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PURPOSE 
 
 The purpose of this experiment is to observe an organism undergoing a 
homeostatic regulation in osmolarity with environments of varying salinity. In addition, 
one will examine if an organism can regulate osmolarity and volume after losing a 
substantial amount of hemolymph. 
 
PREPARATION 
 
The crayfish 
 
INTRODUCTION 
 
 In order for cells to survive they must be able to maintain the proper osmolarity 
and balance of ions such as, potassium, sodium, and chloride  within their intracellular 
and extra cellular environments. The freshwater ancestry of vertebrates is striking 
relation to the relative concentration of ions in intra-and extra-cellular environments. 
Vertebrates have about one-third the concentration extracellular  ions of seawater 
(Randall et al. 2002).  If the osmolarity and/or concentration of  key ions is not regulated 
within the tolerated range for animals the weakened metabolism, brain damage, and 
even death can occur. The osmolarity and ion concentrations is heavily  influenced on 
the hydration and water balance of the animal. 

The excretory system plays a major role in osmoregulation. In humans rapid 
excretion starts in the nephrons of the kidneys. Here blood plasma is filtered and 
regulation of the ultrafiltrate is controlled by reabsorbed or secretion of ions and water 
back into the body. Humans are osmoregulators as they internally monitor and regulate 
the blood osmolarity.  

The organism that will be studied in this laboratory exercise, the crayfish, will be 
examined for its ability to survive and homeostatic regulate osmolarity with various 
insults on its osmoregulatory abilities. The crayfish has an open circulatory system and 
hemolymph is the fluid that is pumped through the heart and into the open body cavity. 
The hemolymph is in some regards analogous to blood in the vertebrates. 

 
An important adaptation that crayfish have is the ability to osmoregulate from the 

time they hatch and during their development (review in Charmantier 1998). The 
crayfish has several adaptive mechanisms by which it osmoregulates. One key 
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mechanisms is the ability to intake water through the anus. This intake of water is 
essential in osmoregulation and also essential for the organism to molt its exoskeleton 
(Vogt, 2002; Muramoto, 1981). Another key adaptive mechanisms is the ability to keep 
out excess ions from its internal environment because of the low permeability of its 
integument. Additionally, through its excretory antenneal glands it produces dilute urine 
(Lienemann 1938; Krogh 1939; Gross 1957; Riegel and Kirschner 1960; Shaw 1960; 
Lockwood 1962; Potts and Parry 1964; Kerley and Pritchard 1967; Riegel 1970; 
Bielawski 1971;Fisher 1972; Mills and Geddes 1980; Dunel-Erb et al. 1982,1997; Henry 
and Wheatly 1988; Péqueux 1995; Wheatly and Gannon 1995; Barradas et al. 1999).  

 
Fluid retention is commonly measured by use of body weight in clinical situations 

for humans (Fagan  et al., 2008; Wada et al., 2008) and animals (Boscan et al., 2010). 
Likewise body weight can be used experimentally to determine fluid loss and gain as a 
function in an animal’s ability to volume and osmoregulate. Approximately 30% of the 
weight  for a blue crab or a lobster is hemolymph (Gleeson and Zubkoff,  1977; Guirguis 
and Wilkens, 1995). We assume this percentage also holds to be approximately true for 
crayfish in these experiments.  By extracting a significant amount of the hemolymph and 
placing the crayfish back into the water, one can determine the amount of time it takes 
the crayfish to replace the lost hemolymph. In addition, we will examine the conductivity 
of the various environments in which the crayfish are exposed. If feasible, we will also 
test the conductivity of the hemolymph from some of the crayfish. 

 
Conductivity is a measure a  material's ability to conduct an electric current and 

can be used, for this experiment,  as an indirect measure of  ionic strength of a solution. 
Resistance, which is an electrical measurement expressed in ohms, is the opposite of 
conductivity. Therefore  conductivity  can be expressed as 1/ ohms.  The  conductivity 
measure is related to ionic strength. The measure does not indicate what specific ions 
are present. However, in these experiments we are using sea water that is diluted and 
we can use conductivity as a relative measure of the amount of dilution.  Also, the goal 
here is to measure the hemolymph from crayfish after volume defect and exposure to 
various osmotic  environments. As a side note, a change in osmolarity due to non 
charged substances will not be detectable by this measure in conductivity. In the future 
we hope to have a vapor pressure osmometer for direct measures of hemolymph 
osmolarity. 

 
  

PROCEDURES: 

1. Choose two crayfish from the ice container and dry it off with a paper towel. 
2. Take the initial weight of the crayfish.  

 

HEMOLYMPH: 

1. Hold the first crayfish behind its claws 
2. Position your hand so the tail is spread out. Or have your partner hold the tail 

down. 
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3. Insert the needle between the thorax (abdomen) and the tail. Be sure not to go 
towards the middle because this is where the central nerve cord is located.  

4. Draw about 3 mL of hemolymph for a large size crayfish (7-10 grams in body 
weight). Then quickly dab the insertion spot with a paper towel so the blood will 
clot. 

5. Weigh the crayfish. 
6. Place the crayfish into the container containing distilled water. 
7. Wait 30 minutes 
8. Dry the crayfish and take the final weight.  

 

Placement in Different Containers: 

1. Place the second crayfish (that was previously weighed) into the seawater. 
2. Wait 30 minutes 
3. Dry the crayfish and take the final weight. 

 

QUESTIONS TO ADDRESS: 

Explain why the kangaroo rat and other desert animals do not have to drink much water. 
Where does it gain most of its water from? 

Considering surface to volume ratio, would a larger or smaller mammal loss water more 
rapidly? 

Where is ADH (antidiuretic hormone), also known as vasopressin, produced?  

 

Label the parts of the nephron: Bowman’s Capsule, distal convoluted tubule, proximal 
convoluted tubule, efferent arteriole, afferent arteriole, collecting duct, ascending loop of 
Henle, descending loop of Henle. 

Describe the function of each part of the nephron: 
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