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Overview

What is a fluid?

‘something that can flow’

‘something that has no defined shape’

fluid: a substance that cannot support shear stress

deformation:
tensile stress (tension)

‘tends to change the dimensions but not the shape’
force ⊥ surface
p = F

A
shear stress

‘tends to change the shape but not the dimensions’
force ‖ surface
τ = F

A

fluid is a common name for liquids and gases — in most cases, they can be
treated the same way
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Overview

Classification of fluids

1 Compressibility
A compressible: its density (ρ) can change (eg, gases)
B incompressible: its density (ρ) is constant (eg, liquids)

2 Internal friction (viscosity)
A viscous: there IS internal friction
B non-viscous: internal friction is negligible

ideal fluid: incompressible and non-viscous
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Overview

Basic quantities

current: the mass or volume flowing through a cross-section of a tube in
unit time

I :=
dm
dt

or
dV
dt
,

where m denotes the mass, t is the time and V stands for the volume

the greater the cross-section area, the greater the current →
current density: the current flowing through a unit cross-section area

J :=
dI
dA
,

where A denotes the cross-section area
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Flow of incompressible fluids

Flow of incompressible fluids

liquids: generally incompressible

gases: generally compressible

even for gases, if the flow speed is not too high (< 50m/s), ρ does not
change significantly and the flow can be considered incompressible
time dependence of the flow

stationary (steady): speed and current are independent of time
non-stationary (unsteady): speed and current do depend on time
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Flow of incompressible fluids

Current and flow speed

t = 0 t = ∆t
s = v ∆t

A
v
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Flow of incompressible fluids

Current and flow speed

let us assume that the fluid particles move parallel to each other with the
same flow velocity v
this way, in time ∆t they travel a distance s = v∆t

from the perspective of fluid flow, this means that volume ∆V has been
carried through a given cross-section area A of the tube, where

∆V = As = Av∆t

thus the volume current of the flow is

I =
∆V
∆t

=
Av∆t

∆t
= Av
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Flow of incompressible fluids Equation of continuity

Illustration
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Flow of incompressible fluids Equation of continuity

Notations

(1) and (2): selected discs in the fluid at time t = 0

(1’) and (2’): locations of the selected discs in at time t = ∆t

v1: the velocity of the fluid at (1) and (1’)

v2: the velocity of the fluid at (2) and (2’)

A1: area of the cross-section at (1) and (1’)

A2: area of the cross-section at (2) and (2’)

s1: distance travelled by the fluid between locations (1) and (1’)

s2: distance travelled by the fluid between locations (2) and (2’)
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Flow of incompressible fluids Equation of continuity

Equation of continuity

the fluid is incompressible, so
the density is the same between (1) and (1’) and (2) and (2’): ρ1 = ρ2 = ρ

the mass flowing in at (1) is equal to the mass flowing out at (2):
∆m1 = ∆m2 = ∆m
∆m = ρ∆V1 = ρ∆V2 →
the volume flowing in at (1) is equal to the volume flowing out at (2):
∆V1 = ∆V2 = ∆V

∆V1 = A1s1 = A1v1∆t
∆V2 = A2s2 = A2v2∆t
∆V1 = ∆V2 ⇒ A1v1∆t = A2v2∆t

A1v1 = A2v2

since (1) and (2) were chosen arbitrarily, this must hold to any two

cross-sections along the flow: A · v = const
this is the equation of continuity
since Av = I , this means that the volume current is constant along the
tube
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Flow of incompressible fluids Equation of continuity

Example: a syringe

A1v1 = A2v2

A1 � A2 ⇒ v2 � v1
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Flow of incompressible fluids Equation of continuity

Example: flow speed in blood vessels

Blood vessel cross-section area [cm2] velocity [cm/s]

Aorta 4.5 40
Arteries 20 9
Arterioles 400 0.45
Capillaries 4500 0.04
Veins 40 4.5
Vena cava 18 10

Homework: what is common to all the rows?
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Flow of ideal fluids Bernoulli’s law

Flow of ideal fluids

ideal fluid: incompressible and non-viscous
no internal friction → no loss of mechanical energy

mechanical energy: potential energy + kinetic energy

E = EP + EK

the conservation of mechanical energy applies: external work done on the
system = change in the mechanical energy of the system

W = ∆E = ∆EP + ∆EK

Bernoulli’s law: a special form of the conservation of mechanical energy for
the flow of ideal fluids
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Flow of ideal fluids Bernoulli’s law

Illustration
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Flow of ideal fluids Bernoulli’s law

