
The nervous system shows considerable plasticity,
allowing animals to adapt to changing internal
and external environments. During development,
learning and in ongoing behaviour, individual
neurons, synapses and the circuits they form show

short-term and long-term changes as a result of experience.
Plasticity occurs at all levels, from the behaviour of single ion
channels to the morphology of neurons and large circuits and
over timescales ranging from milliseconds to years. Because
plasticity in the brain occurs at so many levels of organization
and over so many timescales, theoretical and computational
methods are required to understand how adaptive change to
brain function and behaviour is brought about. Many studies
of plasticity in the brain have focused on memory storage
and retrieval. However, plasticity and neuromodulation
also have crucial roles in altering excitability in the brain and
regulating behavioural states, such as the transitions
between sleep and wakeful activity. Theoretical work is also
needed to understand the computational consequences of
these various plasticity and modulation mechanisms. Here,
we illustrate the use of combined theoretical and experi-
mental approaches for understanding neuronal and circuit
dynamics, using examples from both small invertebrate and
large vertebrate circuits.

The building blocks of circuit plasticity
Neurons communicate with each other by means of chemi-
cal and electrical synapses. It is now clear that the strengths
of many, if not most, synapses are altered by either the tem-
poral pattern of firing of the presynaptic neuron and/or by
amines or neuropeptides delivered hormonally or by
neuromodulatory neurons1. Some synapses show short-
term depression in which the amplitude of successive
synaptic potentials progressively decreases. Others show
rapid facilitation in which successive synaptic potentials
grow in amplitude. (For a detailed discussion of the compu-
tational potential of short-term plasticity of synaptic
strength, see review in this issue by Abbott and Regehr, page
796.) Much attention has been paid to the computational
consequences of long-term use-dependent changes in
synaptic strength, such as that seen in long-term depression
(LTD) and in long-term potentiation (LTP). It is also clear
that the specific timing of activation of presynaptic and
post-synaptic activity is crucial for the induction of plas-
ticity2,3. Synaptic strength can be modulated by amines and
neuro-peptides that act on presynaptic terminals to alter the
amount of neurotransmitter released with each action
potential4. Again, this can result in short-term or long-term

modifications of synaptic strength5, depending on how
often the neuromodulator is applied. 

Although historically most theoretical studies of memory
storage in neural networks focused on changes in synaptic
strength as the mechanism for implementing stable changes
in network behaviour6, it is now evident that changes in the
intrinsic firing properties of individual neurons also have
important roles in altering circuit behaviour. Because some
ion channels have slow kinetics, a neuron’s response to a
synaptic input can reflect the neuron’s history of activation7.
There are numerous use- and modulator-dependent alter-
ations in channel number and distribution that can also
influence a neuron’s excitability and the way it responds to
synaptic inputs8,9. Changes in both synaptic strength and a
neuron’s intrinsic firing properties will alter circuit dynamics.
This is illustrated in Fig. 1 where the dynamic clamp10 is used
to construct a simple two-neuron circuit in which each neuron
is inhibited by the other11. The dynamic clamp is used to alter
the strength of the synapses, or the amount of one of the
membrane currents, IH (hyperpolarization-activated inward
current). Similar changes in the period of the circuit oscilla-
tion were produced by changes in both the synaptic and IH

conductances. This illustrates that it is impossible to a priori
predict the mechanism that produces a change in network
output, and that without theoretical methods, it is difficult to
understand how the dynamics of even such small circuits
depend on the properties of their underlying neurons and
synapses. Much important theoretical work has been done
on simplified and small circuits. But understanding how the
functions of large circuits in the vertebrate brain are altered
by plasticity demands an understanding of how to study
those large circuits and how to evaluate and understand
changes in their behaviour when synaptic and intrinsic
properties are altered. 

