
The University of Chicago

Competition Among Immatures Affects Their Adult Fertility: Population Dynamics
Author(s): Timothy Prout and Frances McChesney
Source: The American Naturalist, Vol. 126, No. 4 (Oct., 1985), pp. 521-558
Published by: The University of Chicago Press for The American Society of Naturalists
Stable URL: http://www.jstor.org/stable/2461536 .

Accessed: 05/11/2014 10:29

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

The University of Chicago Press, The American Society of Naturalists, The University of Chicago are
collaborating with JSTOR to digitize, preserve and extend access to The American Naturalist.

http://www.jstor.org 

This content downloaded from 128.163.8.61 on Wed, 5 Nov 2014 10:29:48 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=ucpress
http://www.jstor.org/action/showPublisher?publisherCode=amsocnat
http://www.jstor.org/stable/2461536?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


Vol. 126, No. 4 The American Naturalist October 1985 

COMPETITION AMONG IMMATURES AFFECTS THEIR ADULT 
FERTILITY: POPULATION DYNAMICS 

TIMOTHY PROUT AND FRANCES MCCHESNEY* 

Department of Genetics, University of California, Davis, California 95616 

Submitted August 23, 1984; Revised March 25, 1985; Accepted April 3, 1985 

A great many organisms, including humans and flies, exhibit a life history 
phenomenon whereby the environmental conditions experienced by immatures 
can affect the adult phase of the life cycle. We are concerned with the conse- 
quences of this phenomenon for population dynamics. Some preliminary results 
have been reported (Prout 1984). 

For population purposes the specific effects of interest are, first, the density of 
immatures resulting in their mutual competition for survival and, second, the 
lasting consequences of this competition on the fertility of these same individuals 
when they become adults. The type of population considered is one with discrete 
generations, so that the theory will consist of finite recurrence equations that 
incorporate this delay. 

In part 1 we report some very limited data on certain life history attributes of 
Drosophila melanogaster in laboratory culture bottles. The data were collected in 
an attempt to explain the population behavior of the flies when they are kept on a 
discrete-generation regimen. Although this latter objective enjoyed only limited 
success, the important result is the family of recursion functions constructed to 
account for the effect on adult fertility of the density these adults experienced as 
larvae. 

Part 2 documents the widespread occurrence of this biological phenomenon. 
The consequences for population dynamics are explored by a theoretical investi- 
gation of the recursion functions constructed in part 1 to accommodate the fly 
data. In part 2 we will also show that a number of designs for population experi- 
ments reported in the literature can lead to spurious conclusions because the 
experiments do not consider this delayed effect in the life cycle. 

I. DROSOPHILA PROLOGUE 

An experimental study was conducted of certain life history stages of 
Drosophila melanogaster in laboratory culture bottles. We undertook this investi- 

* Present address: Environmental Protection Agency, Office of Toxic Substances, Washington, 
D.C. 20460. 
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FIG. 1.-Three sets of populations exemplifying the variation in population size (N) 
produced by the regimen described in the text. Numbers of each set were maintained 
synchronously and during a different time interval from members of each other set. There are 
seven populations in set A, nine in set B, and five in set C. 

gation because we have conducted a number of population genetic studies using 
discrete-generation bottle cultures, and although the genetic composition of the 
populations behaves reasonably well (see, e.g., Prout 1971; Foster et al. 1972), the 
total population size exhibits large and erratic variation. 

Figure 1 shows three examples of population size data: seven populations 
maintained for 12 generations (A); nine populations maintained for 6 generations 
(B); and four populations maintained for 5 generations (C). (Four other, published 
examples can be found in Prout 1980, p. 18.) The consistently erratic behavior of 
this population regimen suggested that a study of the components of the life 
history might reveal that this laboratory regimen induces an underlying complex 
limit cycle, which enhances the stochastic variation. 

The life cycle was divided into two parts, survival and fertility; survival was 
determined by counting adults produced by a known number of eggs, and fertility 
was determined by counting eggs produced by a known number of females. 

MATERIALS AND METHODS 

All experiments were performed under conditions as close as possible to those 
of the reference populations that motivated the study. A population in which 
adults had been emerging for 4 days was allowed to lay eggs in a standard ?/2-pint 
culture bottle for 24 h; the flies were then removed, counted, and discarded. This 
bottle was kept at 25? C for 14 days, during which time emergence, starting about 
day 10, was completed. This population, which we refer to as a "4-day-old 
population," was then used to initiate a new round of 24-h egg laying to initiate the 
next generation. Thus, in the experiments to be described we attempted, 
whenever possible, to use flies from rather crowded (ca. 200-400) 4-day-old 
bottles. Although this procedure reproduced the population environment, it also 
generated large experimental errors, which resulted in a considerable sacrifice of 
statistical resolution. 
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In the egg-to-adult survival experiments, varying numbers of flies (from 4-day- 
old populations) were allowed to lay eggs for 24 h in "split bottles." These bottles 
were the same in every way as those used in the populations, except that they 
were cut into two parts about 2.5 cm from the bottom. After removal of the flies 
and the top half of the bottle, eggs were counted. The top was then replaced, 
secured by tape, and cultured at 250 C. The adults that emerged were counted. A 
wide range of egg numbers was obtained by simply varying the number of egg- 
laying adults among bottles. Fertility was usually determined by counting the 
number of eggs laid by 25 pairs (N = 50 flies) in split bottles for 24 h, which was 
the interval allowed for the females in the populations to lay eggs for the next 
generation. The only exception to this procedure was in the determination of the 
effects of adult density on fertility, when the number of flies was varied system- 
atically. The stock used for all experiments has been under standard laboratory 
culture for over 10 yr and is designated "Desert Center." (This stock is available 
on request.) 

Five experiments were performed to determine (1) the effects of egg density on 
egg-to-adult survival; (2) the effect of adult density on fertility; (3) the effect of egg 
density on the fertility of adults derived from the eggs; (4) the interaction between 
egg and adult densities and fertility; and (5) "maternal effects" of the fertility of 
female parents on egg-to-adult survival of offspring. The results of each of these 
experiments will be described in turn. 

RESULTS 

Egg Density and Egg-to-Adult Survival 
The effects of egg density on survival are presented graphically in two ways. 

Figure 2A shows the number of adults, N, as a function of the number of eggs, n. 
Figure 3A shows the survival rate, S(n), computed as S(n) = N/n. Figures 2B and 
3B present the same data grouping the independent variable, egg numbers, into 
200-egg intervals and placing the means of the dependent variables, N or S(n), at 
the center of the interval. 

In the section "Data Analysis and Conclusions," the results of fitting functions 
to the data of Figure 3A will be presented. It is sufficient to note here that there is 
a clear effect of egg density on survival. Biologically, this effect is, of course, due 
to competition among the larvae that hatch from the eggs. We also performed a 
separate, rather large-scale experiment on low egg densities ranging from 10 to 100 
eggs per bottle. This experiment showed no trend over this region of low densi- 
ties; the survival rate was approximately .85. The data from this latter experiment 
are not included in figures 2A and 3A. There is a "flat region" at very low 
densities, but it has essentially no effect on the global dynamics of the populations 
of figure 1. 

Finally, figure 2 suggests that the population size in this regimen is not likely to 
exceed approximately 700 flies. This is in reasonable agreement with the data of 
figure 1. (The possibility of such a maximum will be discussed in some detail 
later.) 
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FIG. 2.-Adult population number, N, as a function of egg density? n: A, raw data; B, data 
grouped in 200-egg intervals. Mean number of adults, N. placed at midpoint of the interval. 
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FIG. 3.-Egg-density data on fig. 2A converted to survival rate, S(n) - N/n: A, raw data; 
B, data grouped in 200-egg density intervals, as in fig. 2B. 
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Adult Density and Fertility 
Figure 4 summarizes the experiments on the effects of adult density on their 

own fertility. The total eggs laid, n, is shown as a function of the number of flies, 
N. Sexes were counted separately, and equal numbers of females and males were 
introduced; thus, the number of females is 1?2N. The three lines on the graph 
represent experiments done at different times; each point is the mean of five 
bottles. The principal conclusion is that there is no suggestion of nonlinearity; that 
is, the number of eggs laid per female is not affected by densities of up to 600 flies 
observed in the reference populations. Although adult crowding can affect egg 
laying, this particular regimen evidently holds adult numbers below what would 
result in such an adult crowding effect. Using linear regression for the three 
experiments we obtained fertility rates of 7.2, 6.0, and 5.6, with a combined 
estimate of 6.3 eggs ( + 0.5 SE) per female. This value for 24-h fecundity was low 
because the females used came from crowded 4-day-old bottle populations. 

Egg Density and Fertility 
Fertility was determined for females that had emerged from bottles with initially 

different egg densities. Fertility is designated F(n), representing the eggs per 
female as a function of the density of the population of eggs from which the 
females came. The measurement of F(n) was done in the same way regardless of 
the egg density; namely, 25 pairs of flies were placed in a split bottle for 24 h, and 
the resulting eggs were counted. In this way we obtained fertilities of females from 
bottles with densities of 30-2530 eggs per bottle. The resulting data are presented 
in graphical form in figure 5, where the results in 5A are summarized in SB using 
200-egg intervals (as in figs. 2B, 3B). 

The large errors in these data probably arise in part from the notorious variance 
in direct fertility measurements and in part from the fact that the females came, as 
usual, from crowded, 4-day-old cultures. Nevertheless, it is quite clear that egg 
density has a substantial effect on the resulting adult female fertility. This effect 
evidently results from the persisting effects of larval competition. 