Notations

(1) and (2): selected discs in the fluid at time t = 0

(1’) and (2’): locations of the selected discs in at time t = ∆t

vi : the velocity of the fluid at (i) and (i ’) (i ∈ {1, 2})
Ai : area of the cross-section at (i) and (i ’) (i ∈ {1, 2})
si : distance travelled by the fluid between locations (i) and (i ’) (i ∈ {1, 2})
hi : height of the centre of mass of the fluid at (i) and (i ’) (as compared to
an arbitrary reference level, i ∈ {1, 2})
pi : pressure exerted by the rest of the fluid at (i) and (i ’) (i ∈ {1, 2})
Fi : force exerted by the rest of the fluid at (i) and (i ’) (i ∈ {1, 2})
∆mi : mass of the fluid between locations (i) and (i ’) (i ∈ {1, 2})
∆Vi : volume of the fluid between locations (i) and (i ’) (i ∈ {1, 2})
ρi : density of the fluid between locations (i) and (i ’) (i ∈ {1, 2})
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Flow of ideal fluids Bernoulli’s law

Energy changes

how does the energy of the fluid
between (1) and (2) change?

kinetic and potential energies only
depend on the position

EC: the energy of the part of the
fluid which does not change
between t = 0 and t = ∆t

E = E1 + EC

E ′ = EC + E2

∆E = E ′ − E = E2 − E1

only the energy of the marked
sections changes
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Flow of ideal fluids Bernoulli’s law

Implications of the equation of continuity
ρ1 = ρ2 = ρ

∆m1 = ∆m2 = ∆m

∆V1 =
∆m1

ρ
=

∆m2

ρ
= ∆V2

∆V1 = A1s1 = A1v1∆t

∆V2 = A1s1 = A2v2∆t

Difference between the fluid states at t = 0 and t = ∆t: mass ∆m is
transported from (1) to (2)

What happens to this mass?
1 the rest of the fluid does work on it
2 moved from h1 to h2 → its potential energy changes
3 its velocity changes → its kinetic energy changes
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Flow of ideal fluids Bernoulli’s law

Work done by the rest of the fluid

definition of pressure:

p =
F
A

F = pA

work done by the fluid at (1) and (2):

W1 = F1s1 = F1v1∆t = p1A1v1∆t = p1∆V = p1
∆m
ρ

W2 = −F2s2 = −F2v2∆t = −p2A2v2∆t = −p2∆V = −p2
∆m
ρ

negative sign in W2: the direction of the force is opposite to that of the
displacement
total external work:

W = W1 + W2 =
∆m
ρ

(p1 − p2)
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Flow of ideal fluids Bernoulli’s law

Potential and kinetic energies

Gravitational potential energy: EP = mgh
at (1): EP,1 = ∆mgh1
at (2): EP,2 = ∆mgh2
change: ∆EP = EP,2 − EP,1 = ∆mg(h2 − h1)

Kinetic energy: EK = 1
2mv 2

at (1): EK,1 = 1
2∆mv21

at (2): EK,2 = 1
2∆mv22

change: ∆EK = EK,2 − EK,1 = 1
2∆m(v22 − v21 )
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Flow of ideal fluids Bernoulli’s law

Bernoulli’s equation

conservation of mechanical energy: W = ∆E = ∆EP + ∆EK

∆m
ρ

(p1 − p2) = ∆mg(h2 − h1) +
1
2

∆m(v22 − v21 ) // ·
ρ

∆m

p1 − p2 = ρgh2 − ρgh1 +
1
2
ρv22 −

1
2
ρv21

p1 + ρgh1 +
1
2
ρv21 = p2 + ρgh2 +

1
2
ρv22

fluid discs (1) and (2) were chosen arbitrarily, so this must hold to any two

cross-sections along the flow: p + ρgh + 1
2ρv

2 = const
this is Bernoulli’s law
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Flow of ideal fluids Bernoulli’s law

Interpreting Bernoulli’s law

p: static pressure

ρgh: hydrostatic pressure

1
2ρv

2: dynamic pressure

total pressure = static pressure + hydrostatic pressure + dynamic pressure

Bernoulli’s law in other words: the total pressure is constant along the tube
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Flow of ideal fluids Bernoulli’s law

Example: Venturi tube
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Flow of ideal fluids Bernoulli’s law

Example: Venturi tube

from the equation of continuity:

