustment
The function set.baseline performs the trimmed mean ad-

ustment discussed in Section 3.2.1. The user is given the option
f changing the “trim” parameter (the default is 0.2, which re-
oves a total of 40% of the data). The result of the function is

n adjusted trace matrix which removes the dc drift.
For our sample data in Fig. 1, there is a fairly small amount

f dc drift throughout the experiment. Fig. 9 shows the before
nd after results of the setbaseline function. The central result
f using the function is that the average voltage has been shifted
o 0.

.2.4. Setting a threshold for classification
The function get.threshold determines the threshold value for

he classification of firing versus failure as described in Section
.2.3. This function is by far the largest portion of the process-
ng time. The function estimates the appropriate time series co-
fficients, uses them to estimate the sampling distribution of
he maximal voltage value, and then determines the appropriate
hreshold. In addition, the function estimates the variance of the
oise to be used in computing the functionals.

The user has control over the options (among others, such as
ow long to run simulations):

. Noise. Determines how much of the tail of each trace is as-

sumed to be noise and therefore used to estimate the time
series coefficients. The default option is 0.25, which uses
25% of the data for each trace. Ideally, this option should
be set as high as possible, while still being sure few firings
appear in the “noise” area, to guarantee accurate estimates.

s

1

ig. 9. The results of the baseline adjustment on the sample data. In this example
here was little dc drift, so the traces have not been shifted much relative to each
ther. The main effect of setting the baseline has been to center the traces on a
aseline voltage of 0.

. Alpha. The probability of type I error for the classification of
any particular trace. May be set anywhere between 0 and 1,
although the default is the reciprocal of the number of traces
as described in Section 3.2.3.

. Keep. How many observations will be contained in each of
the traces after removing lead artifacts. It is crucial this pa-
rameter agrees with what is used in the remove.artifact func-
tion below. The reason is that the distribution of the maximal
voltage depends on how many voltage values are present in
each traces (more observations results in a larger probability
of a “chance” high voltage). In the “all in one” functions,
the agreement in the arguments of the get.threshold and re-
move.artifact functions is handled automatically.

This function should be used with the data after the baseline
djustment but before removing artifacts. The point is that the
aseline adjustment removes variation in the voltage axis, but
e want to use the extreme tails of the distribution (the area

way from the events) to estimate the noise parameters. These
ails are removed by the remove.artifact function.

For our sample dataset, the threshold for distinguishing firing
rom failure is an adjusted (above baseline) voltage of 0.0105.

e include this value on the plot in the next section.

.2.5. Removing artifacts
The function remove.artifact removes artifacts from the be-

inning of the trace. The default options involve the artifact being
emoved as described in Section 3.2.2 and Fig. 5. The user may
elect the following options:
. Remove.data. Allows the data to remove a number of obser-
vations from the beginning of each trace before searching for
artifacts (we use this to remove the large spike from Fig. 1).
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Fig. 10. The traces after the removal of the artifact and the threshold for clas-
sification. This graph is similar to Fig. 2 with the exception of the removal of
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he artifact. Should there be variation in the timing of the artifact, the methods
escribed here will also provide alignment in the time axis. The dashed line
ndicates the threshold failure for classification into a failure or firing. Traces
hose maximal value exceeds the dashed line are classified as firings.

. Keep. The number of observations to include in each pro-
cessed trace. This allows for experiments where events have
differing lengths or account for the acquisition rate.

. Artifact.form. Specifies the form of the artifact. The user may
specify no lead artifact, in which case the function simply
supplies the first “keep” observations in each trace. The de-
fault is “hl”, which removes an artifact as in Fig. 5.

The function returns two pieces, the artifact-removed data
nd a vector indicating any problems encountered. The software
otes whenever it has trouble removing an artifact, whenever an
nsufficient amount of data is available, or when no pulse is
etected (indicating a recording problem).

The results of using remove.artifact on our sample data
after baseline adjustment) are shown in Fig. 10. We used
emove.data = 350 (a value past the large spike but before the
vents), keep = 200, and the default artifact.form. The result
solates the area where the events occur. The results are shown
n Fig. 10.

.2.6. Classifying traces
The classify.traces function simply looks at each of the pre-

rocessed traces and determines if the maximal value of the
race exceeds the threshold for classifying the trace as a firing.
he function also produces the plot in Fig. 11 that plots the set
f traces classified as failures and the set of traces classified as
rings.
.2.7. Computing functionals
The function get.functions computes the functionals de-

cribed in Section 3.4 for all the traces classified as firings. The
ser can/must supply:

f
m
n
p

ig. 11. The classification of the traces into failures and firings. This graph splits
he data in Fig. 10 into failures (the top pane) and firings (the bottom pane). The
lassification is based on whether the maximal value of the trace exceeds the
hreshold value drawn in 10.

. The firings in a matrix (the “all in one” functions handle this
automatically).

. The noise standard deviation produced by the get.threshold
function.