Interaction of Egg and Adult Densities and Fertility 
In experiment 2, on the effects of adult density on fertility, the adults were 

pooled from 4-day-old moderately crowded bottles. The densities of the eggs from 
which the females came may affect their mutual sensitivity when laying eggs. That 
is, females only from low or high egg densities might show an adult density effect 
on fertility that was not evident in experiment 2. 

We therefore conducted a limited experiment, designed to detect such an 
interaction. The experiment is limited in the sense that we tested fertility effects 
over a range with a maximum of only N = 200 (100 females); we accordingly have 
no information about such an effect at the substantially higher numbers the 
reference population does achieve. Nevertheless, we feel the results are of 
sufficient value to be included in this report. 

Rather than count eggs to obtain a large number of flies raised at different egg 
densities, we set up culture bottles with different densities of female parents. Five 
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FIG. 4.-Total eggs laid, n, as a function of different fly densities, N. Half the flies were 
females. Each point is the mean of five bottles. Three different sets of experiments, done at 
different times from different source cultures, are shown. 

24 - 

22 - 

20 
18 _ 

16 - 

14 

12 . 

10 _ .. 

8: 

6 - 

- 24 _ (A) ; * 

-J 2 4 6 8 10 12 14 16 18 20 22 24 

. 20 
U_ 

18_ 

1 6- 

14- 

12- 

l0 

8- 

6- 

42 - (B)= 

2 4 6 8 10 12 14 16 18 20 22 24 26 

EGGS, n x 10-2 

FIG. 5. -Eggs per female, F(n), during 24-h intervals, as a function of the initial egg density 
in the cultures from which the females emerged: A, raw data; B, data grouped in 200-egg 
intervals. All fertilities were determined under standard conditions of 25 pairs per bottle for 
24 h. 
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FIG. 6.-Each graph (except]) gives total eggs laid, n, in 24 h as a function of the density of 
flies, N, per bottle. Half the flies were females. Also given is the number of pairs of parents 
(Y, 6) that produced the cultures from which the N egg-laying flies were taken. Graphs a-e 
show different levels of parental crowding. f, Linear regression lines of n on N obtained from 
a-e. Amount of parental crowding is indicated for each regression line. Each point on each 
graph is the mean of three bottles except in b where two bottles for each adult density were 
used. 

sets of cultures were used, which had 10, 50, 100, 200, and 600 pairs of parental 
flies. The daughter flies from these different maternal densities were then used for 
this limited test of adult density (of daughters) on fertility. The results of this 
experiment are summarized graphically in figure 6. Each point on these graphs 
represents the mean of three replicate cultures, with the exception of 6b, for 
which the points represent only two cultures each. There is no suggestion of 
nonlinearity of eggs produced, n, as a function of parental density up to at least 
N = 200. The linear regressions for all five experiments are shown together in 
figure 6f. 

One additional reason for showing the results of this experiment is that it 
provides another data set showing the effects of egg density on fertility. Because 
the number of females is ?1N, the slopes of the regression lines in figure 6f are one- 
half the fertility, F, which is eggs per female. It can be seen in the figure that these 
slopes decrease with increased density of the parents that produced the flies 
whose fertility is being measured. This effect is summarized graphically in figure 7 
with the coordinate of filial fertility as a function of maternal density. Using the 
findings in figure 4, which gave a value of 6.3 eggs per female, the data of figure 7 
are in reasonable agreement with those in figure 5, which gives the fertility as a 
function of egg density. 

We conclude that females emerging from uncrowded cultures or from very 
crowded cultures show no important effects of adult density on fertility at least up 
to densities of N = 200 flies. It is possible, of course, that the kind of interaction 
sought in these limited experiments could be manifested at higher adult densities. 
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FIG. 7.-Data taken from fig. 6f. Filial fertility, F(n), is twice the linear regression 
coefficient of the regression lines (no. females = 1/2N inf). Maternal density is as in fig. 6, the 
number of pairs (females) per bottle that produced the daughters whose fertility is mea- 
sured by F(n). 

Maternal Effects of Female Fertility on Offspring Survival 

What are the limits of the persisting effects of larval crowding (proportional to 
egg density)? The effect persists to the adult stage for females. Does it continue 
into the next generation? 

In order to answer this question, we performed two small-scale egg-to-adult 
survival experiments. In one we used eggs from females reared in crowded 
cultures, and in the other the egg-producing females came from uncrowded 
cultures. Specifically, the crowded females came from several bottles, having 
2502-2633 eggs per bottle. The uncrowded females came from 40 bottles, with egg 
numbers ranging from 1 to 103. 

Figure 8 gives the number of adults (N) as a function of the egg density, n, in 
two cases: PC, parents crowded; and PU, parents uncrowded. 

A quadratic function of the form N = An + Bn2 was fitted by least squares to 
both data sets. The resulting estimates of the constants A and B, shown on the 
graphs, clearly indicate no statistical difference in the survival of adults from eggs 
laid by females who themselves were reared in crowded conditions compared with 
the survival of those from uncrowded conditions. There could well be some kind 
of effect on the quality of the eggs produced by the two types of females, but the 
effect on egg-to-adult survival is evidently not large. 

We therefore conclude that the reference population constitutes a well-defined 
recursive system, in which each operation begins and ends with eggs. 

DATA ANALYSIS AND CONCLUSIONS 

In order to use these life history data to deduce the dynamics of this bottle- 
population regimen (fig. 1), the data must be incorporated into a recursion func- 
tion whose properties can be examined and compared with the population data. 
Even though the population data include the adult census, it follows from the 
preceding results that it is first necessary to construct the recursion between the 
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FIG. 8.-Adults, N, as a function of egg density, n, where the eggs were produced by 
females from crowded cultures, PC, and by females from uncrowded cultures, PU. PC 
females came from bottles initiated with egg densities of 2300-2500 eggs per bottle. PU 
females came from 40 bottles with egg densities of 1-103 eggs per bottle. Quadratic functions 
shown were fit to the data by least-squares regression. 

numbers of eggs in succeeding generations, n, 1 and n,. Furthermore, there are 
two intervening density-dependent processes, one affecting survival and one 
fertility, both dependent on the egg density, n,. The recursion, therefore, should 
be of the following form: 

nt+l = F(nt)?12S(nt)nt, (1) 
where F(nt), fertility, and S(nt), survival, are both decreasing functions of nt. (The 
factor 1/2 indicates that one-half of the survivors are females.) Three functions 
were fitted by nonlinear regression to the survival data (fig. 3A) and to the fertility 
data (fig. SA). These functions are defined in table 1. The uppercase letters define 
maximum survival, S, or fertility, F, and lowercase letters are sensitivity parame- 
ters for survival, s, and fertility, f. 

Table 2 shows the results of fitting the three functions to the two data sets. The 
parameter estimates with their standard errors are given. Also shown are the total 
variance of the dependent variable, the mean square error obtained from the 
residual sum of squares (normalized by dividing by the total variance), and the 
fraction of the total variance explained by the regression function. 

In the case of survival, it is evident that the data will accommodate all three 
functions equally well. In the case of fertility, the linear function clearly provides 
a poorer fit than the two curvilinear functions. This is not surprising because, 
although the data of figure SA are highly variable, there is a distinctly curvilinear 
aspect. In general, however, owing to the obviously large inherent errors in the 
two data sets and the general paucity of data, no statistical procedure will be 
capable of clearly discriminating between the functions used. More-extensive data 

This content downloaded from 128.163.8.61 on Wed, 5 Nov 2014 10:29:48 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


TABLE 1 

SURVIVAL AND FERTILITY FUNCTIONS 

FUNCTION Survival* Fertility** 

Linear S-sn F-fn 
Exponential S e-Sil F e-fil 
Hyperbolic S(1 + sn)f F(1 + fn) 

* S, maximum survival; s, sensitivity parameter for survival. 
** F, maximum fertility; f, sensitivity parameter for fertility. 

TABLE 2 

RESULTS OF FITTING FUNCTIONS TO THE DATA 

SURVIVAL 

Linear, Ls Exponential, ES Hyperbolic, Hs 

Maximum, S .845 .898 .929 
(? SE)* (? 2.69 x 10-2) (+ 3.72 x 10-2) (? 5.51 x 10-2) 

Sensitivity 
parameter, s 2.8 x 10-4 5.4 x 10-4 8.3 x 10-4 

(+ SE)* (+ 2.2 x 10-5) (?6.6 x 10-5) (? 17.5 x 10-5) 
Sample size, N 31 31 31 
Total 

variance, V 6.26 x 10-2 6.26 x 10-2 6.26 X 10-2 
Mean square 

error, MSEt .11 x 10-2 .17 x 10-2 .14 x 10-2 
MSE/V .018 .027 .022 
Explained 

variances .982 .973 .978 

FERTILITY 

Linear, LF Exponential, EF Hyperbolic, HF 

Maximum, F 13.538 16.429 19.081 
(+ SE)* (?+.397) (+.873) (?+1.448) 

Sensitivity 
parameter,f 5.7 x 10-3 1.0 X 10-3 2.2 x 10-3 

(+ SE)* (+5.3 x 10-4) (+ 1.2 x 10-4) (+4.3 x 10-4) 
Sample size, N 75 75 75 
Total 

variance, V 29.95 29.95 29.95 
Mean square 

error, MSEt 11.84 9.44 9.42 
MSE/V .395 .315 .315 
Explained 

variance t .605 .685 .685 

* Standard error. 
t Obtained from residual sum of squares. 
t Fraction of total variance explained by regression function. 
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TABLE 3 

RECURSION FUNCTIONS RESULTING FROM COMBINING COMPONENT FUNCTIONS 

SURVIVAL X FERTILITY Symbol Function* 

Linear x linear LSLF R - ?12(Sf + Fs)n + 2sfn2 
Exponential x exponential EsEF R e-(f+S)n 
Hyperbolic x hyperbolic HSHF R[1 + (f + s)n + fsn2]1- 
Linear x exponential LSEF R e-f"t _s2sFn e-ft 
Linear X hyperbolic LSHF (R - '12Fsn)(1 + fn)1 
Exponential x hyperbolic ESHF R(1 + fn)- -Snl 

* R = 112FS. 

obtained under more rigorously controlled experimental conditions would be 
required for this. 

