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Chapter 8 
FLUID FLOW 
 
GOALS  
When you have mastered the contents of this chapter, you will be able to achieve the 
following goals:  
 
Definitions  
Define each of the following terms, and use it in an operational definition:  

fluid                              buoyant force 
density                          streamline flow 
specific gravity                 viscosity 
pressure (absolute and gauge) 

 
Fluid Laws  
State Pascal's law of hydrostatic pressure, Archimedes' principle of buoyancy, 
Bernoulli's equation for the conservation of energy in a fluid, and the law of 
conservation of fluid flow.  
 
Fluid Problems  
Solve problems making use of the principles of fluids and conservation laws. 
  
Viscous Flow  
Use Poiseuille's law of viscous flow to solve numerical problems.  
  
PREREQUISITES  
Before you begin this chapter, you should be able to solve problems that use energy 
concepts (see Chapter 5).  
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Chapter 8 
FLUID FLOW 

8.1 Introduction  
Fluids play an important part in our everyday life. The basis of our water and air 
transportation systems is the buoyancy of objects in water and the lift forces of objects 
moving through the air. These phenomena are results of fluid dynamics.  
The circulation of fluids in our bodies plays an essential part in our energy exchange 
processes. The circulation of atmospheric gases plays a similar part in the energetics of 
the earth.  
 Can you give an example of fluid flow used in energy transfer in your present 
environment? What is the measure of the flow inertia for a fluid? In this chapter you 
will be introduced to the basic principles of fluid dynamics. Your understanding of 
these principles will provide you a basis for analyzing and working with fluid systems.  
  
8.2 Fluids  
You are familiar with the properties of fluids. How does a fluid contrast to solid matter?  

A fluid is a substance that flows easily from one location to another. The term thus 
applies to both liquids and gases. Liquids and gases differ in several ways. A liquid has 
a fixed volume but takes on the shape of the container up to the limit of its volume.  
 A gas takes on both the shape and the volume of its container. Another way in 
which liquids and gases differ is in compressibility: a gas is easily compressed, and a 
liquid is practically incompressible - at least for our present consideration.  
  
8.3 Density  
There are a number of ways in which substances differ from one another. If you have 
ever lifted a "brick" made of lead or a small bottle filled with mercury your muscles 
have felt one striking difference between these two substances and other common 
materials. Small samples of lead or mercury feel massive. That can be a source of 
muscular surprise. Thedensity of a material, assumed to be homogeneous, is defined as 
the mass per unit volume. So we use as the defining equation:  
  
ρ = m/V            (8.1) 
 
where ρ is the density, and m is the mass of volume V of the material. What are the 
dimensions of density in terms of M, L, and T? The units are kg/m3 in the SI system and 
g/cm3 in the cgs system. What is the numerical factor required to convert kg/m3 into 
gm/cm3?  
 The specific gravity of a substance is the ratio of the density of the substance to the 
density of water. Hence, specific gravity is dimensionless, that is, a pure number, and is 
independent of the system of measurement that you use. For example, one cubic foot of 
lead weighs 705 lb and one cubic foot of water weighs 62.4 lb. Calculate the specific 
gravity of lead from these data and compare it with the value in Table 8.1.  
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Table 8.1 Table of Densitites and Specific Gravities 

8.4 Force on Fluids 
What happens if you push with your 
finger against the surface of water? 
Against the surface of ice?  
 If you investigate the way in which a 
force acts upon the surface of a liquid and 
a solid, you find at least one difference. In 
the case of the solid you can exert a net 
force in any direction, up, down, or 
sideways. For an ideal fluid, a fluid with 
no internal resistance, the net surface force 
must always be directed at right angles, or 
normal, to the surface. An ideal fluid at 
rest cannot sustain a tangential force. The 
layers of fluid simply slide over one 
another. An ideal fluid will not maintain a 
shape of its own. It is the inability of fluids 
to withstand tangential forces that allows 
them to flow.  
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8.5 Pressure  
Since a fluid will only sustain a net force 
perpendicular to its surface, we can speak of a 
force acting on a fluid in terms of the total force 
acting on an area of the liquid, or a pressure.  
 
Pressure is defined as the normal force per unit area. 
  
Pressure is transmitted to the interface 
boundaries and across any section of a fluid at 
right angles to the boundary or section. Let us 
consider a fluid under pressure in contact with 
a surface. Assume that we have a closed surface 
that contains a fluid, for example, a balloon 
filled with water (see Figure 8.1).  

