HUMAN RENAL PHYSIOLOGY LAB

Assignments:

Due before lab

Quiz: Urinary Terms page 2 of this protocol.

During the lab period:

Complete the worksheets on pages 5 & 6. Answer the questions completely and thoroughly.

Objectives:

Understand what a urinalysis is and what positive values for various substances present in the urine may indicate.

Be able to explain the results from the experiments dealing with fluid volume and osmolarity.

Calculate specific gravity and chloride content in a urine sample and understand what they indicate.

Be able to predict and explain whether ADH is present in the various experimental groups and why.
Explain what each of the following terms indicates if present in the urine.

1. WBC/leukocytes

2. Acidic pH

 Alkaline pH

3. Protein/Albumin

4. Glucose

5. Ketone bodies

6. Urobilinogen

7. Bilirubin

8. Blood/hemoglobin

9. Urea

10. Nitrites

11. Specific Gravity of Urine
Kidney Function: Regulation of extracellular volume and osmolarity

Prior to Lab:

AVOID VERY SALTY FOODS (water retaining) AND BEVERAGES CONTAINING CAFFEINE (diuretic).

1. For the 2 hours proceeding laboratory, note the type and quantity of food and beverages you consumed.
 a.
 b.
 c.
 d.

2. Record the time of bladder emptying before coming to lab.
 time:

During Lab:

Step 1.
Void urine in specimen cup and return sample to lab for testing. This first sample is your Control Sample.

Record time and volume on kidney function results page.

Step 2.
Your TA will divide you into groups

- Group 1. 1 liter of drinking water (Water group)- hypotonic solution (4 glasses or 2 16 Oz cups)
- Group 2. Eat potato chips or drink tomato juice (Salt and water group)
 Need to have 3 - 4 glasses of tomato juice or 2+ plates of potato chips with water -4 glasses or 2 16 Oz cups)
- Group 3. Do not eat or drink anything (Control group)

***** IF YOU HAVE HIGH BLOOD PRESSURE DO NOT CHOOSE THE HIGH SALT GROUP

***** IF YOU HAVE HIGH BLOOD PRESSURE DO NOT CHOOSE THE HIGH SALT GROUP
Step 3.
Do a urinalysis on your Control Sample.

Check physical characteristics and use a Chemstrip - record your results on Chemstrip results page.

Also do a specific gravity on your urine and test for chloride content. Record these values on Kidney function results page.

Directions:
1. Specific gravity – using the Refractometer:
 - Raise the plexiglass cover and place one drop of urine on the blue prism. Carefully lower the cover.
 - While looking through the blue dot in the eyepiece, press the button on top of the refractometer to turn on the light. Read the scale on the far right.
 - The reading is taken at the interface of the dark and light blue fields. (Distilled water is 1.000)

2. Chloride content - place test tube in rack. Add:
 - 0.5 ml of urine using transpet.
 - One drop of 20% potassium chromate to urine and shake. The solution will be yellow.
 - Add 2.9% silver nitrate one drop at a time, gently shaking after each drop. **Count the number of drops required to form a brick-red precipitate.**
 - Remember to gently shake the solution because you will see a transitory precipitate before the end point of your titration is reached. Each drop equals 61 mg of Cl⁻ per 100 ml. Thus, multiply number of drops by 0.61 to calculate the concentration of Cl⁻ in mg/ml. Record on chart.
 - The metal chromium should NOT go down the drain. Please empty test tube into marked waste container before rinsing at sink.

Step 4.
Refer top step 2. follow your assigned group experiment. Urine is voided every 30 minutes. And collected for measurement (volume) and for analysis. SAVE THE URINE in the specimen cups.

For each urine sample record volume, specific gravity and chloride content on kidney function results chart.
<table>
<thead>
<tr>
<th>Test</th>
<th>Normal values</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBCs/leukocytes</td>
<td>negative</td>
<td></td>
</tr>
<tr>
<td>Nitrites</td>
<td>negative</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>4.5 - 8.0</td>
<td></td>
</tr>
<tr>
<td>Protein/Albumin</td>
<td>negative</td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>negative</td>
<td></td>
</tr>
<tr>
<td>Ketone bodies</td>
<td>negative</td>
<td></td>
</tr>
<tr>
<td>Urobilinogen</td>
<td>negative</td>
<td></td>
</tr>
<tr>
<td>Bilirubin</td>
<td>negative</td>
<td></td>
</tr>
<tr>
<td>Blood/hemoglobin</td>
<td>negative</td>
<td></td>
</tr>
</tbody>
</table>