Nevertheless, these life history data can be combined to provide some limited 
information concerning the dynamics of this population regimen, and, more im- 
portant, in part 2 they will be used for numerical illustrations of a class of models 
with rather novel behavior that could have general implications. Indeed, this is the 
principal reason for presenting the data of this section. 

We will therefore proceed to construct the egg-to-egg recursion function set 
forth in its most general form as equation (1). Since none of the functions in table 2 
stand out as clear favorites, we will construct all nine recursion functions by 
forming the nine possible products of the three fertility and three survival func- 
tions of table 1. The resulting functions are shown in table 3. Only six of the nine 
are shown: the first three are products of components with the same functional 
forms; the second three are products with different functional forms. The second 
column defines a shorthand procedure for identifying the functions. Not shown 
are the three remaining products of the functions of different form: EsLF, HsLF, 
and HsEf. These are the same as their counterparts shown in the table except for 
the exchange of F for S and f for s. The functions are written in such a way as to 
show that in five of the six, the four component parameters collapse into three 
parameters. In the case of the product of two exponential components the result is 
also an exponential function, so that the four parameters collapse to two. R is the 
finite rate of increase when n is small and is defined as shown, R = 1?2FS. For each 
of the nine product functions, the equilibrium egg numbers, k, can be calculated as 
well as the single eigenvalue associated with the equilibrium by 

dn+? =A 
dnA nt = k 

Also, the equilibrium adult numbers, K, can be obtained by the relation 

K = S(k)k. 

The numerical results of these calculations and additional information are shown 
in table 4. To have some means of ranking the functions for a combined goodness 
of fit, the normalized mean square errors for the two components were summed; 
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FIG. 9.-The upper curve is the EsLF recursion function of nsalt (F m fne)?rS 
exp (-snd)n,-1. The lower curve gives the number of adults, Nb, from eggs, nt, Nt = S(nt)nt 
or N, = S exp (-sne)nr. K and N(max) are the equilibrium and maximum points, respec- 
tively, for adults. Likewise, n(min) and n(max) are, respectively, the minimum and the 
maximum number of eggs possible. Dashed line shows the two successive iterations which 
give n(min) and n(max). 

these values for the nine functions are ranked with the smallest combined error at 
the top and largest at the bottom. 

As expected from the lack of clear discrimination among the fits of the compo- 
nent functions based on their mean square errors, the nine combined functions do 
not show impressive differences between those giving the best and worst fits. The 
fourth column gives the eigenvalue, X; the fifth, the equilibrium number of eggs, k; 
and the sixth, the equilibrium adult numbers, K. 

To explain the remaining calculations in the table and also to display some 
additional features common to all the functions, figure 9 shows a graphical repre- 
sentation of the recursion resulting from combining exponential survival, Es, and 
linear fertility, LF or Es X LF. This has the resulting functional form of equation 
(4) in table 3 when this function is multiplied by nt to obtain nt + 1. This recursion is 
the upper curve in the figure. The lower curve is the egg-to-adults function, N = 
S(n)n, which in this case is 

N = nS exp(- sn) . (2) 

In this case the adult numbers pass through a maximum, N(max). The linear 
survival function also produces a maximum for adult numbers (N = Sn - sn2). 
The hyperbolic survival function does not produce a maximum, but as n -> 
N -> Sls, which sets an upper limit to adult numbers. The maximum (or limiting 
value in the Hs case) is also listed in the table. 

The graphical representation in figure 9 shows that K is very close to N(max). 
This is also true for the five other cases in the table for which the linear or 
exponential survival functions were used. The figure shows two other features 
common to all nine functions that are not indicated in the table. First, if the 
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population is initiated with moderately low egg numbers, the system can never 
crash "naturally," even though the recursion itself can take negative values if the 
initial value is high enough (n, > ca. 2400 in fig. 9). The minimum value of n, 
n(min), is shown. Four other functions have a linear component function such that 
negative values are possible, but in all cases n(min) > 0. This conforms to the 
reference populations where crashes never occurred. 

The second feature of the graph to note is a minor one involving an apparent 
discrepancy with the data: the number of adults that survive from the n(max) eggs 
is greater than the number of eggs they produce, n(min). This might appear to be a 
discrepancy with the fertility data, in which even at the highest egg densities the 
number of eggs per female did not drop to fractional values. This discrepancy is 
only apparent because N in the figure is for total individuals, only half of which are 
females. This function and all the others accurately reflect, as they must, the 
fertility data from which they were derived. Finally, all recursion functions exhibit 
a single maximum similar to the one in figure 9. 

Table 4 shows that all eigenvalues are negative, and for four of the nine, X < 
- 1. The number of points in the resulting cycles and the maximum and minimum 
values of adults are also shown. 

Figure 10 shows a few generations of iteration of the EsLF function whose 
recursion function is shown graphically in figure 9. This function has an eight- 
point limit cycle. Figure 1OA for egg numbers shows two complete cycles. The 
dashed line is the equilibrium egg number, k = 1442. Figure lOB shows the 
corresponding adults, N. Because of the proximity of K to N(max), the points 
corresponding to high points for egg numbers are "truncated," so that the adults 
are either close to K or substantially below it. 

The LsLF function apparently produces chaos, or at least a complex limit cycle. 
In figure 1 1A, egg numbers were iterated for 20 generations; l1B shows the 
corresponding adult numbers. In this case the adults almost always remain below 
the equilibrium, K, because, as shown in table 4, N(max) and K are the same. 

Discussion of additional aspects of these recursion functions is deferred to part 
2, so that we can assess the extent to which the results of this life history study can 
explain the behavior of the experimental reference populations of figure 1. 

Although all the eigenvalues were negative, only four of the functions give limit 
cycles. Clearly, more-extensive data are required for distinguishing between the 
models. Indeed, we cannot rule out at this point the possibility that all of the 
variation is due to stochastic variation around some stable equilibrium. What 
information we have, but have not presented, about the culture variance in 
fertility for a given number of females and about the variance of viability for a 
given number of eggs permits the possibility that all of the variation could be the 
result of stochastic effects. A very large study would be required to investigate 
this question, as well as to distinguish models. However, that the model-fitting 
procedure could have ruled out limit cycling but did not do so permits the 
conclusion that limit cycling is a possibility. The equilibrium population size, K, 
produced by the nine functions seems at first too high, since the actual populations 
range from about 100 to 800 with a median size of about 350 (depending on which 
set of populations is used, see fig. 1). Two of the survival functions place a 
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maximum on adult numbers, and in the cases with limit cycling, the cycling points 
sometimes cover rather well the range of observed population numbers. Even the 
hyperbolic survival function dampens the upper ranges of population size, N(max) 
= 1123. Such an upper limit on size would also tend to lower the purely stochastic 
effects with respect to a stable equilibrium of the magnitude we have obtained. It 
would appear then that the adult equilibrium estimates are compatible with the 
population data. 

After constructing the theoretical egg-to-egg recursion functions, as illustrated 
in figure 9, the adult-to-adult recursion function was constructed for comparison 
with the pattern of empirical one-generation transitions derived from the experi- 
mental populations. This graph produced a scattergram with no discernible pat- 
tern. We will show in the next section, however, that for six of the nine functions 
the theoretical adult-to-adult recursion is not defined. 

The principal conclusion here is that the limited data of this in vitro life history 
study resulted in a set of theoretical models, most of which were in reasonable 
agreement with in vivo behavior of the running populations. This establishes the 
main purpose of presenting the data of this section: the parametric values of these 
functions were provided by the flies and, as such, are biologically reasonable; we 
therefore feel confident in using any one of this family of recursion functions for 
numerical illustrations of the theoretical considerations to follow. 

2. THEORY AND APPLICATIONS 

In this part we examine some of the theoretical properties of the recursion 
functions devised to accommodate the fly data of part 1. We then discuss how 
these theoretical findings might be relevant to the interpretation of several experi- 
mental studies that have been published by others. 

It is important to point out that we are addressing a rather widespread phenome- 
non. This delayed effect on fertility arising from competition before maturity may 
be influencing the population dynamics of a great many organisms. Following the 
first studies on Drosophila, the effect of larval density or larval nutrition on adults 
has been reported on many occasions. Probably the first were the experiments of 
Alpatov (1930) and Pearl (1932), with subsequent documentation by Robertson 
and Sang (1944), Robertson (1957), Barker and Podger (1970), Caligari (1980), and 
Marks (1982). Most studied the effects of larval crowding on adult body size, but it 
has been shown on several occasions (Chiang and Hodson 1950; Robertson 1957) 
that fertility is proportional to body size when body size varies for this reason. In 
species other than Drosophila, the effect seems widespread (Marlatt 1907; 
Uhlenhuth 1919; Citus 1935; Ryan 1941; Bates 1949; Istock 1966; Southwood 
1966; Azam and Anderson 1969; Engelmann 1970; Brown and Chippendale 1973; 
Wilbur and Collins 1973; Otto 1974; Lloyd and White 1976; Wilbur 1977; Howard 
1978; Pritchard 1978; Steinwascher 1978; Sweeney and Vannote 1978; Vannote 
1978; Anderson and Cummins 1979; Dunlap-Pianka et al. 1979; Ward and Cum- 
mins 1979; Caligari 1980; Harshman 1982; Marks 1982). 

