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Abstract
Recent insights into the mechanisms underlying the biological effects of low
dose effects of ionising radiation have revealed that similar mechanisms can be
induced by chemical stressors in the environment. This means that interactions
between radiation and chemicals are likely and that the outcomes following
mixed exposures to radiation and chemicals may not be predictable for human
health, by consideration of single agent effects. Our understanding of the
biological effects of low dose exposure has undergone a major paradigm shift.
We now possess technologies which can detect very subtle changes in cells
due to small exposures to radiation or other pollutants. We also understand
much more now about cell communication, systems biology and the need
to consider effects of low dose exposure at different hierarchical levels of
organisation from molecules up to and including ecosystems. Furthermore we
understand, at least in part, some of the mechanisms which drive low dose
effects and which perpetuate these not only in the exposed organism but also
in its progeny and in certain cases, its kin. This means that previously held
views about safe doses or lack of harmful effects cannot be sustained. The
International Commission on Radiological Protection (ICRP) and all national
radiation and environmental protection organisations have always accepted a
theoretical risk and have applied the precautionary principle and the LNT
(linear-non-threshold) model which basically says that there is no safe dose of
radiation. Therefore even in the absence of visible effects, exposure of people
to radiation is strictly limited. This review will consider the historical context
and the new discoveries and will focus on evidence for emergent effects after
mixed exposures to combined stressors which include ionising radiation. The
implications for regulation of low dose exposures to protect human health and
environmental security will be discussed.
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1. Biology of ‘non-targeted’ effects

Within conventional radiobiology as accepted in the 1950s continuing through to the 1990s
there was little consideration of epigenetic effects, because the traditional concept of
radiobiology was based on target theory [1, 2]. For an effect to occur, radiation had to hit a
defined target within the cell, assumed to be DNA. Assumptions about the number of targets
hit could then be made from measurements of dose and dose rate [3, 4]. The evolution of non-
targeted radiobiology meant that certainly at low doses the previous assumptions needed to be
reconsidered in the light of the existence of non-DNA mechanisms [5–7]. The mechanisms
underlying radiation effects are not constant with respect to dose and it would now be generally
accepted that low dose effects are mechanistically different to high doses effects. This is
not to say the mechanisms are necessarily mutually exclusive but it does mean that non-
targeted effects will contribute more to the overall outcome at low doses where targeted
effects are small. Targeted effects will predominate at high doses and in situations where
non-targeted effects have been inhibited or otherwise prevented. In terms of the progression of
radiobiological thinking in this field, disease caused by radiation no longer had to be exclusively
genetically based, but radiation could promote or exacerbate systemic disease. This disease
could have been caused for example by a chemical mutagen [8–10]. Equally, the radiation
could facilitate a non-mutation based inflammatory type disease [11–14]. These concepts,
although largely accepted theoretically by the radiobiology community, have been difficult to
prove epidemiologically because of what are generally called ‘confounding variables’ such as
smoking, drinking, age, gender, or concurrent past or future exposures to the same or a different
pollutant [15, 16]. Of course these actually reflect the futility of trying to assign causation,
as defined in epidemiology, to one agent when the doses are low! It has also been argued
that radiation and many chemical ‘pollutants’ might actually boost the immune system and be
good [17–19]. The hormetic argument has many interesting applications but is unproven with
regard to multiple pollutants. This further adds to the confusion and controversy surrounding
low dose exposures. The essential point is that there will be huge individual variation due
to involvement of epigenetic and non-targeted factors in the response [20–22]. At any one
time we are as unique epigenetically as we are genetically. Epigenetic differences are linked
to gender and lifestyle. In theory therefore a low dose of radiation could cause any number
of effects ranging from beneficial to death-inducing disease depending on the context of the
exposure and the interplay of factors such as cell communication, microenvironment, tissue
infrastructure and a whole host of systemic variables which influence outcome from a cellular
track of ionising radiation [23, 24].

2. Radiation as ‘just another stressor’

Key developments leading to the current widespread acceptance of ionising radiation as ‘just
another stressor’ include;

(1) The development of very sensitive techniques such as M-FISH, for detecting chromosomal
abnormalities [25–28].

(2) The emergence of studies showing that delayed or persistent sub-optimal survival
(reproductive death) could be seen in surviving progeny of irradiated cells [29–32].

(3) The gradual understanding of genomic instability as a mechanism by which low doses of
radiation could cause delayed or persistent damage to chromosomes [33–37].