 
A small portion of the area of the surface may be represented by ΔA. Let ΔF represent 
the component of the applied force that is perpendicular to the area ΔA. This 
perpendicular component is called the normal force.  
 Then we can define the average pressure Pave acting on that position of the area as 
Pave = ΔF/ΔA. The pressure may depend upon the area chosen. This difficulty can be 
avoided by choosing an area around a point and having the area decrease and approach 
the point. Thus, the pressure at a point is defined as the ratio of the normal force to the 
area, as the area is reduced to a very small size. The pressure at a point can be 
represented mathematically in the following way:  
P = lim (ΔF/ΔA)              (8.2) 
   ΔA→0 
 The pressure may vary from point to point on a surface. Pressure is a scalar quantity 
and has the basic units of newtons per square meter (N/m2) in the SI system, and dynes 
per square centimeter (dynes/cm2) in the cgs system. In our daily lives we find many 
other units of pressure in use (centimeters of mercury, for example), but they are 
reducible to either of the above. Can you think of other pressure units? What are the 
units of pressure used by your television weather forecaster to measure atmospheric 
pressure?  
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8.6 Pressure of a Liquid in a Column  
 
It is a common practice to describe the 
pressure of the atmosphere by referring 
to the vertical column of a liquid that 
the pressure of the atmosphere can 
support. In this case we are interested in 
determining the pressure produced by a 
given height of the liquid in the column 
shown in Figure 8.2. Let  
A = area of GHH'G' or DCC'D' and let  
h = height = GD =HC = H'C' =G'D'. For 
the equilibrium, the force acting on the 
front GHCD is equal in magnitude and 
opposite in direction to the force acting 
on the back of the column G'H'C'D'. 
Also the force of Fb acting on the bottom 
DCC'D' must be equal in magnitude to 
the force Ft acting on the top GG'H'H 
plus the weight W of the liquid column:  

 

  
Fb = Ft + W 
 
Thus the magnitude of the weight of the liquid column can be expressed as  
  
W = Fb - Ft                            (8.3) 
 The magnitude of weight is the product of mass times gravitational acceleration, or 
the product of its density and its volume and g, thus  
  
W = (ρV)(g) = (ρAh)g 
 
where g is the magnitude of acceleration due to gravity and the volume of the liquid is 
expressed as the product of its height h multiplied by the area of its base A. Dividing 
both sides of Equation 8.3 by the area, (A), this equation becomes  
  
(Fb - Ft)/A = ρgh 
 
where (Fb - Ft)/A is the pressure exerted by the column of liquid of depth h. We can 
replace the expression (Fb - Ft)/A by the pressure P,  
  
P = ρgh            (8.4) 
 This equation provides an explanation for the use of the variety of units for 
measuring pressure. The height of a liquid column is directly proportional to the 
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pressure supporting the column. Hence, if you know the height of a supported liquid 
column you can readily compute the pressure. For example, the standard pressure of 
the atmosphere at sea level will support a column of mercury 76 cm in height. What is 
standard atmospheric pressure in N/m2?  
  
8.7 Gauge Pressure  
If the liquid has a free surface point (Figure 
8.3) upon which there is a pressure P0, then 
the total or absolute pressure at a point at 
depth h below the surface is given by the sum 
of P0 plus the pressure exerted by the liquid 
above that point.  
  
PT = P0 + ρgh       (8.5) 
 For example, the pressure at any depth 
h of a lake, which has an atmospheric 
pressure on its surface, can be calculated by 
the above relationship where P0 becomes 
equal to atmospheric pressure,  PA. Then, PT = 
PA + ρgh.  

 

  The difference between PT and PA is called the gauge pressure reading, and in the case 
of a liquid the gauge pressure at any depth h becomes equal to ρgh. Usually a gauge 
pressure reading refers to the pressure above atmospheric pressure. For example, if 
your automobile tire is inflated to a gauge pressure reading of 2.07 x 105 N/m2 (30 
pounds per square inch, psi), the absolute or total pressure in the tire is 2.07 x 105 N/m2 
plus the atmospheric pressure, or about 3.08 x 105 N/m2 (45 psi). 
 
EXAMPLES  

 

 

1. In a mercury barometer, invented by Torricelli in 
1643, the pressure above the mercury in the tube is 
practically zero except for the mercury vapor 
pressure which can be neglected at room 
temperature (Figure 8.4). Hence, the atmospheric 
pressure is equal to  

  Pa = ρHg ghHg 
 A barometer reading of 76 cm of Hg is considered 

standard atmospheric pressure. How long would 
the tube have to be for a water barometer? Since 
ρwater ghwater = ρHg ghHg and ρwater = 1 gm/cm3, we see 
hwater = (76 cm)(13.6), or, 10.3 meters.  

2. If a number of vessels of different shapes are connected as shown in Figure 8.5, it 
will be found that a liquid poured into the system will rise to the same height in 
each. That is, the pressure at all points on a horizontal plane such as PP' will have 
equal pressures in the vessel. This is consistent with Equation 8.5,  
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PT = P0 + ρgh 
 
which states that the pressure depends only on the depth below the liquid 
surface and not upon the shape of the containing vessel.  