Structural complexity of neurons
Cajal12 showed that individual neurons have extraordinarily
complex anatomical forms that are characteristic of a given
neuronal cell type. The beauty of these structures makes the
implicit promise that they have meaning — a premise that
was supported by the influential theoretical work of Rall on
integration in passive cables13–15. Using Rall’s cable theory,
it is possible to predict the attenuation of a given synaptic
input as a function of its position in the (passive) dendritic
tree. The emergence of visually-guided patch–clamp record-
ing techniques has since made it possible to routinely
record from dendrites, and to perform multi-site dendritic
recordings in the same neuron. These techniques have
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revealed that dendrites contain many ion-channel types16–19, and
that they can produce Na� and Ca2� spikes, which propagate
towards the soma or away from it16,19. The presence of dendritic ion
channels may also modify the amplitude and shape of synaptic
inputs20–22, sometimes correcting for dendritic filtering, or have
more subtle effects like establishing coincidence detection23,24. The
emergence of efficient techniques to perform three-dimensional
morphological reconstructions of single neurons, and of sophist-
icated numerical tools for simulating these morphologies25–27 now
makes it relatively easy to develop semi-realistic computational
models of the complex dendritic structure of neurons26. As these
computational models become standard tools in the laboratory25,27,
they will increasingly aid our understanding of how changes in the
distribution and number of ion channels over the dendritic tree
change the firing properties of neurons and their responses to
synaptic inputs. 

Dendritic action potentials probably have a central role in synaptic
plasticity because they provide the strong depolarization necessary to
establish coincidence of presynaptic and postsynaptic activity, which
is required for inducing synaptic changes23,24. Interestingly, this coin-
cidence can be established by local dendritic spikes, without
participation of the soma, which raises the possibility that local
dendritic computations, or associations, can occur without partici-
pation of the cell body28. These problems are now being heavily inves-
tigated; experiments and models are needed to explore the possible
computations performed by the exquisite dendritic morphologies
initially described by Cajal12.

Regulation of intrinsic properties
A growing body of both theoretical and experimental work argues
that part of a neuron’s characteristic identity is a ‘set-point’ or target
activity level that regulates the neuron’s long-term mean activity
level8,9,29,30. In the intact and functioning brain, when neurons are
receiving and responding to synaptic inputs, homeostatic maint-
enance of a neuron’s activity level could be achieved by a global
regulation of the strength of all of its synapses (synaptic scaling)31, by
regulation of the excitability of the neuron itself 9,32, or by both. When
neurons, or the circuits in which they reside, are silenced for one or
more days, individual neurons respond by altering the densities of
one or more ion channels32. Long-term compensation for changes in
channel density or synaptic drive may require many of the same
mechanisms that are used to produce changes in synaptic strength8.
Moreover, because similar patterns of neuronal activity can be pro-
duced by various combinations of channel densities33, it is likely that
compensations for altered patterns of channel expression34 occur
frequently. Use-dependent alterations in conductance densities can
occur on timescales ranging from minutes to hours8,35, and so can
compensate and be coordinated with similar timescale changes in
synaptic efficacy. 

Defining circuits
Neurons are connected into circuits by excitatory, inhibitory and
electrical synapses that show a variety of amplitudes, time courses
and time-dependent changes in synaptic strength. How then do we
study the circuits underlying behaviour, and how do we determine
how changes in circuit output depend on altered synaptic and
intrinsic membrane properties? These problems have been
approached differently for small and large circuits. In all cases it has
become clear that computational approaches are needed to under-
stand how circuit output depends on the properties of its components
and their interactions. 

The premise underlying the study of small invertebrate circuits
was that it would be possible to: (1) characterize a behaviour; (2)
identify the neurons participating in the circuit that produce that
behaviour; (3) determine the connectivity among those neurons;
and (4) understand how those neurons and their connections give
rise to the behaviour. Towards this end, a number of invertebrate
preparations were developed in the 1960s and 1970s. One of the
hopes, perhaps naive, of these early workers was that similar circuit
designs would underlie similar behaviour. As the circuits underlying
a number of invertebrate central-pattern generators were
described36, it became clear that similar motor patterns could be
generated by different circuit architectures and underlying cellular
mechanisms. Nonetheless, it was possible to describe circuit
‘building blocks’ that are generally found to contribute to circuit
dynamics in specific ways37. For example, reciprocal inhibition
(Fig. 1) is found in many motor circuits, where it often ensures that
functional antagonists, such as extensor and flexor motor neurons,
fire out of phase. This example illustrates the importance of theory:
in the work on motor circuits, reciprocal inhibition is almost uni-
versally found to ensure alternation of firing between the
neurons38. Nonetheless, theoretical work showed that, depending
on the time course of the inhibition, reciprocal inhibition can also