These citations, together with those for Drosophila, cover 15 species of insects 
spanning four orders, and one species of anuran as well. In addition, it is common 
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knowledge among entomologists that in order to rear healthy, fecund females, 
optimum larval conditions are required. Moreover, adult body size in Drosophila 
(Atkinson 1979) and in house flies (J. Kaeding, pers. comm.) has been used to 
assess the degree of larval crowding in natural populations. Finally, even in 
humans there is some evidence of a negative correlation between female cohort 
size and birth rate (Easterlin 1961, 1968). (Sociologists might protest against 
invoking here the same causes that apply to insects.) 

Equation (1) is the most general formulation incorporating this delayed effect 
into population dynamics. This equation is repeated here, incorporating the factor 
?/2 into the fertility component. 

no+I = F(nt) S(nt)nt . (3) 

This formulation embodies three more assumptions. The first is the assumption of 
discrete generations. This can be arranged in laboratory populations, but discrete 
generations occur in many natural life histories, especially in species of univoltine 
insects, fish, and even birds. The second assumption is that adults enjoy a 
superabundance of resources for their own survival and for egg laying. This 
proved to be the case for the laboratory populations studied here, but other 
regimens of laboratory Drosophila population, such as the serial-transfer method 
(Buzzati-Traverso 1955), may well allow adult numbers in bottles, vials, or other 
containers to become great enough that competition occurs, in which case the 
fertility function is more complex, viz., F(N,n). There are many natural life 
histories, perhaps including that of Drosophila, in which resources appear to be 
limiting for immatures only. The third additional assumption embodied in equa- 
tion (3) is that there is no environmentally induced maternal effect. The extent to 
which this lack of maternal effect occurs is not known, even for Drosophila. 
Maternal effects do exist (as discussed, for instance, for Hyla; Kaplan 1980; 
Travis 1981); the maternal environment affects egg size, which in turn affects the 
time to metamorphosis. In plants, maternal effects are the rule rather than the 
exception. 

Equation (3), therefore, makes four major assumptions (and many minor ones). 
The number of natural and artificial populations that satisfy all four assumptions is 
probably not overwhelming, but we would like to believe that there are enough to 
render their theoretical properties worthy of investigation. 

DYNAMICS OF ADULT CENSUS: THEORY 

We now examine in some detail the effect of the egg-to-egg recursion, natural 
for this system, on the adult-to-adult recursive relationship, N, 1,N,. This is 
because most experiments and observations report adult census data, as was the 
case in the fly study of part 1. 

This system produces two distinct kinds of adult recursive relationships, which 
depend on the form of the egg-to-adult function, N = S(n)n, stated more suc- 
cinctly hereafter as N = A(n). The first type occurs when A(n) is an increasing 
function of n; the second type occurs when A(n) passes through a maximum as n 
increases, A'(ni) = 0. 
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FIG. 12.-Adults, N, from eggs, n: A, cigarette beetle, Lasioderma serricorne; B, drugstore 
beetle, Stegobium paniceum. The fitted function is N = n(1 + an) -b. Modified from Bellows 
(1981). Common names from Sutherland (1978). 

We use the data in figure 12 taken from Bellows (1981) as living examples: the 
drugstore beetle (Stegobium paniceum) indicates no maximum in the N = A(n) 
function; the cigarette beetle (Lasioderma serricorne) clearly shows that there is a 
maximum. (The fly data of fig. 2 suggest a maximum, but because of the large 
errors this cannot be ascertained with certainty; the existence of a maximum in 
the case of the cigarette beetle is unambiguous.) 

The two types of adult recursion arise from the fact that in order to construct 
the recursion, it is first necessary to multiply the N, adults by their fertility, viz., 
F(n,)N,, and in order to obtain F,(n,), it is necessary to know nt, the number of eggs 
from which the adults arose. 

We will refer to cases like that of the drugstore beetle, for which A(n) is an 
increasing function, as "smooth." Here, the number of eggs can be calculated, in 
principle, because the function is invertible; but in the cigarette case, hereafter 
referred to as "humped," the number of eggs producing a given number of adults 
is literally ambiguous. 

Consider first the case of the smooth adult function. Examples are provided by 
three of the nine functions used in fitting the data of part 1. These are the three 
functions that employed the hyperbolic function for egg-to-adult survival. The 
hyperbolic function is smooth because it is an increasing function of n, and it is 
invertible as follows. 

Hyperbolic A(n): N = Sn(1 + sn)-1 (4) 

Inverse: n = N(S - sN)f- (5) 
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FIG. 13.-Adult-to-adult (N,+ 1,N,) recursion function derived from the HsEF recursion 
function for eggs (n,+ 1 n,). The (N,+ 1,N,) function is eq. 6. LIMIT -* indicates the discontinuity 
atN= 1123. 

The right side of equation (5) can now be substituted into F(n), and the general 
equation (3) moved a "half'-generation forward to give a recursion function in N: 

if nt+ I F(nt)Nt (6a) 

and Nt+ = S(nt + ?)nt +I (6b) 

Then using, for example, the exponential function for F(n) (see table 1) and 
equation (4) above for equation (6b), the result is 

Nt I SFNtexp_[ -JNt(S -sNt,<1] 
- 1 + sFN exp I f-Jt(S - sNt] . (6c) 

Using parameters provided by the experiment, this function (shown in fig. 13) 
produces a discontinuity of the "jump" type. When equation (5) is used together 
with the other two fertility functions, the hyperbolic type of discontinuity results. 
In all three cases, however, this is not really pathological because no matter how 
large the number of adults and the number of eggs, the number of progeny 
surviving to adulthood cannot exceed Sls (= 1123, in this case), which is the limit 
of equation (4) as n --> o. Thus, the next generation (t + 1) after very large N, will 
always yield N,+1 < Sls (= 1123); the population will be in the well-behaved 
region of figure 13 thereafter. 

The production of a discontinuity is not a general property of the smooth A(n) 
function, since some data sets might better fit an A(n) function that increases 
without a limit, although such a situation might seem dubious on biological 
grounds. 

It is important to consider now the humped A(n) survival functions in order to 
demonstrate the two kinds of adult-to-adult recursive relationships. With the 
humped A(n) function, an adult-to-adult recursion function is not defined because 
the fertility, F(n,), of the N, adults cannot be determined since the number of eggs, 
n,, that produce a given number of adults is ambiguous. A formal demonstration of 
this fact is straightforward. A given number of adults, N,, can result from two 
different egg numbers, ni, or n2,, which are on either side of the maximum. This 

This content downloaded from 128.163.8.61 on Wed, 5 Nov 2014 10:29:48 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


540 THE AMERICAN NATURALIST 

means there could be two different fertilities F(n), producing two different num- 
bers of eggs in t + 1, as follows: 

nl,+1l =F(nt,)N, (7a) 

n2 ,+ I= F(n2,)N, (7b) 

This, in turn, means that N, adults could give rise to two different numbers of 
adults in generation t + 1: 

N ,t+l= S(n1,,?1)ni,t+i (8a) 

N2t + I= S(n2, + )n2,t + I (8b) 

Thus, in the humped case there is evidently a one-to-two mapping between the 
number of adults in one generation and the next. 

The formal properties of this mapping have not been studied, but the numerical 
results of fitting the functions to the fly data of part 1 can be used to display some 
of the geometrical behavior of this one-to-two mapping. A graph can be con- 
structed by successive iterations for " 1 1/2" generations, starting each time with a 
different initial n, as follows: 

Adults of generation t: N. = S(n,)n, (9a) 

Adults of generation t + 1: N,+1 = S[F(n,)N,]F(n,)N, . (9b) 

Four numerical examples are shown in figure 14. The stability of each system is 
indicated by the eigenvalue, X, as recorded in table 4. In one case the survival 
function is exponential, and in the other three it is linear, so that in all four the 
A(n) function has a hump. In each case the graph was produced by performing the 
1?/2-generation iteration using equations 9, beginning with small values of n, and 
then repeating the process with systematically increasing increments of the initial 
n,. The arrows indicate the path of the (N.,N, + I) point with increasing initial n,. 

The EsEF graph forms a simple loop that passes through the equilibrium, K, and 
then retreats toward the limit (0,0). Three cases are not shown: EsLF, EsHF, and 
LsEF. All three form loops similar to the EsEF case except that the EsLF and LsEF 
retreats become negative. The LsHF graph crosses the 450 line at K; in addition, it 
crosses the diagonal again at (250, 250). In the lower left LsLF graph what appears 
to be a cusp is a tight loop just tangent to the 45? line at K. We computed the lower 
right LsLF simply to provide a better display of looping; this case crosses the 45? 
line three times and the most extreme right-hand point is at K. To compute this 
case, different LsLF parameter values were used. (See the legend; these parame- 
ters are within 1 SE of the point estimates given in table 2.) 