. The kHz rate at which the recording where computed. The
function returns all times in milliseconds, and the acquisition
rate is required to convert numbers of observations to time.

. The amount of decay to be used in determining the decay
time (the default is 0.37, as in Hille, 1992). See Section 3.4
for more details.

. A parameter auc.threshold which determines the endpoints
of the event for the purposes of computing the area under the
curve (AUC). The endpoints are determined by finding the
first points, moving away from the peak in each direction,
where the trace first falls below auc.threshold times the noise
standard deviation. Again, see Section 3.4 for more details.

The result of the get.functions command is a matrix contain-
ng the functionals. The software automatically produces his-
ograms of all the functionals computed. These are shown for
he sample data in Fig. 12.

. Discussion

There are various commercially available computational
ethods to perform analysis of quantal events. However some

f these packages have come and gone as they have not been
aintained such as ones by Synaptosoft, Inc. that quit function-

ng in 2002 but still advertises on the web. The most commonly
sed analysis packaged is most likely pCLAMP 10 by Axon
nstruments (Molecular Devices Corporation, California, USA)

or analysis of evoked events. The shortfall of this program is the
anual placement of cursors for events and baseline shifts that

eed to be controlled for in the data analysis. As with the method
roposed in this paper, single and multiple evoked quantal re-
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Fig. 12. Histograms of the six functionals computed on each of the firings.

ponses would also need to be visually inspected for determining
ingle quantal responses for analysis. We feel that the automated
rocedure presented in this study will save time in not having to
lace cursors on events nor worry about adjusting baseline offset
hroughout an experimental run. In addition, the software “R” is
reely obtained and maintained by a large number of statisticians
edicated to its improvement.

In this study we provide a procedure that automates the anal-
sis of evoked single quantal events to provide characteristics of
uanta. This provides a means to quantify any changes that affect
he quantal responses experimentally. Regulatory processes that

ay alter presynaptic and/or postsynaptic properties can readily
e resolved by the multiple measures in the quantal analysis pre-
ented. There are possible actions on postsynaptic receptor array
uch as the presence of antagonists or numbers of desensitized
eceptors that would decrease the peak amplitude and area of
he quantal event without alteration of the decay tau, latency of
ccurrence or the number of occurrences (Nicoll and Malenka,
999; Tang et al., 1994). Any difference in the postsynaptic den-
ity of receptors due to developmental differences (DiAntonio
t al., 1999; Qin et al., 2005) or activity induced changes as ob-
erved during long-term potentiation in the CNS of vertebrates
Nicoll and Malenka, 1999) would also show such differences
n quantal measures. Synaptic structural dimension in relation
o the presynaptic vesicular fusion site can also impact the shape

f a quantum (Bekkers and Stevens, 1990, 1991; Uteshev and
ennefather, 1997).

Factors that target presynaptic mechanisms and alter quantal
ize are vesicle packaging (Sulzer and Edwards, 2000; Wilson,

c
(
t
D

e observations are stored in a matrix and available for any future analyses.

998) or size differences of vesicles (Karunanithi et al., 2002;
im et al., 2000). Many cellular processes such as degree of
hosphorylation (Silverman-Gavrila et al., 2005) and handling
f evoked calcium influx (Cooper et al., 1996a,b; Dawson-Scully
t al., 2000; Millar et al., 2005) effect the number and latency of
esicular events. At the crayfish NMJ, the presence of serotonin
s thought to lead to increased phosphorylation of synaptic pro-
eins that increase the number of docked vesicles, thus enhancing
voked release and shortening latency of release (Cooper et al.,
003; Southard et al., 2000). It would be of interest to use this
resented automated analysis to investigate the time dependent
ffect of action by neuromodulators such as serotonin. Previ-
usly we used the area measures of quantal analysis (Viele et
l., 2003) to investigate clusters in occurrences in subsets of
uantal events and estimate a probability for the various types
f occurrences.

When the stimulation frequency was increased from 1 to 2
nd 3 Hz the probability increased for particular subsets of events
s well as new subsets of events appearing. This suggested that
ites initially activated, which produce a given subset of quan-
al charges, increase in their occurrence, and that novel sites can
lso be recruited upon increased stimulation frequency. Automa-
ion of quantal analysis could readily enhance such measures in
haracterizing subsets of quantal responses.

At the crayfish NMJ the glutamatergic ligand gated re-

eptor are a qusiqualate type with rapid sodium conductance
Shinozake and Shibuya, 1974) which are similar as those at
he neuromuscular junction in the genetically favorable model
rosophila melanogaster (Bhatt and Cooper, 2005). We are now
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xamining various mutants in Drosophila lines that have been
dentified to produce alterations in synaptic strength to deter-

ine the mechanistic reasons by this automated high through-
ut quantal analysis. In addition, this analysis will provide new
pproaches to address quantal subsets to better described the
umber of functional release sites (n) and the probability of re-
ease (p) in not only crayfish NMJs, but all synapses that allow
uantal measures to be obtained.
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