 
 The device for measuring blood 
pressure is called a sphygmomanometer. The 
pressure calibration is in mm of mercury. An 
inflatable cuff is wrapped around the upper 
arm, and a stethoscope is placed over the 
artery in the crease of the elbow below the 
cuff. Before the cuff is inflated, blood is 
flowing unimpeded, and there is no sound in 
the stethoscope. As the cuff is inflated, the 
blood circulation is gradually shut off, and the 
doctor or nurse hears the thump thump 
through the stethoscope resulting from 
pumping of blood by the heart. The cuff is 
inflated until the listener no longer hears the 
thump. This means the blood flow has 
temporarily been shut off by the pressure 
exerted by the cuff. The pressure is then 
reduced in the cuff by a controlled release 
valve, and the observer reads the 
sphygmomanometer at the exact moment a 
thump is heard in the stethoscope. This means 
blood is again flowing in the artery, and the 
corresponding pressure is called the systolic 
pressure. The pressure in the cuff is further 
decreased, and the thump disappears at a 
lower pressure which is also recorded. This is 
the diastolic pressure. There are many factors 
that influence the blood pressure reading, and 
there is a variation among individuals. A 
typical reading for an adult might be about 
140/90, meaning a systolic pressure of 140 
mm Hg and a diastolic of 90 mm Hg.  

 
 
 
 

 

 The pressures are produced by the heart. The human heart operates as a muscular 
pump which on contraction can exert a hydrostatic pressure of about 140 mm Hg 
(systolic) on the blood. On relaxation of the heart there is still tension in the muscle of 
the left ventricle to maintain a pressure of about 90 mm Hg (diastolic). The pressure 
exerted by the heart forces the blood out of the left ventricle of the heart into the aorta 
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and through the blood vessel system. The blood is returned to the right atrium of the 
heart at very nearly zero gauge pressure.  
 
8.8 Pascal's Principle  
We have learned that the pressure at a point within a liquid does not depend upon the 
shape of the vessel, but only upon the depth of the point below the surface of the liquid. 
We can use this fact to design a mechanical system to multiply our strength. Consider a 
system like the one diagrammed in Figure 8.6a, which is filled with an incompressible 
liquid. If the pressure P0 is increased in any way, such as by inserting a piston on top of 
the liquid, the pressure at any depth is increased by the same amount. The principle 
was originally stated by Pascal in 1653 in the following terms:  
A pressure applied to a confined liquid is transmitted undiminished to all parts of the liquid and 
the walls of the containing vessel.  
The above principle is illustrated by a hydraulic press of which Figure 8.6 is a schematic 
cross-sectional drawing.  

 We 
can use Pascal's principle to derive an expression for the load  F we can lift on the large 
piston of area A by applying a force f on the small piston of area a. The magnitude of 
the pressure we apply to the small piston is given by the ratio of f to a. When this 
pressure f/a is applied to a liquid such as oil and is transmitted through the connecting 
pipe to the large piston where the pressure P must be the same. P = f/a =F/A since by 
definition the pressure P is equal to F/A. We can use this equation to find the size of F,  
F = f A/a                                        (8.6) 
A hydraulic press is a force multiplying device with a theoretical mechanical advantage 
of A/a. What are other examples of Pascal's principle? Use the conservation of energy to 
show that the distance the load moves equals (a/A)L, where L is distance the applied 
force moves.  
 Pascal's principle can be used to explain the comfort of water beds. A water filled 
mattress applies pressure equally to all parts of a body it supports. The use of water 
mattresses with chronically ill patients can help prevent bed sores. Can you explain 
why?  
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8.9 Archimedes' Principle  
You have seen an object floating on the surface of a body of water. Perhaps you have 
tried to lift a rock in water, and you have found that it is easier (that is, it requires a 
smaller force) to lift the rock in the water than after it is out of the water. Can you 
explain this phenomenon?  
 The explanation is a necessary consequence of the laws of fluid mechanics known as 
Archimedes' principle. If the body is entirely or partially immersed in a fluid at rest, the 
fluid exerts a pressure at every point of contact. The resultant of all of the pressure 
forces is called the buoyant force acting on the body. As the body is at rest, and in 
equilibrium, the horizontal components of the forces cancel each other, and the weight 
of the body and the resultant buoyant force must have the same line of action. The 
pressure on the lower side is greater than on the top side; hence the buoyant force acts 
upward. We can now determine the magnitude of the buoyant force.  
 Consider a mass surrounded by a fluid (Figure 8.7a) and think of an imaginary 
boundary isolating an equivalent amount of fluid (Figure 8.7b).  

