Responses to Hormones in Invertebrates: Student Laboratory Exercises

by

Rachel Holsinger and Robin L. Cooper

1 Sayre School, 194 North Limestone Street, Lexington, KY 40507
2 Department of Biology, University of KY, Lexington, KY 40506-0225

PURPOSE

The purpose of these experiments is to observe organisms undergoing behavioral and physiological changes due to altered hormonal status. In these experiments one will also learn ways to quantify and index behavioral repertoires for comparative purposes in order to address potential mechanistic actions to explain the behavioral changes.

PREPARATIONS

Crayfish and Drosophila melanogaster

INTRODUCTION

Hormones are chemical signals that are released from cells and transported within the organism to target cells where they can exert their action. Mammals have a closed circulatory system and hormones are transported in the blood to stimulate specific cells. In contrast, insects and crustaceans have an open circulatory system so called because the hemolymph is contained in a cavity called a hemocoel instead of vessels. Hemolymph, a fluid equivalent to blood, directly bathes tissue such as muscles and parts of the nervous system and contains blood cells, lymph, and interstitial fluid. Hormones travel to target tissue in the hemolymph just as they would in blood of a mammal.

In organisms, homeostasis is maintained in many ways by hormones. The nervous system and endocrine system are closely linked; hormones influence development of neurons and conversely the nervous system affects hormone secretion. For example, during stressful situations, nerves signal for an increase in secretion of certain hormones and a decrease in the secretion of others. Hormones can also affect the development of an organism. Specifically in insects and crustaceans, the hormones that regulate the process of developmental changes during metamorphosis are known as ecdysteroids. The key hormone is 20-hydroxyecdysone (20-HE), currently regarded as the active form of ecdysone (Riddford 1985; Steel and Davey 1985). The ecdysteroids are important in causing the behavioral and physical changes that occur during the developmental stages of each molt (Truman 1996; Baehrecke 1996; Cayre et al. 2000; Farkaš and Sutáková, 1998, 1999; Henrich et al. 1993, 1999). Even the neurons and muscle can be restructured during metamorphosis and ecdysteroids are the key player in this process.
There are two major classes of hormones—protein hormones and steroid hormones—that have different cell signaling mechanisms. Protein hormones are large, polar molecules and cannot pass across the cell membrane; therefore, they cause a fast response in a cell by binding to membrane receptors to activate enzymes to carry out the cell’s response to the signal. In contrast, steroid hormones are lipid soluble and can move across the cell membrane; therefore, they bind to receptors in the cytoplasm or nucleus to cause gene transcription of necessary enzymes. In some cases, steroid hormones can act like protein hormones and cause a fast non-genomic cell response when they bind to a receptor protein on the cell membrane. The majority of currently described actions of ecdysteroids are genome based (Segraves, 1994; Levine and Weeks, 1996; Thummel, 1996). There are well-documented genomic effects of steroids such as estradiol, aldosterone, vitamin D3, and cortisol. There is also a substantial accumulating literature documenting non-genomic effects, especially of membrane-bound steroid receptors that cause relatively rapid changes in cellular processes (Betten, 1999; Hanaya et al., 1997; Watson et al., 1999; Schmidt et al., 1998; Chang et al., 1999; Christ et al., 1999), processes such as activation of the secondary messengers, IP3, cGMP, and cAMP, to amplify strength of signals and increased release of internal calcium (Wehling 1995; Thummel 1996).

Numerous studies have been conducted in *Drosophila* and the tobacco hornworm *Manduca sexta* (Jacobs and Weeks 1990; Levine and Weeks 1996; Levine et al. 1986; Truman 1996; Truman and Reiss 1995). Behavior of the *Drosophila* larva changes both immediately before and after a molt, but the possible mechanisms modulating behavior are poorly understood. In late 3rd instar, the animals slow down and begin to form a pupa. Reduced synaptic strength may contribute to their lower locomotory activity during this stage and could possibly be related to increased concentration of ecdysone (Ruffner, et al., 1999), since the highest levels of ecdysteroid have been measured during the 3rd instar larva to prepupal formation and in the pupa stage preceding the adult stage (White et al., 1997).