A1v1 = A2v2

A1 � A2 ⇒ v2 � v1
apply Bernoulli’s law to compare 1 and 2:

p1 + 0 +
1
2
ρv21 = p2 + 0 +

1
2
ρv22

since v2 � v1 ⇒ p1 � p2
1 and 3 cannot be compared, because they are in different tubes; but 1’ and
3 can (1’ is at the beginning of the vertical tube)
the static pressures at 1 and 1’ are the same: p1′ = p1
the dynamic pressure at 1’ and 3 is 0, because the fluid does not flow in the
vertical tubes
apply Bernoulli’s law to compare 1’ and 3 (the reference level is now at 1’):

p1 + 0 + 0 = p0 + ρh3g + 0,

where p0 is the atmospheric pressure
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Flow of ideal fluids Bernoulli’s law

Example: Venturi tube

2 and 4 cannot be compared, because they are in different tubes; but 2’ and
4 can (2’ is at the beginning of the vertical tube)

the static pressures at 2 and 2’ are the same: p2′ = p2
the dynamic pressure at 2’ and 4 is 0, because the fluid does not flow in the
vertical tubes

apply Bernoulli’s law to compare 2’ and 4 (the reference level is now at 2’):

p2 + 0 + 0 = p0 + ρh4g + 0

if we compare h3 and h4

h3 =
p1 − p0
ρg

� h4 =
p2 − p0
ρg

,

because we have seen that p1 � p2
the Venturi tube proves Bernoulli’s law — at the wider section of the tube,
where flow speed is smaller, the static pressure is higher as compared to
narrower sections of the tube

the role of vertical tubes: to make the differences in static pressure visible
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Flow of ideal fluids Bernoulli’s law

Example: Bunsen burner

flow speed in the narrower section
is greater ⇒ lower static pressure

static pressure within the tube is
less than the atmospheric pressure

as a result, air flows into the tube

the air influx feeds the flame at the
top
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Flow of ideal fluids Bernoulli’s law

Example: carburettor

air injected into the
carburettor
chamber

in the narrow
throat, the air is
moving at its
fastest speed and
therefore it is at its
lowest pressure

low pressure in the
chamber pumps
the fuel into the
chamber, where it
is mixed with air
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Flow of viscous fluids Viscosity and Newton’s law

What is viscosity?

fluids (by definition) cannot support shearing stress

but they do resist shearing motion

interactions between the particles of the fluid ⇒ friction

force is needed to make fluid layers slide upon each other

viscosity: the resistance of a fluid to shearing motion due to internal friction

everyday term for viscosity: ‘thickness’ (riddle: which English saying involves
viscosity?)

etymology: < Latin viscum ‘mistletoe’ (mistletoe glue was used to catch
birds)
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Flow of viscous fluids Viscosity and Newton’s law

Illustration
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Flow of viscous fluids Viscosity and Newton’s law

What happens in a viscous fluid?

two parallel solid plates with surface area A with viscous fluid between them

lower plate: fixed

upper plate: pulled sideways with force F
bottom layers of fluid: stick to the lower plate due to adhesion, velocity:
v = 0

top layers of fluid: stick to the upper plate due to adhesion, velocity: v 6= 0

we imagine fluid flow as fluid layers sliding upon each other

particles within the same layer move together with the same velocity: v(y)
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Flow of viscous fluids Viscosity and Newton’s law

What happens in a viscous fluid?

thickness of layers: ∆y
speed difference between neighbouring layers: ∆v
instead of the force, it is more practical to use the shear stress τ

τ :=
F
A

how much the velocity changes across layers — velocity gradient:

∆v
∆y

in reality, there are no homogeneous layers, the velocity changes
continuously across the cross-section of the tube
⇒ layer thickness ∆y should be made infinitely small
thus the velocity gradient (also called the shear rate):

lim
∆y→0

∆v
∆y

=
dv
dy

Péter Makra (University of Szeged) Physics-biophysics 1 2011-2012. autumn semester 31 / 68



Flow of viscous fluids Viscosity and Newton’s law

Newton’s law of friction

the stronger the internal friction, the more the layers move together ⇒ the
less the velocity difference between layers (shear rate)

non-viscous fluid (eg, water): we can slide a solid plate on top of it without
making the whole bulk of fluid moving

viscous fluid (eg, honey): sliding a solid plate on its surface makes the
whole bulk of fluid move

in many fluids, shear rate dv
dy is proportional to the shear stress τ

the constant of proportionality is called the viscosity η
Newton’s law of friction:

τ =
F
A

= η
dv
dy

Newtonian fluids: fluids which obey Newton’s law of friction
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Flow of viscous fluids Viscosity and Newton’s law