We 
have learned that the pressure of the liquid does not depend upon the material of the 
surface. Hence, the buoyant force on the isolated body of the fluid is the same as that on 
the mass. So we must determine the force on a given volume of the fluid. The fluid, 
isolated by the imaginary boundary does not move; so the net force acting on it is zero. 
This means that the buoyant force is equal to the weight of the fluid within the 
imaginary boundary. Hence, the buoyant force upon the mass is equal to the weight of 
the displaced liquid.  
Archimedes' principle may be stated as follows: Any object wholly or partially immersed in 
a fluid is buoyed up by a force equal to the weight of the displaced fluid.  
You can determine the specific gravity of a homogeneous solid by the following 
experiment (Figure 8.8): the body is weighed first in air and then completely immersed 
in water. Wa = weight in air, Ww = weight in water, Wa - Ww = buoyant force = weight of 
displaced liquid. The weight of an object in air is given by the product of its density, its 
volume, and the acceleration of gravity. Since the solid is completely immersed in the 
water, the volume of displaced water will be the same as the volume of the solid. 
Hence, the weight of displaced water, which by Archimedes' principle is equal to the 
buoyant force Wa -  Ww, is given by the  
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product of the density of water, the 
volume of the solid, and the acceleration of 
gravity.  
Wa - Ww = ρwVg 
where V is the volume of the solid and ρw 
is the density of water. As shown below, 
the ratio of the weight in air to the 
buoyant force acting on a completely 
immersed solid is equal to the specific 
gravity.  
Wa/(Wa - Ww) = (ρmVg)/(ρwVg)  
 = ρm/ρw  
            = specific gravity of the solid      (8.7) 
where ρm = density of solid and  
            ρw = density of water.  
Can you devise an experiment to 
determine the density of a liquid? There 
are at least two ways in which this can be 
done.  

  
Question  
The traditional story is that Archimedes had been asked by a ruler of ancient Greece to 
determine if his newly purchased crown of gold was really made of solid gold. One 
evening while in his bath, Archimedes is rumored to have shouted, "Eureka, I have 
found it!" and to have run to the palace, clad only in his bath towel. Explain how 
Archimedes had found the crown not to be solid gold. Make up some reasonable 
numbers, and compute an answer for Archimedes.  
  
8.10 Fluid Flow  
Consider the flow of water in the city water mains and the water line when a faucet is 
opened. Assume a given volume of water is drained and assume streamline flow, which 
means that every particle of water that goes through point q will also follow through q1, 
q2, q3,...qn, where the q's represent points along any line of flow(see Figure 8.9).  

Let 
the cross-sectional area of the water main be A and the cross-sectional area of the line in 
the house be a. The volume that flows through the main is the same as the volume 
which is drained from the faucet and also the same as that which flows through the 
house line. The volume that flow through a pipe in one second must be equal to the 
cross-sectional area multiplied by a column length equal to velocity,v1 in the main, v in 
the house. The volume of water that flows in one second is given by the product of 
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velocity and area. Since the volume of flow is constant everywhere in the system, the 
velocity-area product must also be a constant,  
volume of flow per second = v1A = va                      (8.8) 
This is an example of a conservation law. Note that the velocity of flow will be faster 
through the smaller pipe than the larger pipe.  
  
8.11 Bernoulli's Theorem  
In our discussion of fluids we have used four physical quantities: pressure P, density of 
fluid, r, the velocity v, and the height h above some reference level. A relationship 
between these four quantities was developed by Daniel Bernoulli to describe fluids in 
motion. Bernoulli's theorem can be derived by considering an incompressible liquid 
moving along a pipe from position 1 to position 2. (See Figure 8.10). In order to move 
the liquid, we must exert a force F1 at position 1. 

 Then 
the surface of the liquid near position 1 will move a distance s1. But there may exist a 
resisting force F2 at position 2 where the surface of the liquid will move a distance s2. We 
can calculate the net work done on the liquid as we cause it to move from position 1 to 
2. The net work will be given by the work we did on the liquid at position 1 minus the 
work done by the liquid against the resisting force at position 2,  
net work = F1s1 - F2s2                     (8.9) 
since work is the product of force times distance. Remember that the volume of liquid 
that moves near position 1 must be equal to the volume of liquid that moves near 
position 2 because the liquid is incompressible. So we can calculate the volume of 
moved liquid by multiplying the cross-sectional area of the pipe times the distance the 
liquid surface has moved,  
volume of moved liquid = V = A1s1 = A2s2                 (8.10) 
where A1 and A2 are the cross-sectional areas of the pipe at positions 1 and 2 
respectively. We can compute the distances the liquid moved at 1 and 2 from the 
volume of the moved liquid V and the areas, A1 and A2,  
s1 = V/A1 and s2 = V/A2 
Substituting these expressions for s1 and  s2 into Equation 8.9, we obtain the net work as 
a function of pressure and volume as follows:  
 net work = F1s1 - F2s2 
 
net work = F1V/A1 - F2V/A2                       (8.9) 
But the ratio of force to area is the definition of pressure, so F1/A1 is equal to the 
pressure at position 1 and likewise F2/A2 is the pressure at position 2. Finally then we 
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find the net work is given by the difference between the pressures at positions 1 and 2 
times the volume of liquid that moved,  
net work = (P1 - P2)V                        (8.11) 
 From the work-energy theorem we know that the net work that is done on the liquid 
is equal to the sum of the increase in potential energy and the increase in kinetic energy. 
As you remember potential energy is energy of position, and kinetic energy depends 
upon the velocity.  
 The change in the potential energy between position 1 and position 2 is given by 
(mgh2 - mgh1) where m is the mass of the liquid, g is the acceleration of gravity and h1 
and h2 are the elevations of positions 1 and 2. Equating the net work to the sum of 
potential-energy change and kinetic-energy change, we find that net work = change in 
kinetic energy + change in potential energy:  
(P1 - P2)V = (½) (mv2