insight review articles

790 NATURE | VOL 431 | 14 OCTOBER 2004 | www.nature.com/nature

Figure 1 Plasticity of circuit dynamics can arise from modifications of synaptic
strength or of intrinsic membrane currents. The dynamic clamp is a method that
allows the investigator to add a programmed conductance to a biological neuron. In
the example shown here, the dynamic clamp was used to create artificial
reciprocal inhibitory synapses between two biological neurons that are not
connected by biological synapses. Additionally, the dynamic clamp was used to
add an IH conductance to both neurons. Because the amount of the programmed
conductances is under investigator control, the effect of altering the conductance
on the network’s output can easily be determined.Two biological neurons are
synaptically coupled using the dynamic clamp. Modified from ref. 11.
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support in-phase firing39,40 — an insight that may be important in
cortical dynamics41. This highlights the dangers of extrapolating
the circuit consequences of even simple circuit configurations
without fully understanding how circuit dynamics depend on the
parameters of the underlying circuit elements. 

Lessons from small circuits
A great deal is now known about how the small circuits that generate
rhythmic behaviour in invertebrates are organized and about how
they function42,43. This is because it is relatively easy to determine
which neurons are ‘part of the circuit’ and to identify how they are
connected as these circuits have easily measurable and definable out-
puts. Sensory and motor circuits can easily be studied in relation to
sensory stimuli or to motor behaviour, but defining circuits becomes
more nebulous as we move further to the higher centres in the brain
where cognitive processes take place. That said, what has been learned
from studies of small circuits and their plasticity that generalizes to
larger and more complex circuits in higher animals and humans?
(1) Alterations in circuit function are often achieved by modifica-
tions of both intrinsic and synaptic properties. For example, in the
pyloric rhythm of the lobster stomatogastric ganglion, the neuro-
modulator dopamine influences the strength of many of the
inhibitory synapses within the network, and modifies IA (the tran-
sient outward K� current) and IH (ref. 44) in several network neurons.
In the classic work on the gill and siphon withdrawal reflex in Aplysia,
changes in both neuronal excitability and synaptic strength are
produced by serotonin and experience4. 
(2) Neuromodulation is the rule, not the exception. Individual neu-
rons and individual synapses are often modulated by several sub-
stances, and many neuromodulatory neurons release a mixture of
several cotransmitters43. As the neuromodulatory environment
changes, so will many properties of the cells and synapses that influ-
ence circuit function. As some circuit elements themselves contain
neuromodulators, when these neurons are active, their released
modulators will alter the circuit’s dynamics45. Consequently, as a cir-
cuit functions, this will itself alter the properties of its components.

In summary, the temporal dynamics and neuromodulatory
environment specify the properties of the circuit which produces a
specific output pattern. Changes in the neuromodulatory environ-
ment and changes in the circuit’s own activity can in turn produce
changes in output, and these changes contribute to behavioural
plasticity on numerous timescales. However, to measure the properties
of a single synapse, it is often necessary to silence the preparation so that
the synapse can be studied in isolation. Likewise, to study the proper-
ties of a single neuron, it is customary to isolate it from its synaptic
inputs. These two commonly implemented procedures mean that
almost all measurements of synapses and cell properties are made
under conditions that do not pertain during normal circuit operation.
Therefore, it is desirable to use techniques such as the dynamic clamp10

and other modelling techniques to determine how circuit behaviour is
likely to depend on the properties of the circuit elements. 