Viscosity

using Newton’s law of friction, we can define viscosity:

η := τ

(
dv
dy

)−1
the unit of viscosity:

[η] = 1Pa · s
(
⇐ 1

N
m2 ÷

m/s
m

= 1
Pa
1/s

)

Fluid glycerine blood water air

Viscosity [Pa · s] 0.83 0.02–0.04 0.001 0.00001

Table 1: Typical viscosity values
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Flow of viscous fluids Viscosity and Newton’s law

Viscosity as a diagnostic tool

blood viscosity measurement has a great potential as a diagnostic tool
viscosity changes in conditions of

myocardial infarction
coronary occlusion
arteriosclerosis
diabetes, &c

it is not yet known whether viscosity changes are just symptoms or
themselves contribute to the disorders they accompany
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Flow of viscous fluids Viscosity of gases

Molecular origin of viscosity in gases

in ideal gases, molecules only interact through collisions

source of friction: momentum exchange between layers
molecules in gas flow:

ordered motion — due to pressure difference
disordered motion — due to temperature (usually with much greater speed
than ordered motion)

disordered motion ⇒ molecules may enter other layers, and through
collisions, change the momentum of the layer

momentum: p := mv; Newton’s 2nd law: F = ma = dp
dt

momentum exchange ⇒ force of friction between layers

force of friction ⇒ viscosity
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Flow of viscous fluids Viscosity of gases

Temperature dependence of viscosity in gases

equipartition theory for ideal gases: 1
2mv2 = f

2kT , where v is the average
speed of gas molecules, k is Boltzmann’s constant, T is the thermodynamic
temperature (in Kelvins) and f denotes the degrees of freedom

higher temperature ⇒ faster disordered motion

faster disordered motion ⇒ more collisions in unit time ⇒ stronger force of
friction

the viscosity of gases increases with temperature

η = η0

√
T
T0
·
1 + C

T0

1 + C
T

,

where η0 is the viscosity of the gas at absolute temperature T0 and C is
called the Sutherland constant

Péter Makra (University of Szeged) Physics-biophysics 1 2011-2012. autumn semester 36 / 68



Flow of viscous fluids Viscosity of gases

Temperature dependence of viscosity in gases
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Flow of viscous fluids Viscosity of liquids

Molecular origin of viscosity in liquids

in liquids, there are strong interactions between molecules

attractive forces ⇒ internal friction

flow requires free space in order for the molecules to move and change
places

How can liquids flow at all when there is not enough free space within them?

Frenkel’s theory
thermal motion results in occasional molecular gaps in the liquid

it provides room for liquid molecules to move ⇒ fluid flow

the higher the concentration of the gaps, the more easily liquid molecules
can move ⇒ lower viscosity
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Flow of viscous fluids Viscosity of liquids

Temperature dependence of viscosity in liquids

liquid molecules possess potential energy due to interactions with
neighbouring molecules
to create a gap, a molecule must be freed ⇒ some activation energy E
must be invested
source of activation energy: kinetic energy of liquid molecules
How many molecules have kinetic energy greater than or equal to E?
Boltzmann distribution ⇒

N ∝ T · e−
E
kT ,

where N is the number of molecules above the activation energy E , k is the
Boltzmann constant and T is the absolute temperature
the higher the concentration of the gaps, the lower the viscosity ⇒ η ∝ 1

N :

η ∝
1
T
e

E
kT

the viscosity of liquids decreases with temperature
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Flow of viscous fluids Viscosity of liquids

Temperature dependence of viscosity in liquids
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Flow of viscous fluids Hagen–Poiseuille law

Hagen–Poiseuille law: illustration
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Flow of viscous fluids Hagen–Poiseuille law

Notations

p1: pressure exerted by the rest of the fluid at the beginning of the tube

p2: pressure exerted by the rest of the fluid at the end of the tube

F1: propelling force due to fluid pressure at the beginning of the tube

F2: blocking force due to fluid pressure at the end of the tube

F3: force of friction slowing down the selected fluid volume along the outer
surface

F4: force of friction accelerating the selected fluid volume along the inner
surface

∆r : thickness of the selected fluid volume

r : distance from the axis

R: radius of the tube

Af : area of the front surface of the selected volume

A(r): lateral surface area (area of the side) of the selected volume
(different for inner and outer surfaces)
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Flow of viscous fluids Hagen–Poiseuille law