Figure 15 is a graph of the parent-offspring transitions taken from the first 10 
generations of continued iteration of the LsLF case shown in figure 11B. The 
points sketch the left LsLF graph of figure 14, as they must. But, of course, a naive 
observer would hardly be expected to recognize the figure 14 graph from the figure 
15 sketch of it. We have more to say on this. 

We call these graphs produced by the humped-A(n) case "foldback" figures for 
geometrical reasons that will become apparent shortly. Although we have made 
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FIG. 14.-Examples of the one-to-two graphing of (N,,N,+ X) for cases where the egg-to- 
adult function, A(n), is humped. Functions are shown on the graphs and the method for 
making the computations is explained in the text (eqs. 9a, 9b). Arrows indicate the path of 
(N,,N,+ 1) with increasing initial n,. X is the eigenvalue associated with k calculated from the 
egg-to-egg recursion function. K is the adult equilibrium. The parameters are from table 2 for 
all but the lower right graph. Parameters for the lower right: S = .859, s = .3 x 10i-, F = 
13.4, f = 5.3 x 10-3. Slope of the tangent at K is not necessarily equal to X. 
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FIG. 15.-One generation's transitions, N,+1,,V,, taken from the first 10 generations of 
iterations of the LSLF function shown in fig. 1I B. 

no formal study of this system, we have devised a geometrical procedure that is 
useful in understanding how these foldback figures are generated. Figure 16 
depicts a geometrical procedure for constructing the adult foldback figure. In 
figure 16A, the right side of the ordinate constitutes the space with n, +,n, 
coordinates. The upper curve is the egg-to-egg recursion function as indicated. 
The lower curve in this same space is the A(n) function; for this curve the ordinate 
is read as N, adults. The space to the left of the line has the adult coordinates 
N. + 1,N,, with N. increasing to the left. The 1?/2-generation recursion of equations 
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FIG. 16.-Geometrical representation of the 1?/2-generation iteration procedure, eqs. 9, for 
constructing the one-to-two mapping or foldback figures, illustrated in fig. 14. The space to 
the right of the ordinate has coordinates as indicated by the two functions. The left space has 
coordinates as indicated with N, increasing to the left. The iteration procedure shown in 
16A,B,C is explained in the text. 

(9) can now be constructed graphically. A single N, 1,N, point is shown in figure 
16A. On the right a number of eggs, n, ("start") survive to adults, N,. A horizontal 
line is drawn to the left into the N,+ 1,N, space to the equality line, then downward 
to obtain the N, point on the abscissa. This line is also extended upward to 
intersect the value on the N. + 1 ordinate. This value is obtained on the right side by 
iterating the eggs to n, + 1 and letting them survive to N. + 1. The latter value is then 
extended to the left into the N, + 1,N, space, where a point is obtained at the 
intersection with the N, line from the abscissa. In figure 16B the point for 16A is 
recorded and a new one generated with the new start point, which is under the 
egg-to-adult maximum. Figure 16C contains the previous two points and a third 
point, with the n, start even farther to the right, beyond the egg-to-adult max- 
imum. Evidently, the left-most extension of the adult figure is obtained when the 
n, start point on the right is under the egg-to-adult maximum; after that the N, 
abscissa points move back to the right again, causing the adult figure to fold back 
on itself (hence, the term "foldback" figure). 

A geometrical property of the humped case is worth noting. On the right of the 
ordinate in figure 16 the A(n) maximum occurs at a point greater than that at which 
the egg-to-egg recursion is a maximum. It is easy to show that if the A(n) function 
has a maximum, then the egg-to-egg recursion will also have one. If fertility is 
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FIG. 17. -Four Drosophila melanogaster genotypes. Eggs, n, in 5-ml tubes. A, total weight 
of the N adults; B, number of adults, N, from eggs, n. Vertical lines, approximate location of 
maxima. Modified from Caligari (1980). 

constant, the two maxima will occur at the same place; but if fertility is a 
decreasing function of nt (F'[nt] < 0), then the two maxima will have the A(n) 
maximum displaced to the right. Figure 17 shows some data from experiments by 
Caligari (1980) on four D. melanogaster genotypes. These data constitute a live 
example that is equivalent to the system being discussed here. Figure 17B shows 
the number of adults from eggs, the A(n) function. Figure 17A is the total weight 
of those adults. This is equivalent to the relationship being discussed for two 
reasons: biologically, fertility is directly proportional to body weight (see Chiang 
and Hodson 1950; Robertson 1957); mathematically, if body weight is a decreasing 
function of egg density, w(n), then the total weight, W, is 

W = w(n) S(n)n or W = w(n) A(n) , (11) 

and the above function will have the same property of the right shift of the A(n) 
maximum relative to the W maximum. (Mather and Caligari [1981] fit linear s(n) 
and w(n) functions to these data.) This property of the humped case concerning 
the relative positions of the maxima is, of course, a minor one compared to the 
important conclusion that the parent-offspring adult transitions take the form of a 
foldback figure. 

This completes the theoretical description of the properties of this delay effect 
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within the life history as manifested in the census numbers of adults.The adult-to- 
adult recursion function is defined for an increasing egg-to-adult function; but 
when the egg-to-adult function has a hump, the one-to-two mapping of adult 
numbers between generations results in the foldback figures just described. 

SOME APPLICATIONS AND CONCLUSIONS 

The theoretical considerations just described clearly carry implications for 
experimental and observational studies of the dynamics of populations, especially 
when the data consist only of the numbers of adults. 

As noted previously (Prout 1984), the Drosophila literature appears to be 
dichotomized. In one part are the numerous studies (cited in the beginning of part 
2) of the delayed effect on adults of larval crowding. These investigators, how- 
ever, did not incorporate their findings into a formal representation of population 
dynamics as was done in the investigation reported in part 1. In the other part of 
the dichotomy are a number of studies in which various kinds of data were used to 
construct formal dynamic theory, which do not incorporate the delay on fertility. 

Most notable among these studies is an experimental design that entails con- 
structing an experimental adult-to-adult recursion by counting different numbers 
of adults (NI) and recording the number of adult offspring produced (Nt? l). We 
first discuss this type of experiment, then its two-species counterpart, and finally 
applications to other kinds of data. 

The Experimental Recursion Method: One Species 
Examples of the experimental procedure just described are the "monocultures" 

in the de Wit replacement-competition experiments of Ayala (1971), Ayala et al. 
(1973), and Tosic and Ayala (1981) and the strictly monoculture experiments of 
Hastings et al. (1981), Mueller and Ayala (1981), and Thomas et al. (1980). The 
latter two experiments specifically addressed the question of population stability 
by calculating the eigenvalue, X, at equilibrium, K, from the experimental recur- 
sion data. Apparently, there are two variations of the experimental procedure 
entailed in counting flies for N.: in one, individuals are taken directly from stock 
cultures; in the other, flies are taken from stock cultures and raised for one 
generation initiated at the particular size desired, and then N. progeny are counted 
again for the experiment. 

Our discussion above raises the question of the relationship between the empir- 
ical recursion obtained by such input-output experiments and the "natural" 
recursion governing the dynamics of the running population. It is not possible to 
obtain a definitive answer when the reference population is maintained by the 
serial-transfer method because this results in a more or less continuous, age- 
structured population. to which our discrete-generation theory does not strictly 
apply. 

Nevertheless, some useful insights can be gained by performing input-output 
gedanken experiments for the discrete-generation case. First, consider the case in 
which the natural recursion that actually governs the population has a smooth 
adult function, such that an adult-to-adult recursion function is defined (fig. 13). 
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FIG. 18.-Three possible relationships between the true adult-to-adult recursion function 
and that produced by the experimental procedure, smooth A(n) case. Solid lines in A, B. and 
C are the true adult-to-adult recursion functions in the running population for the case of a 
smooth A(n) function. Dashed lines are the results of experimental recursions when the shelf 
fertility, F(n), of the N. adults and the true equilibrium fertility, F(k), have the following 
relationships: A, F(n) > F(k); B. F(n) < F(k); C, F(n) = F(k). Arrows indicate the kind of flies 
used for the count with referen ce to the true recursion (solid curve). 

For the experimental procedure whereby the count for N. is directly from the 
shelf, all of the adults over the various N. will have the same fertility, the "shelf" 
fertility. Figure 18 illustrates the various ways in which the experimental recur- 
sion, the dashed line, could depart from the natural one, the solid line. In 18A, the 
shelf fertility is high, corresponding to low adult density, so that at higher N,'s the 
fertility will be too high and the experimental recursion will be above the natural 
one (recall that the adult function, A(n), is always increasing with the number of 
eggs, n). In 18B, the shelf fertility is low, with the opposite effect on the experi- 
mental re cursion. In 18C, the shelf fertility is at equilibrium, F(k); in this case, for 
N < K, fertility and N,+ l are too low, and for N. > K, fertility and N,+ I are too 
high, suggesting that the correct equilibrium is obtained but that A is too large. 

For the cases in figures 18A and 18B this simple graphical procedure does not 
provide any information about the relation between the experimental and natural 
X's. In fact, when the maximum fertility, F. is used as a constant in place of the 
F(k) functions in the nine functions emerging from the data in part 1, the exponen- 
tial model shows no change in A. Of the eight remaining functions, however, four 
X's increased and four decreased (as compared with table 4 values). This provides 
a numerical demonstration that no general statement can be made about the 
direction in which A might be biased. 