Vertebrate circuits
Many of the principles first established from work on small circuits in
invertebrates hold for the larger circuits in the vertebrate nervous
system, in particular in those regions of the mammalian nervous
system where the structure is relatively simple and the repertoire of
intrinsic excitability well characterized. This is the case for structures
such as the spinal cord, the inferior olive, the cerebellum, or the
thalamus. Taking the thalamus as an example, thalamic cell types,
their excitability properties and their connectivity are well defined46.
Thalamic neurons are endowed with complex intrinsic firing prop-
erties, such as rebound bursts, and they interact through many
synaptic receptor types to generate oscillatory behaviour47. Thalamic
circuits are also subject to neuromodulatory influences46. Acetyl-
choline, norepinephrine or serotonin affect intrinsic currents (Fig.
2a) and switch the circuit from an oscillatory mode to a ‘relay mode’

in which oscillations are abolished. When these neuromodulators are
present in activated states, they promote the relay of sensory infor-
mation by the thalamus: their diminished concentrations during
slow-wave sleep promote large-scale synchronized oscillations in the
entire thalamocortical system.

For larger-scale circuits, such as in cerebral cortex, there has been
no clear-cut identification of circuit behaviour. The cortical regions
most accessible for study are those that are closely connected to the
external world, such as primary sensory cortices or motor cortex. The
primary visual cortex is characterized by the functional specializ-
ation of populations of neurons that respond to selective features of
the visual scene. Cellular responses typically form functional maps
that are superimposed on the cortical surface. V1 cortical neurons
seem to obey well-defined rules of connectivity across layers, and
make synaptic inputs that are well characterized and typical for each
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Figure 2 Different types of modulation of neuronal responsiveness. a,
Neuromodulatory synapses that use transmitters, such as acetylcholine,
norepinephrine or serotonin, can change the intrinsic excitability of the neuron. In
the example shown here the neuromodulator acts to decrease a K� conductance
(GK), leading to an increase in excitability, and a switch from burst firing to tonic
firing. Modified from ref. 48. b, Synaptic noise may have drastic effects on cellular
responsiveness. This is illustrated here using a computational model of pyramidal
neurons (upper left) in which synaptic noise is simulated by the random release of
thousands of excitatory and inhibitory synapses distributed in soma and dendrites. A
subthreshold input in quiescent conditions causes a well-detected response (upper
right) in the presence of synaptic noise (red line; 40 trials shown). The response
curve of the neuron is shown (lower panel) in quiescent conditions (red), with
synaptic noise (green) and with an equivalent static conductance (blue). Synaptic
noise changes the gain of neurons (slope of the response curve) and enhances the
responsiveness to low-amplitude inputs (*). Modified from ref. 55.
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layer. These data suggest a well-constrained wiring diagram across
layers, and has motivated the concept of ‘cortical column’49–52.
According to this concept, there is a basic canonical pattern of cortical
connectivity. In this scheme all areas of neocortex would perform
similar computational operations with their inputs53. However,
even for the primary sensory cortices, there is no clear paradigm in
which the distributed activity of neurons, their properties and con-
nectivity have been characterized in sufficient detail to allow us to
relate structure and function directly (as is the case for oscillations
in small invertebrate preparations or in the thalamus). Nevertheless,
using computational models, one can predict generic computa-
tions that cortical circuits could perform, a few of which are men-
tioned below.