2 - mv1
2) + mgh2 - mgh1               (8.12)  

This equation is a statement of conservation of energy (see Chapters 2 and 4). To obtain 
an expression that contains the density of the liquid, divide Equation 8.12 by the 
volume of the moved liquid V. Since the density ρ is given by the ratio of mass to 
volume, ρ = m/V, we obtain  
(P1 - P2) = (½) ρv2

2 – (½) ρv1
2 + ρgh2 -ρgh1  

Rewriting the equation so that all the variables with a subscript 1 are on the left side of 
the equation and all the subscript 2 variables are on the right, we get  
P1 + rgh1 + (½) rv1

2 = P2 + rgh2 + (½)rv2
2  

where the subscripts 1 and 2 refer to the two different positions. Bernoulli's equation 
may be written simply as follows,  
  
P + ρgh + (½) ρv2 = constant               (8.15) 
where P is the absolute pressure (not the gauge pressure), and r is the mass density. 
You will note that each term has the dimensions of pressure.  
 The total pressure in streamline flow is constant. The total pressure is made up of an 
applied pressure term (P), an elevation term (ρgh), and a velocity term (1/2)ρv2 . You 
can divide each term in Equation 8.15 by the quantity ρg, and then each term is 
expressed in units of length. The term P/ρg is called a pressure head, h is an elevation 
head, and (1/2)v2/g is a velocity head. So the total head in streamline flow is a constant,  
pressure head + elevation head + velocity head = constant  
P/ρg + h + (½) v2/g = constant                          ( 8.16) 
Both Equation 8.15 and Equation 8.16 are equivalent ways of expressing the 
conservation of energy. Conservation of energy is one of the conservation laws 
introduced in Chapter 2.  
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 Let us examine Equation 8.15, P + ρgh + (½) ρv2 = constant, more carefully. Consider 
two points in a horizontal flow, h1 = h2. Then we have P1 + (½) ρv2

2 = constant. If the 
velocity at position 1 is greater than the velocity at position 2, the pressure at 1 will have 
to be less than the pressure at 2 for the equation to remain true. This relationship shows 
that in a region of higher velocity there is lower pressure.  
  
EXAMPLE  
Suppose that you have a spool a pin and a card. 
The pin is pushed through the card and placed in 
the end of the hollow spool.(See Figure 8.11). (The 
only purpose of the pin is to keep the card 
centered.) You try to blow the card from the spool 
by blowing into the hollow center of the spool. 
The air escapes between the end of the spool and 
the card. This produces an area of low pressure 
and the atmospheric pressure presses the card to 
the end of the spool.  
Bernoulli's equation finds application in almost 
every aspect of fluid flow. Some applications are:  
1. the lift on an air foil  
2. the operation of an atomizer  
3. a curving baseball or golf ball slice  
4. the force pushing two passing trucks together 

on a highway.  
 (You have undoubtedly noted this last example in 

your travels.) You should be able to explain 
each of these phenomena in terms of 
Bernoulli's equation.  

 
 
 
 

 

  
EXAMPLES  

1. Consider water maintained at level h2 (10 m) in 
the tank and opening at height h1 (0.2 m) above 
the bottom of the tank (see Figure 8.12). Find the 
velocity of outflow at the opening. The pressure 
at surface A and surface B are each equal to 
atmospheric pressure. The velocity at A is 0 if a 
constant height is maintained. Since h2 is constant 
and v 2 = 0, Bernoulli's equation becomes "
 ρgh2 = (½) ρv1

2 + ρgh1 "We know also that h2 
- h1 = h, so  (1/2)ρv1

2 = ρgh "v1 = SQR RT [2gh] = 
SQR RT [2(9.80)(9.80)] = 13.8 m/sec " 
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2. Water flows through the pipe shown in Figure 8.13 at a rate of 120 liters per 
second. The pressure at position A is 2.00 x 105 N/m 2. The cross- section of 
position B is 60.0 cm2, and the cross section of position A is 100 cm2. What is the 
velocity at A and at B? What is the pressure at B?  

