There are some procedures where the fly lines obtained can be directly examined without having to make F1 generations with selective crosses.

The lines which are OK371-ChR2 homozygous line, which expresses the light-activated channelrhodopsin in motor neurons. This line is made by crossing w^{1118} ;P{GawB}VGlut^{OK371} (BDSC stock # 26160) with w*; P{UAS-H134R-ChR2}2 (BDSC stock # 28995 Pulver et al., 2011).

The homozygous line for both OK371-Gal4 and UAS-H134-ChR2 was used in this study. We used another recently created ChR2 line which is very sensitive to light called y¹ w¹¹¹⁸; PBac{UAS-ChR2.XXL}VK00018 (BDSC stock # 58374) (Dawydow et al., 2014). Virgin females from w*; P{UAS-H134R-ChR2}2were crossed with males of D42-Gal4 (BDSC stock#8816), TRH-Gal4 (BDSC stock#38389), Gad1-Gal4 (BDSC stock# 51630, or ppk-Gal4(BDSC stock# 32078) line to express ChR2-XXL variant in motor neurons, serotonergic neurons, GABAergic neurons or Type IV sensory neurons, respectively.

We also used UAS-H134R-ChR2;Trh-Gal4 (III) homozygous line which is kindly provided by Dr. Andreas Schoofs (Schoofs et al., 2014).

Table 1: Fly lines

Line	Sex	Outcome
w ¹¹¹⁸ ;P{GawB}VGlut ^{OK371} Cross with line below opposite	Male or Female sex	ChR expressed in neurons which express vesicular transporter for glutamate. Motor neurons.
w*; P{UAS-H134R-ChR2}2	Male or Female	
y ¹ w ¹¹¹⁸ ; PBac{UAS-ChR2.XXL}VK00018 Virgin Female Cross with below lines		
D42-Gal4 TRH-Gal4 Gad1-Gal4 ppk-Gal4	Male Male Male Male	ChR expressed in motor neurons. ChR expressed in serotonergic neurons ChR expressed in GABAergic neurons ChR expressed in Type IV sensory neurons

Can use male or female of UAS-H134R-ChR2;Trh-Gal4 (III) homozygous line. There is no need to make and crosses as this line is homozygous. All one has to do is feed one group ATR and a control group without ATR. Pulver SR, Hornstein NJ, Land BL, Johnson BR. Optogenetics in the teaching laboratory: using channelrhodopsin-2 to study the neural basis of behavior and synaptic physiology in Drosophila. Adv Physiol Educ. 2011 Mar;35(1):82-91. doi: 10.1152/advan.00125.2010.

Alexej Dawydow, Ronnie Gueta, Dmitrij Ljaschenko, Sybille Ullrich Moritz Hermann, Nadine Ehmann, Shiqiang Gao, André Fiala, Tobias Langenhan , Georg Nagel and Robert J. Kitte Channelrhodopsin-2-XXL, a powerful optogenetic tool for low-light applications. Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13972-7. doi: 10.1073/pnas.1408269111.

Schoofs A, Hückesfeld S, Surendran S, Pankratz MJ.Serotonergic pathways in the Drosophila larval enteric nervous system.J Insect Physiol. 2014 Oct;69:118-25. doi: 10.1016/j.jinsphys.2014.05.022.