One of the most striking differences between cerebral cortex and
invertebrate networks is that cortical neurons in vivo show a consid-
erable degree of apparent randomness in their activity. The membrane
potential of cortical neurons shows fluctuating activity, mostly of
synaptic origin, which is consistent with the extraordinarily dense
connectivity in cortex54. This ‘synaptic noise’ sets the membrane in a
‘high-conductance state’, which may affect the integrative properties
of cortical neurons55. Because studying dendritic integration in vivo
is technically difficult, computational models are needed to recon-
struct in-vivo-like conditions and to evaluate the impact of this
synaptic noise on integrative properties. Such models predict that
high-conductance states confer several computational advantages to
cortical neurons55. First, synaptic noise may boost the response to
synaptic inputs56 (Fig. 2b), in a similar way to stochastic resonance
phenomena57. This property was confirmed experimentally using
dynamic clamp58,59. Second, synaptic noise may reduce the dependence
of the efficacy of synaptic inputs on their location in dendrites60,
resulting in a more ‘democratic’ dendritic tree in which each synapse
exerts a similar vote in firing an action potential in the axon. This is,
however, only valid for isolated inputs: the integration of multiple
inputs may reveal the existence of ‘dendritic subunits’, as has been
suggested by experiments61 and models62,63. Third, synaptic noise
sharpens temporal resolution, allowing cortical neurons to detect
coincidences separated by milliseconds,and therefore to resolve pre-
cisely timed inputs55,64. Finally, an obvious consequence of synaptic
noise is that cortical neurons show a high trial-to-trial variability in
their responses (Fig. 2b) — a feature often seen in vivo65. Conse-
quently, the only sensible measures that can be used to characterize
the activity of a cortical neuron in vivo are probabilities. Indeed,
probabilities have been used for decades to characterize responses
recorded in cortex in vivo, under the form of ‘post-stimulus time
histograms’66. There is also a whole family of computational models
of cortical coding based on probabilistic models67, some of which are
mentioned below.

Cortical computations 
One of the most influential theories of neural computation was pro-
posed by Hopfield68, who showed that memories can be stored as
stationary states (point attractors) in networks of simplified neurons.
One advantage of this model is that it is mathematically similar to
well-studied physical systems, and memory storage can be under-
stood from the formation of minima in the energy landscape of the
system. In these models, a hebbian-type learning rule (Box 1) can be
used for modifying synaptic weights, and memories are distributed
among the synaptic weights. However, the drawback of Hopfield’s
theory is that there are no point-attractors in real networks of neurons,
so its direct heuristic value in explaining cortical computations is
limited. Nevertheless, this theory had the considerable merit of
motivating generations of researchers to study computational models
in neuroscience using the tools of mathematics and physics. 

One generic computation of cortical networks may be to detect
and extract correlations. Sensory systems must make sense of complex
flows of information, in which exactly the same pattern is unlikely to
happen twice. According to Barlow53, the main task of our sensory

system is to detect (and model) correlations; it acts like a detective
and notes, in the form of neuron firing, ‘suspicious coincidences’ in
complex incoming information. It is these coincidences or correlations
that may form the ‘objects’ or ‘features’ of our symbolic represent-
ations. After being detected by primary sensory areas, such correl-
ations can be used for binding elementary features into more
elaborate percepts. This binding problem has been intensely debated
(for a recent review see ref. 69), and is based on the concept of neuronal
assemblies, which are usually defined as a group of neurons that
transiently undergo synchronous firing70–72. This transient synchrony
could form the basis of a common input to later stages of integration,
and so promote responses that are specific to a given ensemble of
features71. Thus, correlated firing serves here to form assemblies of
neurons that are specific to a given feature. Cortical neurons should
therefore be very efficient at detecting correlations72, as is indicated
by computational models73. 

Another view, not necessarily contradictory, is that the cortex
attempts to remove correlations. Probabilistic models have been
proposed based on the observation that the cortex must infer prop-
erties from a highly variable and uncertain environment, and an
efficient way to do so is to compute probabilities. One of the earliest
probabilistic models proposed that the cortex infers probabilities
based on ‘decorrelation’ or ‘redundancy-reduction’ operations53,74,75.
The most salient functional consequence of this is that these proba-
bilites could be used to build efficient novelty detectors — a feature
essential for survival. This redundancy-reduction function is also
supported by the fact that the sensory system of mammals receives
signals from millions of peripheral receptors sampling different
features of the external world.Because many receptors convey similar
information, the sensory system may need to reduce this redun-
dancy to focus on the interesting aspects of the scene. This paradigm
is particularly relevant to the retina, where the number of output
fibres are two orders of magnitude less than the number of photo-
receptors. Indeed, experiments provide evidence for redundancy
reduction in this system76. 