Properties of the flow

the tube has a cylindrical symmetry ⇒ fluid layers will have a cylindrical
symmetry

particles at the same distance r from the axis travel with the same velocity

particles at the wall: do not move due to adhesion to the wall (v = 0)

particles in the axis: maximum speed

we select a hollow tube of fluid with thickness ∆r at distance r from the axis

fluid moving within the selected volume: moving faster ⇒ accelerating the
selected fluid volume due to friction

fluid moving outside the selected volume: moving slower ⇒ decelerating the
selected fluid volume due to friction

pressure of the rest of the fluid: accelerates the selected volume at one end,
decelerates it at the other

we consider a stationary flow ⇒ acceleration is zero ⇒ the vector sum of all
the forces acting on the selected fluid volume is zero
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Flow of viscous fluids Hagen–Poiseuille law

Front surface area
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Flow of viscous fluids Hagen–Poiseuille law

Lateral surface area
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Flow of viscous fluids Hagen–Poiseuille law

Forces acting on the selected fluid volume

Forces due to pressure
pressure at the beginning is greater than pressure at the end: p1 > p2 ⇒
direction of the flow

Af ≈ 2rπ∆r (see the figure)

F1 = p1Af = p12rπ∆r

F2 = −p2Af = −p22rπ∆r

Forces due to viscosity
Newton’s law of friction: τ = η dv

dr ⇒ F = Aη dv
dr

dv
dr is negative because the velocity decreases with r

lateral surface area at distance r from the axis: A(r) = L · 2rπ (see the
figure)

force of outer layer (blocking): F3 = ηA(r + ∆r) dv
dr

∣∣
r+∆r

force of inner layer (propelling): F4 = −ηA(r) dv
dr

∣∣
r
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Flow of viscous fluids Hagen–Poiseuille law

Obtaining the velocity

we consider a stationary flow ⇒ acceleration is zero ⇒ the vector sum of all
the forces acting on the selected fluid volume is zero (Newton’s second law)∑

F = F1 + F2 + F3 + F4 = 0

p12rπ∆r − p22rπ∆r + ηA(r + ∆r)
dv
dr

∣∣∣∣
r+∆r

− ηA(r)
dv
dr

∣∣∣∣
r

= 0

solving this differential equation yields

v(r) =
p1 − p2
4ηL

(
R2 − r2

)
it is called the parabolic velocity profile
the farther we are from the axis, the less the velocity

v(0) = p1−p2
4ηL R2 — maximum value

v(R) = 0
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Flow of viscous fluids Hagen–Poiseuille law

Parabolic velocity profile

flow
v(r)

rR
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Flow of viscous fluids Hagen–Poiseuille law

Obtaining the current

we now know the velocity, but not
the current

let us consider the current flowing
through a ∆r thick ring at distance
r from the axis: I (r)

the ring is very narrow ⇒ v(r) can
be considered as constant within
the ring

here we consider the volume
current: I (r) = ∆V

∆t , where ∆V is
the fluid volume flowing through
our selected ring in time ∆t
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Flow of viscous fluids Hagen–Poiseuille law

Obtaining the volume ∆V

∆V = 2rπ · v(r)∆t ·∆r

I (r) =
∆V
∆t

=
2rπ · v(r)∆t ·∆r

∆t
= 2rπ · v(r) ·∆r
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Flow of viscous fluids Hagen–Poiseuille law

Summing the currents

to obtain the total current I , we
have to add up the currents I (r) of
all the rings constituting the total
cross section

the cross section is broken down
into N rings of equal thickness ∆r

for the k th ring, the inner radius is
rk := k∆r

the current through the k th ring:
Ik := I (rk) = 2rkπ · v(rk) ·∆r

the total current:

I ≈
N−1∑
k=0

Ik =
N−1∑
k=0

2rkπ · v(rk) ·∆r
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Flow of viscous fluids Hagen–Poiseuille law

Hagen–Poiseuille equation

exact solution obtained through integration

I = lim
∆r→0

N−1∑
k=0

2rkπ · v(rk) ·∆r =

R∫
0

2rπ · v(r) dr

I =

R∫
0

2rπ·v(r) dr =

R∫
0

2rπ·
∆p
4ηL

(
R2 − r2

)
dr =

π

2ηL
·∆p·

R∫
0

(
rR2 − r3

)
dr

I =
π

2ηL
·∆p ·

R2

R∫
0

r dr −
R∫
0

r3 dr

 =
π

2ηL
·∆p ·

(
R2
[
r2

2

]R

0
−
[
r4

4

]R

0

)