 
We can let Q be the volume flow rate as follows:  
Q = Av = 120 x 10-3 m3/sec = A1v1 = A2v2  
 0.120 m3/sec = 100 x 10-4m2 x v1  
v1 = (0.12 m3/sec) / 10-2 m2 = 12.0 m/sec  
v2 = (0.120 m3/sec) / 60.0 x 10-4 m2 = 20.0 m/sec  
 P1 + (½)ρv1

2 = P2 + (½)ρv2
2 + ρgh  

(2.00 x 105 N/m2) + (½) (1000 kg m3)(12.0 m/sec)2  
 = P2 +(½)(1000 kg m3)(20.0 m/sec)2 + (1000 kgm3)(9.80m/sec2)(2.0m)  
 P2 = 2.00 x 105 N/m2 + (½) (1000)(12)2 N/m2 – (½) (1000)(20) N/m2 - 
(2000)(9.8) N/m2  

 = (2.00 x 105 + 72 x 103 - 200 x 103 - 19.6 x 103) N/m2  
 = 2.00 x 105 N/m2 - 1.476 x 105  N/m2 = 5.24 x 104 N/m2  

  
8.12 Poiseuille's Law of Viscous Flow  
Bernoulli's equation is applicable for fluid flow cases in which there is no friction. We 
will now consider the case of viscous flow where friction must be considered. A 
diagram of a section of a tube in which there is a flowing viscous liquid is shown in 
Figure 8.14. The dotted line represents a transverse plane. The vectors represent the 
velocity of the liquid in the tube. An analysis of liquid flow of this type shows that the 
velocity of flow varies from maximum at center of the tube to minimum at the wall, v = 
v(r), that is, v is a function of r. The velocity is constant for a given distance r from the 
center of the tube throughout the length of the tube. The velocity of liquid flow is zero 
at the wall for nonturbulent flow, and there is a frictional force Ff that opposes motion 
since the liquid is viscous. Calculus methods can be used (see Section 8.14) to derive the 
expression for the velocity of liquid flow as a function of the distance r from the center 
of the tube, the radius of the tube R, the pressure gradient along the tube (P1 - P2) /L, 
and the viscosity of the liquid h,  
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v = [(P1 - P2) / 4ηL] (R2 - r2)                     (8.17) 
where L is the length of the tube, P1 - P2 is the difference in pressure between the ends of 
the tube, η is the coefficient of viscosity of the liquid, and R is the radius of the tube. The 
coefficient of viscosity is a relative measure of liquid friction and is equivalent to the 
ratio of the force per unit area to the change in velocity per unit length perpendicular to 
the direction of flow. A viscosity of one 10-5 N-sec/cm2 is called a poise. Small 
viscosities are usually expressed in centipoises (1 centipoise = 10-2 poise). The viscosity 
of fluids is temperature dependent, decreasing with increasing temperature. The 
coefficient of viscosity for water at normal room temperature is about one centipoise. 
Olive oil has a viscosity of about 100 times that of water, and the viscosity of castor oil is 
about 1000 times that of water. The viscosity of whole human blood is about four times 
the viscosity of water.  
 The volume of flow per second (rate of flow) through a tube is given by the product 
of the average velocity of the liquid flow times the cross-sectional area A of the tube,  
rate of flow = average liquid velocity x area = vaveA                         (8.18) 
 The velocity of liquid flow varies from zero at the tube wall to R2(P1 - P2)/4ηL at the 
center of the tube. The average velocity of liquid flow is one-half of the velocity at the 
center of the tube. Since the area of the tube is given by πR2, we can obtain an equation 
that relates the rate of flow in m3/sec of a viscous liquid to the pressure gradient, the 
radius of the tube, and the viscosity of the liquid,  
rate of flow (m3/sec) = vaveA  
= (1/2) [(P1 - P2) / 4ηL] R2 πR2 
= π/8η [(P1 - P2)/L] R4                   (8.19) 
This equation is the law for viscous flow derived by Poiseuille (pronounced Pwazswee). 
Poiseuille's law shows that the rate of flow of a viscous liquid is proportional to the 
pressure gradient (P1 - P2)/L, inversely proportional to the viscosity of the liquid h, and 
proportional to the fourth power of the radius R of the tube.  
 Even though blood vessels are neither circular nor rigid and even though the 
coefficient of viscosity of blood varies with the pressure gradient, Poiseuille's law is 
useful in considering the rate of blood flow along the vessels of blood circulation.  
  
EXAMPLES  

1. The flow of a liquid through a hypodermic needle is an example of an application 
of Poiseuille's law of viscous flow. Note that the rate of flow depends upon the 
fourth power of the radius of the needle and the first power of the pressure 
gradient (i.e., force exerted on the plunger).  
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2. Consider the flow of intravenous (I.V.) fluids as administered in a hospital. A 
typical I.V. arrangement is shown in Figure 8.15. What variables of this system 
will control the flow of the fluid? Why is the I.V. bottle suspended above the 
patient? If the I.V. needle is reduced to half its original size, how high would you 
have to raise the I.V. bottle to keep the flow rate constant?  