The same ideas have been proposed for central structures such as
the cortex. Here, an efficient way to reduce redundancy is to use synaptic
interactions that obey the anti-hebbian rule (see Box 1). This type of
plasticity has been identified in synapses from parallel fibres on
Purkinje cells in cerebellum77, and in excitatory synapses between
parallel fibres and medium ganglionic cells in the electrosensory lobe
in electric fish78. Networks with hebbian feedforward synapses
combined with anti-hebbian recurrent inhibitory synapses were
shown to efficiently decorrelate inputs, and they perform well in
various un-supervised learning paradigms79. Interestingly, several
mechanisms present in cortical circuits can also have similar roles,
such as spike frequency adaptation80 or short-term synaptic
depression81. Adaptation or plasticity processes remove correlations
most efficiently over timescales comparable to their own characteristic
relaxation time constant80. This suggests that a broad range of
dynamic processes is needed to cover the relevant timescales over
which signals must be decorrelated. This is consistent with the fact
that several mechanisms, possibly present in neocortex, such as
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Hebbian rule
A given link will be strengthened (either by an increase of excitatory
gain, or by a decrease of inhibitory gain) if the two units that it
connects are active simultaneously.

Anti-hebbian rule
A given link will be weakened (either by a reduction of excitatory gain,
or by an increase of inhibitory gain) if the two units that it connects are
active simultaneously.

Box 1 
Definition of hebbian and anti-hebbian rules (from ref. 100)
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intrinsic adaptation, short-term synaptic depression, anti-hebbian
plasticity, or even long-term changes of intrinsic properties, might
have equivalent functional roles but complement each other at
different timescales.

However, it is not clear that these ideas apply so straightforwardly
to cortex, for several reasons. First, anti-hebbian plasticity has not yet
been demonstrated in cortical recurrent connections, although it
may be that plasticity of inhibitory connections has a similar func-
tional role (see below). Second, in contrast to the retina, the number
of cortical neurons, as well as the number of efferent axons, largely
exceeds the number of ascending ‘input’ fibres82. There is, therefore,
no structural constraint, as there is in the retina, which would call for
redundancy reduction in cortex. Morphological and physiological
data are more consistent with ‘sparse codes’ in which many units are
used for coding, but extremely few units are active simultane-
ously79,83–85. Third, other mechanisms also present in neocortex, such
as hebbian plasticity86,87 or short-term synaptic facilitation88, have the
opposite role of enhancing pre-existing correlations89 (Fig. 3). Thus,
the cortex possesses mechanisms that are compatible with either
reducing or enhancing correlations, and it is unclear whether these
mechanisms coexist or whether they are expressed differentially
according to context or cortical area. Neocortical circuits dominated
by anti-hebbian and depressing mechanisms may serve as novelty
detectors by decorrelating afferent inputs and therefore function in a
‘search mode’. This mode would be a priori compatible with primary
sensory areas. However, other cortical circuits, dominated by hebbian
and facilitating mechanisms, might function in a ‘convergence
mode’, compatible with the type of operation performed in association
or motor areas. It is not clear, however, whether these modes are
separate or whether they coexist everywhere in cortex. In the latter
case, any neocortical area would be equipped to function in both
modes simultaneously or to switch between these modes depending
on activity levels or neuromodulation. 

Rather than attempting to explain cortical function on the basis of
generic cellular and synaptic properties or stereotyped circuits, the
diversity of cortical neurons and their highly complex synaptic con-
nectivity can be used to propose a different computational paradigm.
Cortical neurons show a wide diversity of intrinsic properties90. Like-
wise, synaptic dynamics are richly variable and show properties that
range from those of facilitating to depressing synapses88. Indeed, the
essential feature of cortical anatomy may be that there is no canonical
pattern of connectivity, consistent with the considerable apparent
random component of cortical connectivity templates54,91. Taking
these observations together, the cortex may be seen as a circuit that
maximizes its own complexity, both at the single-cell level and at the
level of its connectivity. In support of this view, computational models
are now emerging in which the goal is to take advantage of the special
information processing-capabilities, and memory, of such a complex
system. Such large-scale networks can transform temporal codes into
spatial codes by self-organization92, and computing frameworks have
been proposed which exploit the capacity of such complex networks
to cope with complex input streams93 (Fig. 4). In these examples,
information is stored in the ongoing activity of the network, in
addition to its synaptic weights. A given output can be provided at any
time within this ongoing activity, rather than requiring the system to
converge towards predefined attractors. The concept of the cortex as a
‘large network of identical units’ should be replaced with the idea that
the cortex consists of ‘large networks of diverse elements’, where cellular
and synaptic diversity are important for computation. 