The case in figure 18C, however, is worthy of further consideration because it 
has been demonstrated by the authors cited above that this experimental proce- 
dure is successful in predicting the equilibrium K of the serial-transfer popula- 
tions. One possible reason for this success (there are others; see below) is that the 
shelf fertility is reasonably close to the equilibrium fertility in the running popula- 
tions. Both the populations and the stock cultures are rather dense, so that in both 
of them fertilities could be at a flat part of the F(n) function and thus equal to each 
other. 

Figure 19 is a numerical example of the case in figure 18C. The parameters for 
the HsEr case were used. The adult-to-adult recursion for this case is equation (6) 
and shown graphically in figure 13. The discontinuity in figure 13 is not shown'in 
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FIG. 19.-Numerical example of fig. 18C. Solid line, adult-to-adult recursion of the HsEF 
function as shown in fig. 13, but not showing discontinuity. Dashed line, experimental 
recursion when N, are taken directly from the shelf. Dotted line, experimental recursion 
when cultured at N, for one generation before counting. Dashed line has a maximum, which is 
not shown. 

figure 19. The dashed line results from calculating what happens if the shelf 
fertility is F(k) and the initial N. is taken directly from the shelf. The natural X = 
-0.67, and the slope of the experimental recursion at K is XA = +0.35. This 
figure also provides an answer to an additional question: does the second experi- 
mental procedure of culturing at N. one generation before counting remove the 
effects of the shelf fertility? (This calculation and the preceding one are repre- 
sented formally as part of Appendix A, eqs. A4, All.) The dotted line was 
calculated in accordance with this second procedure. The slope at K is X2 = 
- 0.01. Thus, for this numerical case the shelf fertility does persist and still results 
in a substantial distortion of X. 

These numerical calculations can be generalized. Proof of the following expres- 
sions for X are provided in Appendix A. 

Natural: X = 1 - kF(k)IS'(k)l - kS(k)IF'(k)l (12) 

Experimental: Direct from shelf, XA = 1 - kF(k)IS'(k)l (13) 

One generation at N, A2 = A + k21S'(k)F'(k)I (14) 

Equations (13) and (14), giving X for the two experimental procedures, assume 
the shelf fertility to be F(k). The natural, or true, X (eq. 12) is expressed as a 
function of the equilibrium egg numbers, k. When the adult-to-adult recursion is 
defined (smooth case), the slope of the adult recursion at K is the same as that for 
eggs at k. For equations (13) and (14), representing the two experimental proce- 
dures, XA and X2 are the slopes at equilibrium of the experimental recursions 
obtained using pairs of adults, N,+ 1 and N2., but the right sides of equations (13) 
and (14) are written in terms of egg numbers, k, for comparison with the natural X. 
The only assumptions are that (f'[k],S'[k]) < 0, as indicated. It can be seen that A1 
> X and \2 > A. It should be recalled that no such general statements can be made 
with arbitrary shelf fertility. One final point should be noted concerning the 
numerical example of figure 19: the natural recursion drops after K to approach 
the limit N. + - 0 as N. -* Sls (see p. 539), but the experimental recursions do not 
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FIG. 20. -Same as in fig. 19, except the EsEF function is used to produce the foldback figure 
shown in fig. 14. 

do so. This will be explained presently in connection with humped adult function, 
A(n), or the cigarette case, which we now open. 

In the humped case, the adult-to-adult function is not defined but is replaced by 
a foldback figure. Figure 20 reproduces the ESEF exponential-foldback case shown 
in figure 14 together with the calculated experimental recursion functions, using 
F(k) shelf fertility. The reason for the lack of any peculiarities in the experimental 
recursion is the assumption in making the calculation that fertility is the same in 
females across the different N, values obtained by the counting procedure. In this 
case the corresponding recursion function incorporates fertility as a simple con- 
stant, say, F. (F[k] was actually used for fig. 20.) The survival function, S(FN,), 
used in figure 20 is exponential (with parameters from the flies), which gives a 
well-behaved gentle maximum shown by the dashed line in figure 20. This dashed 
line represents the data acquired by counting directly from the shelf. The second 
experimental procedure (dotted line) is not a simple exponential function (see eq. 
Al lb); nevertheless, it also has a well-behaved maximum. 

Another, less formal way of understanding the normal appearance of the experi- 
mental curves can be obtained by examining the geometrical construction of the 
11/2-generation recursion procedure in figure 18. The adult maximum sets the limit 
for the number of adults, which is why starting with eggs beyond the maximum 
results in retreating points on the left N. abscissa, giving the foldback con- 
figuration. In the experimental situation, however, artificially high numbers of 
adults can be counted such that increasing N. on the abscissa of figure 18 con- 
tinues to proceed to the left and is associated with small N, 1 from the large 
number of eggs produced by the large N. Thus, the foldback figure is unfolded. 
This is also why in the case of the smooth adult function of figure 19 the 
experimental curve remains high, not being constrained by the maximum of 
N(max) Sls in that case. 

It should be emphasized that equations (12)-(14) for natural and experimental 
slopes at K also apply to the foldback cases. The eigenvalue, X, determined from 
the egg-to-egg recursion, establishes the true stability of the system, but XA and X2 
are the slopes at K of the experimentally produced N,+ IN, functions, because 
with constant fertility the slopes at k and K are the same. It is interesting that this 
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artificially produced function in the humped case reveals more about the underly- 
ing order in the system than does the natural foldback figure. 

The discussion so far has emphasized the relation between the natural eigen- 
value, X, and the slope of the experimental function at K. This emphasis occurs, in 
part, because Thomas et al. (1980), who studied 23 Drosophila species, and 
Mueller and Ayala (1981) have offered their large eigenvalues as empirical evi- 
dence against the common occurrence of limit cycles or chaos. We see here that 
their determination of the eigenvalue could be biased upward. Hastings et al. 
(1981) were concerned with the shape of the early part of the experimental 
recursions, namely, its rapid rise to high values. The initial increase is the finite 
rate of increase, R, which is the eigenvalue as N -- 0. For the method of direct 
count off the shelf, R = F(k)S, assuming equilibrium shelf fertility. This is too 
small. For the method of one generation at N, removed from the shelf, R = FS, 
which is correct (see figs. 19, 20). Thus, the delay effect has no apparent bearing 
on the problem addressed by Hastings et al. 

Figures 19 and 20, then, simulate counting experiments on populations whose 
true egg-to-egg recursions are known, with parameters provided by the fly data of 
part 1. These simulated experiments resulted in biases, with curves not quite high 
enough at the start, too flat at K, and much too high beyond K, ultimately resulting 
in the complete obfuscation of the foldback configuration in the case of figure 20. 
For the experiments referred to above, it is not known whether all of these biases 
apply; this could be determined only by the appropriate experiments on the 
reference populations. However, the analytic results, equations (12)-(14), are 
quite general, at least for populations with discrete generations. They show that 
the experimental procedure results in a A biased upward, so that the true X might 
be small enough (negative) to produce limit cycling or even chaos. Equation (14) 
shows that the shelf history is not lost by culturing for one generation at N, before 
the counting. Finally, if the shelf fertility is not equal to the equilibrium fertility in 
the reference population, F(k), then nothing can be said about the direction of 
biases of the experimental curve, except that it is unlikely to reflect the true 
recursion. More likely, these latter, more general conclusions may apply to the 
conclusions of Thomas et al. (1980) and possibly also of Mueller and Ayala (1981), 
although the latter authors did take into account the age structure of their refer- 
ence populations. 

The Experimental Recursion Method: Two Species 
The extension of the fertility-delay effect to two competitors introduces consid- 

erable complexity. We consider this case more for the purpose of introducing the 
problem than for supplying very much in the way of solutions. 

Constructing experimental recursions with mixes of two species or genotypes 
has been done in the form of the de Wit (1960) replacement design. This has been 
done with Drosophila by the aforementioned authors. One of the dynamic aspects 
of special interest here is the detection of a stable joint equilibrium of the two 
species. By constructing one-generation recursions with different initial mixtures, 
Ayala et al. (1973) were notably successful in predicting the approximate stable 
equilibrium value actually observed in running populations of Drosophila. But the 
delayed effect on fertility under consideration here has been clearly demonstrated 
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experimentally by Caligari (1980; analysis in Mather and Caligari 1981) and also by 
Barker and Podger (1970) to occur in competition between two types (genotypes 
in the former and species in the latter). The crowding of larvae affects the size 
(and therefore the fecundity) of not only their own type but also that of the 
competitor. Indeed, in one instance Caligari showed that all of the larval competi- 
tive effect of one type on the other was expressed in adult body size, and not 
manifest at all in larval survival. The question then is how a set of experimental 
recursion experiments, which entail counting adult mixtures, can successfully 
identify the natural equilibrium that occurs in a running population. The analogous 
egg-to-egg recursion for two species is 

ni t+l F(ni ,,nj t) S(n= tnj t)nj t * (15) 

This formulation creates considerable complexity, and a general analysis will not 
be attempted here. One particular function, however, is quite tractable and does 
provide at least an example of how the experimental counting procedure could 
successfully predict equilibrium in a running population. This function is the 
exponential, which results from the product of two component exponential func- 
tions. These component functions are constructed as follows: 

Fertility: F(nit,njt) = exp [ui- fi (r1lki) nit- -kij (rilki) oijnjt] (16) 

and 

Survival: S(njtnjt) = exp [vi - si (rilki) ni t - 0ij (rilki) otijnjt], (17) 

where i 1, 2 andj = 2, 1. When equations (16) and (17) are combined as in the 
general equation (15), their product results in the exponential form of the classic 
Lotka-Volterra equations, as follows: 

ni t +I = ni t exp [r1 - (rilki)ni t - (rIki)o1jnj1t,] . (18) 

This equation results from the following definitions of the parameters of equations 
(16) and (17): 

ri = ui + vi, 

where ui (> 0) gives the maximum fertility, eCi, and vi (< 0) gives the 
maximum survival, evi; 

fi + si 1 [isj) > 0], 

where fi and si are the proportions of the quantity rilki allocated to 
the fertility inhibition and to the survival inhibition, respectively, of 
type i by itself; 

ij + ujj = 1, and (+ijuij) > 0, 

where, god and vij are the proportion of the quantity (rjIkj)oti allocated 
to the fertility inhibition and to the survival inhibition, respectively, 
of type i by type j. 