The possible change synaptic physiology has not been studied; however, we do know that application of 20-HE will reduced synaptic transmission in *Drosophila* larvae (Ruffner, et al., 1999) and has an effect on overall development (Li and Cooper, 2001). At a dose of 10 μM 20-HE, the excitatory junction potentials are reduced in amplitude within minutes. This may be induced by a non-genomic action of the steroid hormone. The rapid effects of this hormone may account in part for the period of inactivity associated with molting among both insects and crustaceans. It has been shown that motor neurons in *Manduca sexta* undergo various responses such as apoptosis, regression, and regrowth during various stages of development when levels of ecdysteroids are also high (Truman and Reiss, 1995). Thus it has been observed that steroid hormones such as ecdysterioids have both physiological and anatomic effects on neurons (Jacobs and Weeks, 1990; Levine and Weeks, 1996; Thummel, 1996).

Crayfish behavior is commonly studied in the laboratory in order to control the multitude of variables within natural field settings. However, there are variables that impact behavioral studies of crayfish when the animals are caught in the wild and brought into the laboratory setting. For example, life history, social ranking, and past injuries can be difficult to assess in wild caught crayfish. Within the intact crayfish a few hormones (neurotransmitters) have been studied to address regulation of behaviors. By
pooling information in various studies of crustaceans some headway is being made. For example, Sneddon et al., (2000) noted that the neurotransmitters octopamine, dopamine and serotonin (5-HT) all increase in the hemolymph when a crab is exercised. Melatonin is known to have a cyclic pattern in many crustaceans but it varies depending on the species and their circadian/rhythmic patterns (Tilden et al., 2003a,b). The effect of neuromodulators on complex circuits is being tackled in crustaceans (Grashow et al., 2009; Marder and Eisen, 1984; Marder and Thirumalai, 2002; Pagé and Cooper, 2004; Shuranova et al., 2006; Strawn et al., 2000; Swensen and Marder, 2001) as well as in Drosophila (Dasari and Cooper, 2004; Dasari et al., 2009).

Molting has been extensively studied in crustaceans and is well correlated to hormone peaks of compounds associated with the ecdysone cascade (Cooper and Ruffner, 1998, Hopkins, 1992). Molting is a very susceptible time for organisms; therefore, particular behaviors are present when the molting process occurs in order for the animal to avoid predation. Crustaceans become inactive during the premolt periods, as do insects. It was demonstrated that ecdysteroids can reduce synaptic transmission at an intermolt stage of a crustacean tonic neuromuscular junction by acting at a presynaptic site (Cooper and Ruffner, 1998). As seen with Drosophila, the steroid molting hormone, 20-HE, appears to act through a rapid, non-genomic mechanism that decreases the probability of synaptic vesicle release and reduces the number of release sites. The behavior of crustaceans during the molt cycle, when 20-HE is high, may be explained by the reduction in synaptic transmission and alteration of sensory neurons (Bing et al., 1998; Cooper et al., 2003; Cooper and Ruffner, 1998). Interestingly, the effects of 20-HE can be reversed with the application of the crustacean neuromodulator serotonin (5-HT) that enhances synaptic transmission and neuronal excitability (Cooper et al., 2003; Cooper and Ruffner, 1998).

Crayfish are good for studying a threat response, such as from a predator, since crayfish behaviors in social groups have been studied and the behavioral repertories cataloged (Bovbjerg 1953, Rubenstein and Hazlett 1974, Pavey and Fielder 1996), Stein and Magnuson 1976). Behaviors in the repertorie include chelipeds spread out to ward off a potential predator or a tail flip response, either forward are backward, to rapidly escape a predator. It is suggested that such behaviors are regulated by neuromodulators, such as 5-HT (Huber and Delago 1998; Livingston et al., 1980; Yeh et al. 1996); however, the general notion of 5-HT’s action for aggressive behavior is debated (Listerman et al., 2000; Strawn et al., 2000; Tabor and Cooper, 2002).

Surprisingly, there are few published studies of non-genomic actions of molt-related steroid hormones among crustaceans and insects that have addressed alterations in synaptic physiology (Cooper and Ruffner, 1998; Ruffner et al., 1999; Li et al., 2001). Since these model neurobiology systems have played, and continue to play, important roles in answering questions of regulation of chemical synaptic transmission, continued investigations of hormone action will be fruitful in providing answers to the mechanistic actions of insect/crustacean steroids on various tissues.