Towards understanding the many facets of plasticity
Several issues must be considered when linking plasticity mech-
anisms with neuronal computations. First, the rules that govern the
plasticity at many inhibitory synapses are unknown. One possibility
is that the inhibitory feedback from local interneurons obeys anti-
hebbian plasticity, which would be consistent with the predictions of
models of redundancy reduction. In contrast to the very large number

of studies modelling memory storage in networks using changes in
excitatory synapses, few models implement learning rules for
inhibitory synapses. Nonetheless, recent work showing that the
balance of inhibition and excitation can be important for gain mod-
ulation56,58, and in the genesis of functional selectivity94, illustrates
the importance of determining the rules that control the strength of
inhibitory synapses. 

Second, plasticity mechanisms are likely to depend on behav-
ioural state, such as deep sleep or aroused states. Most experimental
studies of the mechanisms underlying synaptic plasticity have been
done in slices or in anesthetized preparations. However, these prep-
arations differ from aroused and attentive animals, during which
cortical networks are in high-conductance states55, maintained by the
release of a number of neuromodulators, such as acetylcholine and
norepinephrine95. These substances may considerably affect the
plasticity mechanisms of cortical circuits96,97. It is, therefore, imperative
to verify that the plasticity mechanisms found in slices apply to the
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Figure 3 The type of transformations realized by synaptic plasticity. a, Facilitating
synapses enhance existing correlations. When an image, such as the natural scene
shown here, is processed by a neural network with facilitating synapses,
correlations are reinforced, or equivalently, the spatial power spectrum is more
structured (see graph). The result is an output image which has enhanced contrast.
Enhancement of correlations can also be obtained using hebbian synaptic plasticity.
b, Similar model with depressing synapses. Here, the transformation results from
reducing correlations, or equivalently, reducing redundancy. This redundancy
reduction corresponds to whitening the spatial spectrum of the image (see graph).
The reduction of existing correlations leads to an output image in which many details
are lost. A decorrelation can also be obtained using anti-hebbian synapses or
adaptation mechanisms.
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activated brain. The relative ease of inducing and consolidating
plasticity in slices may also indicate that these mechanisms are best
expressed during states of low release of neuromodulators, such as
during slow-wave sleep. This would corroborate recent evidence that
slow-wave sleep is actively implicated in the consolidation of mem-
ory traces98, and models of learning that require a ‘sleep’ phase99.
Consistent with this idea, the widely synchronized oscillations
characteristic of slow-wave sleep are likely to constitute an optimal
signal for inducing plastic changes in the network47. Relating plasticity
mechanisms to the state of the network constitutes an essential piece
of information that should be targeted by appropriate experiments
and theories.

Outlook
How far have we come in understanding how neuronal circuits
produce behaviour? Certainly, considerable progress has been made
for some relatively simple, small circuits4,42,43,45. These small circuits
provide ideal platforms for understanding which circuit parameters
are genetically specified, and how circuit properties are modified by
experience. A more daunting challenge is to link circuitry with
behaviour for more complex networks, such as cerebral cortex,
because the computational operations in cortex are still largely
unknown. It is clear that cortical neurons possess complex intrinsic
properties and that their rich and diverse synaptic connections are
subject to plasticity, modulation and noise over many timescales.
Many of the concepts arising from studies of small networks may
extrapolate directly to the cortex, and our present inability to under-
stand cortical function could be just a matter of complexity arising
from its large size and multiple cell types. If so, we need to develop

appropriate conceptual, physiological and computational tools to
handle this complexity. Alternatively, we may be missing a fundamental
‘building block’ that is required to understand cortical function. In
either case, there is presently no coherent theory of cortical computa-
tions, and constructing one will be possible only through a tight com-
bination of experimental and theoretical approaches. ■■
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