At equilibrium, 
1 - (Aiki) - oti .1ki) = 0 (19) 
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with the usual stability conditions 

(kj/o12) > k2, (k2/A2l) > k. (20) 

Strictly speaking, these conditions only guarantee invasion from the boundaries 
(k1,O and O,k2). Stability of the internal point (ni) requires additional conditions on 
the parameters. 

We now suppose that pairs of adults (N1,N2) are counted directly from the shelf 
(Ayala 1971). The shelf fertilities of the two separate species are F1 and F2; the 
numbers of eggs laid will be NIF, and N2F2. The survival component, equation 
(17), can now be used to obtain the offspring adults after a "1/2" generation of 
survival competition. These offspring adults are denoted by N1 and N2, or Nj: 

Nj = NjFj exp [vi - sj(rjIkj)NjFj - vaoj(rjlkj)NjFj]. (21) 

In this experimental procedure, "equilibrium" is defined by N1 = Ni (= N1). 
Equilibrium, so defined, is obtained by solving the following equation for Ni,Nj: 

In Fj + vi - sj(r1Ikj)NjF, - vaoj(rjlkj)NjFj = 0 . (22) 

With arbitrary Fj the above expression is not particularly informative. The shelf 
fertilities become much more circumscribed, however, if we assume that the 
single-species populations are cultured on the shelf in a manner similar to the 
conditions that they experience when in competition. This assumption is analo- 
gous to the one used earlier in the analysis of single-species populations. Taking 
this assumption literally, the two different shelf fertilities are those obtained at ki, 
viz., Fi(ki). A calculation given in Appendix B shows that this assumption results 
in the following (eq. B3): 

siri - (sjrIkj)NjF, - ijajrkj)NjFj= 0, (23) 

with the stability conditions 

(S1/ff12) (kj/otlD2 > k2, (S21/C21) (k2/Ot2l) > k, (24) 

"Stability" in this situation means obtaining experimentally the appropriate pat- 
tern of vectors in the N1,N2 space. These conditions provide considerable infor- 
mation about the problem at hand. If the actual running population comes to 
equilibrium, then conditions (20) are satisfied. And if these conditions are 
satisfied, then the conditions for the experimental, stable N1,N2 equilibrium, 
conditions (24), show that there will surely be an equilibrium somewhere if aij ' 
si. In words, a sufficient condition for an experimental equilibrium is that, in the 
survival component of the life history, there is more competition allocated to 
self' than there is to the competitor, for both species. Because of the com- 

plementarity of these allocation coefficients, the opposite is true for the fertility 
component in the running population, viz., 4ij 2 fi. 

In Caligari's (1980) experimental case, u12 -> 0 and 412 -> 1.00, for one type. If 
this were true for the other type, u21 and 4+21 (not so in Caligari's experiment), then 
an equilibrium in one-generation recursion experiments would be guaranteed. It is 
possible that future experiments directed toward this problem will show that often 
the two allocations are about equal, aij = sj (and ijj = fj). (This does not mean that 
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the absolute magnitudes of the self effect, rilki, are equal to those of the competitor 
effect, tijrilki, but only that they are allocated equally between the two compo- 
nents.) If, then, ij = si, not only will a stable equilibrium be detected, but the 
equilibrium values, N1,N2, will be precisely those of the running population. This 
latter result is by no means obvious; a demonstration of it is given in Appendix B. 

T hus, there appears a reasonably large parameter space wherein the experimen- 
tal recursion procedure approximates the behavior of the running population. It 
should be emphasized that this analysis of the two-species recursion experiment is 
strictly in terms of a simple exponential function. The robustness of these findings 
for other functions is unknown. It seems unlikely that other functions would show 
the experimental recursion finding the precise equilibrium, but the conditions for 
predicting an equilibrium somewhere might be a relationship analogous to that for 
the allocation parameters of the exponential, namely, that the self effects and the 
competitor effects are allocated about equally to the fertility and survival compo- 
nents, or in a way even more favorable to equilibrium. 

This conjecture, then, suggests at least one reason why the experimental recur- 
sion method can successfully reveal the actual behavior of a running population. 
Furthermore, if each combination of N1 ,N2 is cultured for a generation of competi- 
tion before being counted (as in Ayala et al. 1973), this can only improve the 
accuracy of the method, as was shown explicitly and more generally for the single- 
population system. 

Before proceeding to other aspects of the fertility-delay phenomenon in single- 
species populations, we should emphasize once again that all of the above analysis 
of the experimental recursion method-for one species or two-cannot have the 
kind of precision implied. Because the serial-transfer reference population that 
accompanies some experiments are age-structured, the above discussion can 
apply to the "running population" only in a very approximate way, at best, and 
perhaps only metaphorically. It is possible that in these rather dense populations, 
direct competition among females dominates the variation in fertility, thus over- 
riding the delay effect from larval crowding, but it would seem this requires 
experimental demonstration. 

Other Applications and Conclusions 

The work of Hassell et al. (1976) has been cited by Mueller and Ayala (1981), 
together with the work of Thomas et al. (1980), in support of the empirical 
generalization that limit cycling is uncommon in real populations. We suggest here 
that the two latter experiments may have resulted in overestimates of X. The study 
by Hassell et al. consisted of incorporating life history data from 26 species of 
insects into a recursion function that was then analyzed for equilibrium stability, 
with the result that only one case, a laboratory population, showed a simple limit 
cycle; all the others indicated a stable equilibrium. These authors apparently used 
a constant value for fertility in all cases: "Estimates of A [= R] . . . depend, in the 
first place, upon knowing the average maximum fecundity per adult" (1976, p. 
474, emphasis ours). The details of the nature of competition in all life histories are 
not provided, but those that do appear indicate the existence of competition 
among immatures and the use of a constant for fertility. If this is the case for the 
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other species analyzed, then because of the widespread occurrence of the delayed 
effect in insects, the assumption of constant fertility seems questionable. There- 
fore, on the basis of the analysis by these authors and those by Mueller and Ayala 
and Thomas et al. the present empirical evidence bearing on the intrinsic nature of 
equilibrium stability is inconclusive. 

These considerations might also apply to the monitoring of adult numbers in 
experimental and natural populations. Consider a population whose intrinsic 
recursive relationship is a foldback figure. If the population is following a complex 
limit cycle, even in the absence of stochastic effects, the temporal sequence will 
be difficult to interpret, and a graph of one-generation transitions will make no 
sense. In fact, May and Oster addressed the problems of how one might handle 
data produced by a population in a chaotic regime: "One might think that a simple 
way out of this dilemma if presented with a set of apparently unpatterned results 
would be to try and reconstruct a generating function [recursion] for the trajectory 
by plotting all adjacent pairs [N,,N,+ J' (1976, pp. 585-586). Unfortunately, they 
continued, such a procedure is unlikely to be successful because the stochastic 
effects of a demographic nature, as well as those affecting parameter values, 
"fuzz out" the graph. But even with no stochastic effects, the foldback figure 
would surely obfuscate the order in the system (see fig. 15). This circumstance 
suggests the term "superchaos." 

Even a population with an underlying stable equilibrium, but subject to pertur- 
bations of an episodic nature with a several-generation waiting time, does not 
reveal the truly simple order in a system that has a foldback pattern. In a literature 
review of monitoring data, Tanner (1966) analyzed N,,N,, 1 transitions in natural 
populations and found substantial evidence for density regulation among different 
populations of different species. How many more cases were there that con- 
formed to the conditions being discussed here and that would have revealed 
density regulation had early immatures been monitored (n, n,? 1) instead of adults 
(N,.N,, I)? Indeed, it would seem that the solution to this problem would be the 
regular monitoring of eggs or immatures. Although there are technical problems, 
efficient methods have been devised for monitoring immatures, particularly those 
of many agricultural arthropod pests. 

A final aspect worth noting is the possible consequences of this delay effect 
within the life history when it occurs in age-structured populations. This could be 
the biological basis of a time delay resulting in limit cycling in such populations. 
Frauenthal (1975) showed that, in theory, limit cycles in human populations could 
result from the negative correlation between cohort size and fertility, which we 
mentioned earlier. This theory should apply to organisms which have smooth 
adult functions so that cohort size is an increasing function of the density of 
immatures and the latter has an inverse effect on fertility. 

Some experimental findings are suggestive: Taylor and Sokal (1976), working 
with house fly populations, analyzed the limit cycling using a time lag of 10 days, 
which is roughly equal to the time interval between egg and adult. Also, May 
(1973, pp. 100-102), analyzing with a finite recurrence equation the experimental 
blow fly populations of Nicholson (1957), used a time lag of 9 days and the egg-to- 
adult time of about 11 days. The blow fly, however, has a decidedly humped adult 
function (Nicholson 1954). 
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In conclusion, we reiterate that we do not claim to be dealing with a universal 
phenomenon. The number of species and populations meeting all of the assump- 
tions enumerated earlier surely must be circumscribed. But the importance of this 
phenomenon within life history delay is common enough to be worthy of future 
research. 