(4) The development of knowledge of ‘bystander effects’ whereby chromosome damage,
death, DNA damage and various other consequences occur in cells receiving signals from
cells irradiated with low doses of radiation [38–43].
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(5) Criticism of the epidemiological research undertaken after the Hiroshima and Nagasaki
bombs as ignoring the damage from residual radiation [44, 45].

The new paradigm emerged initially as a result of re examination of firmly held beliefs
and some odd results in the laboratory which did not fit. Proof of the new hypotheses required
the application of techniques such as molecular imaging, M-FISH, and SKY as well as the
development of tissue culture techniques for human normal tissues which permitted functional
studies to be performed [46]. Older studies tended to use high doses on a limited number of cell
lines or highly inbred animal strains. These tended to thrive in the laboratory but were often
unrepresentative of tissues in the outbred human or non-human [47–49].

The emerging non-targeted effects field has three important consequences for radiation
protection and risk assessment:

2.1. The concept of hierarchical levels

Hierarchical levels stretch from the individual ‘down’ (organs–tissues–cells–organelles–genes)
and ‘up’ to populations (multiples individuals/single species (multiples species—ecosystems)).
Confusion in the low dose exposure field (radiation and chemical) arise from lack of
consideration of this concept. Most of the arguments about whether radiation is ‘good for
you’ or ‘bad for you’ fail due to lack of consideration of the hierarchical level at which the
effect occurs and because most of the arguments are anthropocentric. For example cell death
is seen as a ‘bad’ effect but if it removes a potentially carcinogenic cell from the population
of cells in a tissue it could prevent cancer starting and could be seen as ‘good’. Similarly
in the non-human populations—death of radiosensitive individuals which cannot adapt to the
changed (now radioactive/chemically polluted) environment, could be ‘good’ for the population
in evolutionary terms depending on the life stage and reproductive status when the effects
manifest, although death will always be ‘bad’ for the individual. It is only by considering
responses in context, that any conclusions can be drawn about risk or harm.

2.2. Spatio-temporal concepts

There are two aspects to this—one is simply, the age of the irradiated unit and the spatial
deposition pattern of the ionising energy. This concept is relevant across all hierarchical
levels. Obvious considerations are the age or maturity of the unit (e.g. cell, organ, lifeform,
ecosystem) receiving the track, the density of the energy deposition, the lifetime of the unit
and its importance in the context of functionality of the higher hierarchical levels. Young units
tend to be less stable and thus more vulnerable (or more adaptive?) than old or mature units
because of their faster metabolic rate, higher rate of growth/cell division and at the ecosystem
level, because of their less strongly developed interdependencies. There is also (usually),
more redundancy in young units, for example there are more available individuals, better
reproductive rates and better viability from young progenitors, whether cells or individuals. The
other aspect is that the delayed effects of radiation and bystander effects mean that radiation
effects are not fixed in time or space to the energy deposition along ionising track. The effects
can persist and manifest at distant points in time and space. These concepts are also discussed
elsewhere [8, 9].

2.3. The importance of mixed exposure analysis

Pollutants including radiation seldom occur in isolation. In fact most environmental
radioactivity comes from radioisotopes which are chemical entities. This means that there
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is always a mixed exposure and that both the chemical and radioactive aspects need to be
considered. Additive damage used to be an acceptable way to deal with mixed exposures (if
any way were used!). The new field of non-targeted effects with the consequent realisation
that emergent properties can exist, which were not predictable from the individual agent dose
response data, makes this no longer acceptable. Two simple examples of why new analytical
thought is needed are presented below.

The following situations could occur and could be argued, but there is no consistently right
or wrong answer. Without more information on the initial status of the irradiated unit;

(1) If a cell is irradiated it can be internally or externally induced to undergo apoptosis whether
or not it is ‘damaged’, but if a chemical e.g. cadmium is present, it could interfere with
apoptotic signalling so that the cell lives. If cell survival were measured, the assay would
suggest cadmium were radioprotective but the surviving cells could carry mutations which
might (or might not) be harmful.

(2) At the population level, the situation could occur where a population becomes adapted
to a chronic radiation exposure. In this population, a further stress either radiation or
chemical might have little effect due to cross resistance, but this same level of stressor
might devastate a pristine, non-adapted population. Equally, withdrawal of the chronic
stressor might damage the adapted population.