 
8.13 Blood Flow in the Human Body  
The blood circulation system in the human 
body is a closed system. The continuous flow of 
blood is caused by a circulating pump, the 
human heart. The heart works to force blood to 
flow through the human system as shown in 
Figure 8.16. The pressure of the blood at 
various parts of the circulatory system is shown 
in Figure 8.17. The average pressure of the 
blood as it enters the aorta is 100 mm Hg. The 
blood pressure has dropped to 97 mm Hg as the 
blood, leaving the aorta, enters the arteries. The 
blood pressure at the entrance to the arterioles 
is 80 mm Hg. The pressure difference across the 
arterioles is about 55 mm Hg. So the blood 
pressure at the entrance to the capillaries is only 
30 mm Hg. Of that pressure 20 mm Hg is lost in 
transit through the capillaries. Thus the blood 
pressure in the veins is not more than 10 mm 
Hg.  
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 An interesting property of human blood flow is the total quantity of blood that flows 
through the human system. A typical value for the speed of blood flow through the 
aorta of an adult is about 35 cm/sec. The aorta, which has a diameter of about 1.8 cm, 
has a cross-sectional area of about 2.5 cm2. The total volume of blood flow is the product 
of the velocity times the area (see Equation 8.18):  
quantity of flow = (35 cm/sec)(2.5 cm2) = 88 cm3/sec 
So in a typical human being, about 100 cm3 of blood passes through the system in one 
second. Of course, during periods of physical exercise the total flow of blood increases. 
This increase is accomplished by an increase in the blood pressure and by a decrease in 
the resistance of the circulatory system to the flow of blood. This decrease in resistance 
is caused by the dilation of the blood vessels, that is, an increase in the diameter of the 
vessels. Since the flow of blood is proportional to the fourth power of the diameter of 
the blood vessels, a small increase in the vessel diameters can produce a substantial 
increase in the rate of blood flow. In a similar way, anything that decreases the effective 
diameter of the blood vessels will cause the heart to work harder than normal to 
maintain a constant rate of blood flow. We can calculate the rate at which the human 
heart does work from the product of the force exerted by the heart F and the velocity of 
the blood v (see Chapter 5, Equation 5.12),  
power = Fv                              (5.12) 
Where F is the average force acting on the blood and is given by the blood pressure 
times the area of the aorta and where v is the velocity of the blood flow and is given by 
the ratio of the rate of blood flow divided by the area of the aorta. Hence, we can 
substitute these quantities into Equation 5.12 to show that the power output of a human 
heart is given by the product of the blood pressure times the rate of blood flow,  
power = Fv = pressure x velocity of flow                             (8.20) 
An average blood pressure in a human is about 100 mm Hg (1.3 x 104 N/m2), and the 
quantity of flow is on the order of 100 cm3/sec (1 x 10-4 m3/sec). So we find that the 
normal power output of the heart is 1.3 watts, which is about one percent of the total 
power dissipated by the human body.  
  
ENRICHMENT 8.14 Viscous Flow  
When considering the flow of a viscous liquid through a tube, we know that the 
velocity of the liquid will vary from one point in the tube to another. For example, we 
know that the viscous liquid will tend to stick to the inside wall of the tube, so the 
velocity of flow of the liquid will be small near the wall. In order to find a mathematical 
expression for the flow of a viscous liquid through a tube, let us make the assumption 
that the velocity of flow is maximum at the center of the tube, that the velocity at the 
wall is zero, and that the velocity of flow can only be different at different distances 
from the center of the tube (see Figure 8.14).  
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The coefficient of viscosity is defined as the ratio of the magnitude of the force 
required to slide along a unit area of liquid to the velocity gradient in a direction 
perpendicular to the direction of flow. Let us consider a small cylinder of liquid (radius 
r) inside of the tube (radius R and length L) as shown in Figure 8.18.  

 
The force acting to slide this small cylinder of radius r in the direction of flow is 

given by the difference between the pressures acting on the ends of the cylinder times 
the area of the end of the cylinder,  
force = (P1 - P2)πr2                         (8.21) 
The surface area of liquid that is being pushed along by this force is just the outer 
surface area of the small cylinder,  
surface area of the cylinder = 2πrL                          (8.22) 
Hence, the force acting per unit area to slide the liquid along is given by the ratio of 
these two equations, Equation 8.21 and Equation 8.22,  
force per unit area = (P1 - P2)πr2/2πrL = (P1 - P2)r/2L                  (8.23) 
We can put this expression into the equation that defines the coefficient of viscosity and 
obtain an expression that will relate the velocity gradient to the radius of the small 
cylinder:  
η = force per unit area/velocity gradient = [(P1 - P2)r/2L]/(-dv/dr)        (8.24) 
 
where -dv/dr is the velocity gradient in the direction perpendicular to the direction of 
flow and h is the viscosity. The minus sign in front of dv/dr indicates that the velocity 
decreases as the value of r increases. In order to find an expression for the velocity of 
flow as a function of the distance from the center of the tube, we can rearrange the 
terms in Equation 8.24 to separate the variables v andr. Then we integrate both sides of 
the equation, as follows:  
  
∫dv =  - ∫{(P1 - P2)r/2ηL} dr               (8.25) 
 
v = - {(P1 - P2)r2/4ηL} + constant         (8.26) 
 
To evaluate the constant in Equation 8.26, we require that the velocity of flow be zero at 
the wall of the tube where r = R:  
  
v = 0 = [-{(P1 - P2)r2/4ηL} + constant 
 
when r = R.  Thus the constant has the value 
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constant = [+{(P1 - P2)R2/4ηL}  
 
and the completed expression for the velocity of flow is the same as presented in 
Equation 8.17.  
v = {(P1 - P2)/4ηL} [R2 - r2]                (8.17) 
This expression gives a parabolic radial distribution for the flow of a viscous liquid(see 
Figure 8.19).  