Likewise, other environmental and internal factors influence behaviors such as a temperature, satiety, reproductive status, and diet. These and other factors can have a multitude of effects on various hormones, neurotransmitters and peptides, and various substances may counteract actions of others or even increase the effect of particular compounds (Djokaj et al., 2001). Thus, it may seem to be a hopeless myriad of factors
to address and characterize the effects of hormones on behavior, but some behaviors are tightly linked to the molting process and new research is being conducted on the hormonal regulation related to these behaviors.

METHODS

Drosophila

1. The wild type fruit fly, *Drosophila melanogaster*, Canton-S, will be used in this study. The methods used to stage the fly larvae have been described previously (Campos-Ortega and Hartenstein, 1985). The early 3rd instar stage of larvae will be used in these studies; these larvae will still be burrowing in their food. All the animals will be housed in room temperature (25°C) on cornmeal-agar-dextrose-yeast medium.

2. Take 10 fly larvae out of the stock container. Place five in the labeled Petri dish containing yeast solution made with 10µM 20-HE and five others in the labeled Petri dish containing yeast solution without the 20-HE. Allow the larvae to eat for 15 minutes. During this time, label the bottom of two Petri dishes that contain apple juice agar; label one 20-HE and the other control. Using separate dishes keeps the control larvae from being contaminated with residual 20-HE on the surface or from excretion of the larvae.

3. After 15 minutes place the control Petri dish on the microscope and count the number of mouth hook movements (MHM) for 30 seconds for each individual larva. Mouth hooks are black stripes on the front side of *Drosophila* that move every time the *Drosophila* larva eats. Alternate measuring one control larva and then one 20-HE fed larva. Repeat the procedure for all the larvae. Be careful not to recount the same larvae. Record the MHM per minute for indexing with reports in the literature.

4. After counting the MHM gently pick up the larvae with a small metal or wooden spatula and move to the appropriate dish containing apple juice agar. Use caution when placing the larvae on the agar as it is soft. Try not to make indentations in the agar, as the larvae will then tend to burrow into the agar instead of crawling on top of the agar. Place a lid on the Petri dish to encourage the larvae to crawl before placing the dish on the microscope. Count the number of body wall movements (BWM) for 30 seconds. One body wall movement is a complete contraction in the mid-length of the larvae while it is crawling. Alternate measuring one control larva and then one 20-HE fed larva. Repeat the procedure for all the larvae. Report the body wall movements per minute for indexing with reports in the literature.

Crayfish

5. Select two crayfish of approximately equal size and weight. Carefully blot dry a crayfish with paper towel and label this experimental crayfish with a number 1 on the dorsal thorax using quick drying fingernail polish. Weigh the experimental crayfish and calculate the amount of 20-HE needed to obtain a 10µM 20-HE hemolymph solution. Approximately 30% of the weight for a blue crab or a lobster is hemolymph (Gleeson and Zubkoff, 1977; Guirguis and Wilkens, 1995); assume this percentage also holds
true for crayfish in these experiments. The 20-HE stock solution is 1 mM (1,000 µM). Determine the amount of stock solution (V_2) to be injected into the crayfish for a circulating concentration of 10 µM 20-HE using the following calculations:

\[
crayfish \text{ weight } \times .30 = \text{ hemolymph volume}
\]

\[
M_1V_1 = M_2V_2
\]

\[
(10 \mu M) (\text{hemolymph volume}) = (1,000 \mu M) (V_2)
\]

6. Double check the calculation with the teaching assistant/ instructor and obtain a syringe and needle containing the stock 20-HE. A saline control syringe will be also provided. Saline will be used as a control for handling and injection volume. The control saline is composed of crayfish saline (mM: 205 NaCl; 5.3 KCl; 13.5 CaCl$_2$.2H$_2$O; 2.45 MgCl$_2$.6H$_2$O; 5 HEPES adjusted to pH 7.4) which is a modified Van Harreveld (1936) saline. The saline will also have a microfilter attached to keep out bacteria.