I =
π

2ηL
·∆p ·

{
R2
(
R2

2
− 0
)
−
(
R4

4
− 0
)}

=
π

2ηL
·∆p

R4

4

I =
π

8ηL
·∆p · R4

this is the Hagen–Poiseuille equation
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Flow of viscous fluids Hagen–Poiseuille law

Medical examples

Muscles in use (eg, sports)
oxygen demand increases

more blood (higher current) needed to supply this oxygen

blood vessels dilate (become wider)

I ∝ R4

the current through the dilated blood vessels increases drastically

Arteriosclerosis
blood vessels become rigid and narrow

narrower tubes ⇒ R drops

I ∝ R4 ⇒ I drops drastically

much higher pressure needed to maintain the same current

the heart may not sustain the increased load

Péter Makra (University of Szeged) Physics-biophysics 1 2011-2012. autumn semester 53 / 68



Laminar and turbulent flow

Laminar and turbulent flow

laminar flow: a fluid flows in
parallel layers, with no disruption
between the layers

turbulent flow: eddies form, flow
properties become chaotic

turbulent flow carries less volume
for the same pressure difference:
eddies reverse the direction of the
flow and energy is dissipated
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Laminar and turbulent flow
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Laminar and turbulent flow

Reynolds number

Is the flow laminar or turbulent? ⇐ Reynolds number

Re =
ρvL
η

ρ: density of the fluid

v : velocity of the flow

L: characteristic length (eg, radius of the tube)

η: viscosity of the fluid

Re: dimensionless empirical number
How is it used to predict turbulence? ⇒ transition Reynolds numbers

Reflow < Re1: laminar flow
Re1 ≤ Reflow < Re2: transition region — both laminar and turbulent flow are
possible
Re2 ≤ Reflow: turbulent flow

transition Reynolds numbers are determined experimentally (eg, wind
tunnels)
transition Reynolds number values are similar for different fluids, they
mostly depend on flow geometry
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Laminar and turbulent flow

Example: blood pressure measurement

Péter Makra (University of Szeged) Physics-biophysics 1 2011-2012. autumn semester 60 / 68



Laminar and turbulent flow

Example: blood pressure measurement

the cuff (called the sphygmomanometer cuff) is inflated

the cuff squeezes the artery ⇒ radius of the artery is reduced

equation of continuity: flow velocity will increase through a narrower cross
section

increased velocity ⇒ Reynolds number increases ⇒ turbulent flow

turbulent flow is noisy (Korotkoff sounds)

these sounds are audible through the stethoscope
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Laminar and turbulent flow

Example: blood pressure measurement
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Pulsatile flow in tubes with elastic walls

Pulsatile flow
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Pulsatile flow in tubes with elastic walls

Pulsatile flow

eg, heart: operates in cycles of contraction and relaxation ⇒ pulsatile flow

simple model: a tap opened and closed periodically
elastic tube

high pressure: the walls of the tube expand and store elastic energy; the
kinetic energy of the flow is converted to elastic energy
low pressure: the walls of the tube relax from their expanded state; their
elastic energy is converted back to kinetic energy
this way, flow is maintained even when the pressure difference is low
physiological significance: the elasticity of veins makes blood pressure more
stable

rigid tube
no expansion or relaxation possible
lost mechanical energy is converted to heat
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Pulsatile flow in tubes with elastic walls

Blood pressure
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Non-Newtonian fluids

Types of non-Newtonian fluids

Newtonian fluids
obey Newton’s law
of friction
their viscosity does
not depend on shear
rate

non-Newtonian fluids
do not obey
Newton’s law of
friction
their viscosity
depends on shear
rate, and in many
cases, on the history
of the fluid

Newtonian

dilatant

pseudoplastic

Bingham plastic

shear rate (dv/dy)
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r 
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ss
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Non-Newtonian fluids

Flow properties of blood

volume of blood: 5–6 litres
cellular components of blood:

erythrocytes (red blood cells)
leukocytes (white blood cells)
platelets

the diameter of erythrocytes is greater
than that of capillaries ⇒ erythrocytes
can only squeeze through capillaries due
to their elasticity

bolus flow: erythrocytes block normal
flow, blood plasma between them is
forced to rotate ⇒ better circulation

anomalies: sickle anaemia — reduced
membrane elasticity of erythrocytes ⇒
being trapped (ageing of erythrocytes
also reduces elasticity)

Péter Makra (University of Szeged) Physics-biophysics 1 2011-2012. autumn semester 67 / 68



Non-Newtonian fluids

Bolus flow
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