SUMMARY 

In part 1 we present data from a life history analysis of a discrete-generation 
laboratory population of Drosophila melanogaster. Two related density- 
dependent processes govern the population dynamics. (1) The egg-to-adult sur- 
vival rate is a decreasing function of egg density; N = S(n), where N is adult 
density, n is egg density, and S'(n) < 0. (2) Because fertility depends on the egg 
(larval) density from which the females came, it is also a decreasing function of 
egg density; F(n) is eggs per female, and F'(n) < 0. The recursion function must be 
written in terms of eggs; thus, 

n + 1 = F(n,)?12S(nt)nt. (1) 

Three different functions are fitted by least squares to the F(n) data and to the 
S(n) data. Combining these functions according to equation (1) gives several 
different recursion functions that fit the data about equally well. Some of these 
functions result in limit cycles; there is one case of chaos. This case yields 
predictions of adult numbers, N, falling within the experimentally observed range. 
In part 2 we document the widespread occurrence of this delay effect of competi- 
tion among immatures on their subsequent fertility, justifying the study of some of 
the theoretical consequences of equation (1). For a common class of survival 
functions, the adult-to-adult recursion is not defined, but rather there is a one-to- 
two mapping of the number of adults from one generation to the next, with the 
result that experiments or observations dealing with adult numbers could appear 
stochastic, obscuring the true dynamic behavior of the population. In part 2 we 
also reexamine the conclusions of some published experiments and observations 
that did not consider this delay effect. In particular, the data adduced as empirical 
evidence against the common occurrence of limit cycles or chaos do not necessar- 
ily warrant that conclusion. 
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APPENDIX A 

ONE-SPECIES INPUT-OUTPUT EXPERIMENTS: THE SLOPE AT EQUILIBRIUM 

Two methods have been employed to construct the experimental recursions. Method 1 
entails counting out into bottles different numbers of adults, N, taken directly from the 
shelf, and then determining the number of offspring N produced by these adults. Method 2 
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starts out the same as method 1 so we obtain, say, N adults. From these N' we count 
another N adults, which produce N adults. 

The following provides the derivations of expressions (10)-(12), which relate the eigen- 
values XI and X2 from the two experimental procedures to the actual X in the running 
population. 

The basic relationships in the running population are as follows. 
The recursion function in terms of egg number is 

nt 1 = F(n,) S(n,)nt (A 1) 
at equilibrium, k, 

1 = F(k) S(k). (A2) 

The eigenvalue is 

(dn?+I/dnt) Ik = X = 1 - kF(k) I S'(k) I - kS(k) I F'(k) . (A3) 

The absolute values of S'(k) and F'(k) are given so that their negative signs can show 
explicitly in equation (A3). 

Experimental Method 1 

Assume the shelf population has constant fertility, F. Actually F should be thought of as 
a mean taken over all cultures regardless of the number of adults, N, taken for the 
experiment. 

For each N counted out, 

N = S(FN)FN, (A4) 
where ! is the number of offspring produced, as explained above. The slope at N is 

N' = F S(FN) -FPNS'(FN) |. (A5) 
"Equilibrium," K1, is defined as 

N = N = K1. 
(Here "equilibrium" simply means the number of adults occurring when the input and 
output are equal, and not a dynamic equilibrium achieved in a running population. The 
object of such experiments is to estimate the value of the dynamic equilibrium and its 
eigenvalue.) 

At this equilibrium, 

1 = S(FKI)F. (A6) 
The slope at equilibrium, XA, is 

X = 1 -- F2K, S'(FK1) . (A7) 
The number of eggs laid at any N is 

n = FN 
and at equilibrium, KI, the egg numbers are 

k, = FK, . (A8) 
Substituting equation (A8) into (A7), 

X I= 1 - Fk I S'(k1)I. (A9) 
If the shelf population is at the same equilibrium as the running population, then k, = k and 
F = F(k). Substituting into equation (A9) gives 

A = 1 - kF(k) I S'(k) . (AIO) 
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Referring to equation (A3) we can see that Al > X. 

Experimental Method 2 

The steps in method 2 are as follows. 
1. The number of eggs laid by the N adults counted from the shelf is NF. 
2. These eggs produce 1T adults, whose fertility is F(NF). 
3. N adults are counted out from the N., and these adults, too, have fertility F(NF). In 

the case of a foldback, the experimental N could be made to exceed the natural maximum 
by using replicate cultures. 

4. The number of eggs laid by these N adults is NF(NF). 
5. These eggs then survive to produce N adults, the output value used for the input, N, 

in the experiment. N is, therefore, 

N S[NF(NF)] NF(NF) . (Alla) 

Equation (Alla) can be more simply represented as follows: 

N= S(N)F(N)N. (Allb) 

At equilibrium, 

1 = S(K2)F(K2) (A12) 

and 

X2 = 1 + K2 S(K2) F'(K2) + S'(K2) F(K2) , (A13) 

where F'(K2) and S'(K2) are derivatives with respect to N evaluated at K2. If, as discussed 
in the text, it is assumed that the shelf population and the running population are main- 
tained in the same way, then taking this assumption literally means that both populations 
have the same equilibrium (K and kj); and A and X2 can be compared directly. 

Assuming F = F(k), then K2F(k) = k; and using these, the following relationships can be 
derived: 

F(K2) = F(k) 
F'(K2) = F(k)F'(k) 
S(K2) = S(k) 
S'(K2) = S'(k)[F(k) + kF'(k)] 

Substitution into equation (A13) yields 

X2 = 1 - kS(k) I F'(k) I - kF(k) I S'(k) I + k2 S'(k)F'(k) | (A14) 

or, using equation (A13), X2 = A + k2 I S'(k)F'(k) I so that X2 > A.. 

APPENDIX B 

TWO-SPECIES INPUT-OUTPUT EXPERIMENTS: JOINT EQUILIBRIUM 

Competition between two species incorporating the fertility delay is formulated in the 
text using an exponential function. The observations considered here start with equation 
(22): 

ln F, + vi - s1(rj1kj)N1Fj- l = 0? (B-1) 
The Nj are the numbers of adults taken from the shelf that give an equilibrium in the 
experimental recursion. 

It is now assumed that the two species on the shelf have separately come to equilibria, ki, 
under the same culture regimen as the population in which they compete. Under these 
circumstances, the shelf fertility, Fi, can be denoted by Fi(ki). Using the exponential 
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fertility function (16) with aij = 0 (removing the competitor), 

Fi(ni) = exp ui - fi (r/lki)ni 
When ni = ki, 

F1{ki) = exp ui - firi (B2) 

Substituting (B2) for Fi in the first term of equation (B 1) results in the first term becoming 
i- firi + vi. Since ui + vi = ri, this becomes ri(l - fi), which becomes risi because 

si = 1 - f. Substituting into (Bi) gives equation (23): 

risi - (sir/lki)NFi - oij-ij rlkj)NjFj= 0. (B3) 

A straightforward boundary analysis gives the stability conditions (18) for these equilibria. 
The special case in which fertility and survival allocation are the same between the self 
effect and the competitor effect is specified by rij = si (for both species). Substituting si for 
rij in equation (B3) results in the following: 

1 - (NF/ki) - oty (N1jFjki) = 0 (B4) 

The equilibrium equation for the running population is 

1 - (ai/ki) - (otiyj1ki) = 0 (B5a) 
or 

1 - (llki)(hi + otijhj) = 0. (B5b) 

Since N1Fi is the number of eggs laid by the species taken from the shelf, then, comparing 
equations (B4) and (B5), the experimental recursion will give an equilibrium when the eggs 
laid by the two species equal the equilibrium number of eggs, hi, in the equilibrium running 
population. This is not so reasonable as it may seem, because in the experimental system 
competition occurs only in the survival component. The equal allocation assumption 
produces this simple relationship. The equilibrium numbers of adults, N1, equal the equilib- 
rium adult numbers in the running population, denoted by N1(pop). We already have the 
following relationship: 

N1Fi(ki) = N1(pOp)Fi(hii,tij) (B6) 

The left side of equation (B6) is the equilibrium egg number from the shelf, recalling that 
Fj(kI) was used for the shelf fertility, Fi (see eq. B2). The right side of equation (B6) is the 
equilibrium number of eggs in the population; the adults Nj(pop) are multiplied by the 
equilibrium fertility F1{h1,,ij) in the population. The two adult numbers are equal if the two 
fertilities are equal. The equilibrium population fertility is 

Fi(,ij,,ij) = exp [ui - fj(r1/kj)hi - jxijpy(r/kj)hj]; (B7a) 

if oij = si, then Pie = fi. Substituting for ijj in the above gives 

Fi(hPj)= exp [ui - i(r/lki)(hi + otijhj)] . (B7b) 
From equation (B5b), hi + aijj= ki so that 

Fi(hihj) = exp (ui - firi), (B8) 

which is the same as Fi(ki) as given by equation (B2). The exponential function, at least, 
shows that with the equal allocation, the experimental recursion method will yield equilib- 
rium adult members that would occur in a mixed population that was maintained in the 
same way as the separate shelf cultures of the two species. The robustness of this result is 
quite unknown. 
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