7. Hold the experimental crayfish behind its claws and wrap it in a paper towel. Position your hand to hold the tail spread out with your pinky finger or have your partner hold the tail down. Inject the experimental crayfish with the appropriate amount 20-HE by inserting the needle in the clear space toward the edge of the abdomen. Do not inject into the midline of the abdomen because this is the location of the central nerve cord. Hold the needle in place for approximately 30 seconds to avoid the solution from leaking out when withdrawing the needle. Repeat the procedure with saline in the control crayfish.

8. Place the crayfish in the observation tanks; one crayfish per tank. Crayfish are very visual so minimize the visual disturbance over the crayfish. Observe the crayfish without stimulus for 5 minutes. After the 5 minutes, reach over with the plastic rod and gently tap the experimental crayfish on the telson. If the telson is tucked under the animal, tap the side of the abdomen close to the telson. Observe and record the behavior due to the tap as well as any behavior between the taps. Examples of behavior: no response, tail flip, defensive posture, retreat. Repeat this every 2 minutes for 10 minutes (5 times total); more often may cause the crayfish to become habituated to the stimulus.

9. After the 5 taps, carefully touch the water in front of the crayfish and record the behavior. This should be done just far enough away that the crayfish will not be able to grab your hand with its chelipeds.

10. Repeat the procedure for the control crayfish. Make sure to treat the control and experimental animals in a similar manner when conducting these experiments.

TAKE CAUTION as a crayfish pinch or tail flip can cause injury. It is not the strength of the muscle pinching that hurts but the fine teeth like structure at the tip that can pierce the skin. If your skin is broken by a pinch or tail flip wash well with soap and water and inform the teaching assistant/ instructor.
DISCUSSION

Such laboratory investigations can provide pertinent information because they can initiate one to start to address cellular mechanisms of steroid hormones to account for the observed behaviors. Since most biologically active steroids in mammals have been shown to have some non-genomic action (Tuohimaa et al., 1996), it is of interest to understand the mechanisms of action and consequences of altering synaptic transmission at the neuromuscular junctions of motor neurons. The *Drosophila* and crayfish neuromuscular junctions continue to serve as ideal preparations in which to examine the kinetics of quantal events of glutaminergic chemical transmission and to relate these directly to the physiology and ultrastructure of the synapses.

Parallel investigations on the well-characterized neuromuscular junctions (NMJs) of these organisms would be beneficial in examining non-genomic roles of 20-HE to compliment potential commonalities. The crayfish neuromuscular preparations offer an advantage over the *Drosophila* preparations because the motor nerve terminals are large enough to place intracellular electrodes within the axons for assessing effects on the properties of the action potential shape and size that can directly affect the amount of calcium that enters the nerve terminal, thus influencing the amount of vesicles to dock and release transmitter. In addition, one can readily address if steroidal action is affecting evoked calcium entry within the nerve terminal by using calcium sensitive indicators and confocal microscopy (Cooper et al., 1995). The interactions of 20-HE depressing presynaptic transmission and 5-HT enhancing presynaptic release is worthy of investigation for a number of reasons. First, the mechanism of action of both of these neuromodulators are not understood and the interactions of signaling pathways would reveal novel avenues of non-genomic and neuromodulatory actions within nerve terminals. Secondly, both 20-HE and 5-HT are normal substances released into the crustacean hemolymph at various times in the molt cycle which may account for hormonal driven behaviors which is still an area plagued with phenomenonological assessment without a mechanistic driven questions. With the *Drosophila* mutations, such as *Rutabaga* and *Dunce* that are available which produce altered levels of second messengers (Zhong et al., 1992), future studies on the mechanistic actions and biochemical cascades induced by neuromodulators can also be investigated.

ALTERNATE PROCEDURES / EXTENSIONS:

Students can work in groups of 4, two counting mouth hook movements and two counting body wall movements, sharing the 10 larvae.

Drosophila: The following day, check the different larvae to determine if length of time larvae are allowed to eat in the yeast solution could affect the length of time before the pupae stage forms.

Crayfish: The following week check molting of the control and experimental crayfish. Repeat the experiment to determine if there is a difference in behavior of the control and experimental crayfish.
REFERENCES