CHEMSTRIP RESULTS

KIDNEY FUNCTION RESULTS

Treatment Group _____________________

<table>
<thead>
<tr>
<th></th>
<th>U Control</th>
<th>U1</th>
<th>U2</th>
<th>U3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Control</td>
<td>Time (min):</td>
<td>Time (min):</td>
<td>Time (min):</td>
</tr>
<tr>
<td></td>
<td>Time (min):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume (ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Gravity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl - Content (mg/ml) (U cl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Urine Flow Rate (v) (ml/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**UE of Cl (V x U cl) (mg/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* **Urine Flow Rate (v):** Divide the ml of urine by the number of minutes since the last urine collection. Compare results with others in same treatment group. Are your results in agreement with others? If not, what might be causing the differences?

UE of Cl: Multiply Urine chloride content by the urine flow rate (v x UCL).
Explain what happens to urine flow rate, specific gravity and urinary excretion of chloride in each group (put \(\lt \) or \(\gt \)). Explain the physiological mechanisms involved (Ex: ADH stimulated or inhibited because ...) in the results from each group:

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
<th>Urine Flow Rate (v)</th>
<th>Specific Gravity</th>
<th>Chloride Content ((\mu)L)</th>
<th>Urinary Excretion of Chloride ((U_{EC})L)</th>
<th>ADH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Distilled water- 1 L (Hypotonic)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Salt and Water Group (Potato chips and water) – (Isotonic)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. No water – control – (hypertonic)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Urinary System – Anatomy Review

1. Name the organs in the urinary system:
 1. ____________________
 2. ____________________
 3. ____________________
 4. ____________________

2. The kidneys are ____________________ (behind the peritoneum) lying against the dorsal body wall in the upper abdomen.

3. The ________________ gland sits atop the kidneys. Blood vessels enter and leave the kidney at the renal ____________.

4. The functional units of the kidney are the ________________. They are called ________________ ______________ if they are located mainly in the cortex. They are called ________________ ______________ if they are located in both the cortex and medulla.

5. Blood enters the kidney through the ____________ artery. The artery branches into smaller and smaller arteries and arterioles. Complete the sequence below:

 ________________ arteriole → ________________ capillaries →
 ________________ arteriole → ________________ capillaries and vasa recta
6. Complete the sequence below showing all parts of the nephron:
Bowman’s Capsule → ____________ convoluted tubule → ________________
(both descending and ascending limb→
________________ convoluted tubule→
________________ (both cortical and medullary sections)

7. The renal corpuscle consists of two parts: ________________ capillaries and
_____________________________ A portion of the plasma is filtered into the
capsular space due to the hydrostatic pressure of the blood.

8. The filtration membrane consists of:
_______________ capillary endothelium
porous ______________ membrane and
the ________________ (which contain filtration slits).
This filtration membrane permits (large or small) molecules to be filtered.

9. Proximal tubule: The simple cuboidal cells of the proximal tubule are called
_______________ cells because they contain numerous microvilli. The
microvilli increase the ______________ for reabsorption.
The proximal tubule cells are highly permeable to water and many solutes. The
_______________ permit the movement of water between the cells.

10. Loop of Henle: The thin descending limb of the loop of Henle is highly permeable
to ______________ but not to ______________.
The thin ascending limb of the loop of Henle is highly permeable to
______________ but not to ______________.
11. The thick ascending limb of the loop of Henle runs back between the afferent and efferent arterioles as they enter and leave Bowman’s capsule. The juxtaglomerular apparatus consists of the _______________ cells of the tubule and the _______________ (modified smooth muscle) cells of the afferent arteriole. _______________ cells → serve as baroreceptors sensitive to blood pressure within the arteriole. _______________ cells → monitor and respond to changes in the osmolarity (or electrolyte composition) of the filtrate in the tubule.

12. After the juxtaglomerular apparatus, the tubule becomes the distal tubule. The late distal tubule and cortical collecting duct contain two functional types of cells: _______________ cells → hormones regulate their permeability to water and solutes. _______________ cells → these cells secrete hydrogen ions for acid/base regulation.

13. The medullary collecting duct is composed of _______________ cells. Their permeability to ______ and __________ is hormonally regulated.

This lab procedure is a modified version of the one used at Bluegrass Community and Technical College (Lexington, KY) in their Anatomy and Physiology course. Compliments of Dr. Shirley Whitescarver (2010).