These complexities call for a re-think of fundamental approaches to both epidemiological
causation after low dose exposures to anything. They also question the need regulators have
to regulate to a number (dose unit/exposure unit). Some of the issues concerning the latter
position include the following:

How to ensure compliance if there is no ‘safe’ or legal limit?
How to deal with multiple stressors especially if the interactions are not known?
How to correct for dose rate/time of exposure?
How to deal with mixed chronic and acute exposures?
How to factor in possible adaptive, hormetic or antagonistic effects?
How to regulate in pristine versus dirty environments?
The issues of legal causation are highly relevant to the former point but outside the scope of

this review. Discussion of these issues can be found elsewhere [50–52]. Ultimately, in order to
resolve these issues, more data are needed for mixed exposure scenarios using relevant species.
Systems biology approaches involving close interaction between experimental biologists and
modellers are also required.

3. Data concerning low dose effects of mixed exposures

There are very little data where low dose exposures to multiple stressors/mixed contaminants
involving radiation and a chemical are investigated. The field was reviewed by Mothersill
et al [53] in 2006. Recent interest in non-targeted effects probably means more attention
will be paid to this area in future. Gowans et al [54] have data showing chemical induction
of genomic instability. Data from the authors’ own and other laboratories shows that heavy
metals singly or in combination can cause genomic instability [55–67]. Delayed death and
chromosome aberrations in human cells following nickel, titanium or cadmium exposure have
been reported [64–67]. Similar effects have been reported in fish cell lines [58–63], and more
recently in live fish exposed to very low doses of gamma radiation 4–75 mGy over 48 h in the
presence of heavy metals at levels just above background [68, 69].

Organic pesticides and detergents such as prochloras, nonoylphenol, nonoxynol and
dichloroaniline have also been found to cause delayed lethal mutations in fish cells [57, 58, 61].



Implications for environmental health of multiple stressors A25

Chromium and vanadium used in implants and dentures lead to a variety of genetic and
reproductive delayed effects in vivo and to multiple endpoints associated with non-targeted
effects in vitro [64–67].

4. Implications for environmental protection and human health

While many of the studies cited above are concerned with fish rather than humans, the
data show that non-targeted effects can be induced by low dose exposures to a number of
environmental chemicals as well as ionising radiation. This means that combined exposures
to low doses of these agents cannot be regulated in isolation and that studies of potential
mechanistic interactions are important. Radiation protection of humans could find use from the
approaches which are being taken by the task groups within ICRP, IAEA and the US-DoE (see
for example [70, 71]) who have to formulate policy to regulate exposure of non-human biota.
Many of the issues involved such as dealing with non-cancer endpoints, mixed contaminants or
chronic low dose exposure are real issues in human radiation protection.

5. Summary thoughts and recommendations

The challenge in the low dose exposure field is to tease out the ‘noise’. Noise is the euphemistic
term we use when the level of the disease which is un attributable to our favoured causative
agent, is too high to prove causation formally in any strict scientific or legal sense. Perhaps
we should accept that we cannot assign causation and instead view ionising radiation as
one among many agents which together contribute to cause disease. Before we can do this
it is vital to understand the key mechanisms and in particular to find areas of mechanistic
commonality suggesting common causation. Biomarkers may be useful to identify possible
common mechanisms and to validate their relevance across different hierarchical levels. If
this is achieved it should be possible to model links between effects at one level e.g. cellular
or individual leading to harm and risk at higher levels—in this example the individual or the
population. Biomarker studies do need to be interpreted cautiously however because they are
often used as surrogates for risk when in fact they may merely be pointing to change in the
system. Without the back-up modelling and multi-level analysis of their relevance they may
lead to false conclusions and confusion about the true risk of an inducing agent.

The problem of establishing causation following mixed exposures remains along with the
issue of what constitutes ‘harm’. In the non-human biota field, there is great concern about
doing more harm than good, if action levels are enforced which might require ‘remediation’
of a habitat—i.e. removal of contaminated vegetation and soil. This could cause much more
harm to the ecosystem than the original stressor. In the realm of human protection against low
dose stressors, issues might include the ethics of genetic screening to identify sensitive sub-
populations. If a sensitivity marker were available, who should be tested and when? Should
diagnostic screening be forbidden to these individuals because of their possible sensitivity to
low doses of radiation? There are also issues regarding lifestyle choices and risk benefit analysis
at the biological level. Evolutionary adaptation leads to a fitter population (of cells, individuals)
by eliminating the weak units but how is that population changed? In dealing with concepts
of adaptation to environmental stressors where ‘nature’ sorts things out in the optimal way, is
‘nature’s way’ to Nietzian for Man?

It would be nice to conclude this reflection with a ‘way forward’ but as we are still in
the very early stages of accepting that radiation doses effects at low doses are non-linear, that
multiple stressors impact the final outcome, and that what appears to be bad (or good) may
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be good (or bad)—it is perhaps best to recommend caution and consideration of these points
rather than a great new regulatory framework!
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