 
 We can use the expression for the radial dependence of velocity to derive Poiseuille's 
law. You may recall that the rate of flow is given by the velocity of flow times the area. 
Since the liquid flow velocity depends only on the distance of the liquid from the center 
of the tube, all portions of the liquid at the same distance from the center of the tube are 
moving with the same velocity. In other words, the liquid moves along as if it were thin 
cylindrical shells sliding inside of one another (see Figure 8.20).  

 
 Each cylindrical shell has a different value of flow velocity as given by Equation 
8.17. The area of the end of the shell of radius r is the circumference of the shell (2πr) 
times the shell thickness (dr),  
  
area = 2πr dr                             (8.27) 

 
Hence the rate of flow for each shell is given by the product of velocity times 
area,  
rate of flow for a shell = v x area              (8.28)  

= [(P1 - P2)/4ηL] (R2 - r2) 2πr dr         (8.29)  



Physics Including Human Applications 
 

191 

by substitution from Equations 8.17 and 8.27. The total flow rate for all of the liquid in 
the tube is the sum of the flow for all the shells; so we integrate Equation 8.29 from r = 0 
to r = R,  
rate of flow = 2π [(P1 - P2)/4ηL] ∫0R (R2 - r2)r|dr          (8.30)  
= π [(P1 - P2)/2ηL] [R2r2/2|R

0 - r4/4|R
0             (8.31)  

= π [(P1 - P2)/2ηL] (R4/2 - R4/4)            (8.19)  
= (π/8η) [(P1 - P2)/L] R4               (8.19)  
which is Poiseuille's law of viscous flow.  
  
SUMMARY  
  
Definitions  
Answer questions 1 to 7 from the definitions of the following terms:  

fluid                           gauge pressure 
density                        buoyant force 
specific gravity                streamline flow 
absolute pressure             viscosity 
1. A rigid, boxlike object with dimensions of 12 cm x 12 cm x 8 cm has a mass of 3.4 

kg. This object is not a fluid because ______________.  
2. The object in question 1 will ___________ (float/sink) in water because  

a. it is made out of plastic 
b. it is heavier than air 
c. it is lighter than water 
d. it has a density greater than one 
e. it has a specific gravity greater than one 
f. it has a density less than 103 kg/m3 
g. it has a specific gravity greater than 1 g/cm3 

3. If you add the magnitude of the __________ pressure to the value of the 
__________ pressure, you will obtain the __________ pressure. Therefore, for the 
normal systems the __________ pressure is always a smaller number than the 
__________ pressure.  

4. Explain why objects weighed in air and in a vacuum do not weigh the same.  
5. If a liquid does exert a buoyant force on an object placed in it, how can you 

determine if an object will sink or float in the liquid?  
6. Compare streamline flow with the assumptions made to treat the viscous flow of a 

liquid in Section 8.10.  
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7. Viscosity may be considered as an analog to what property of a mechanical 
system?  
a. potential energy 
b. kinetic energy 
c. actual mechanical advantage 
d. theoretical mechanical advantage 
e. power output 
f. friction 
g. torque 
h. perspicacity 
i. virtuosity 
 

Fluid Laws  
8. Group together into sets the letters that represent concepts or words that belong 
together, and explain the common features of the set. You may put a term in more 
than one set.   
a. Pascal 
b. Archimedes.  
c. Bernoulli  
d. hydrostatics  
e. incompressible fluids  
f. streamline flow 
g. ρgh  
h. specific gravity  
i. conservation of energy " 

j. conservation of fluid flow  
k. hydraulic press  
l. buoyancy  
m. golden crown  
n. vA = constant  
o. P + ρgh + (½) ρv2 = constant  
p. (½) kA2 + (½) mv2 = constant  
q. a curving baseball  
r. a hot-air balloon  

 
Fluid Problems  

9. A hydraulic jack which is designed to lift the head of a hospital bed has a small 
piston of diameter 1.5 cm which is used to apply pressure to a liquid. The liquid 
then applies pressure to a large cylinder of 9.0 cm in diameter. What is the ratio 
of the force applied by a nurse to the small cylinder to the load lifted by the large 
cylinder?  
a. 6.0              b. 0.17             c. 0.028  d. 36.0             e. 13.5 

10. What similarities and differences will you notice if you go swimming in fresh 
water (specific gravity = 1.00), in the ocean (sp. gr. = 1.03), the Great Salt Lake 
(sp. gr. = 1.12), and the Dead Sea (sp. gr. = 1.18)?  
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11. Water is flowing through a closed pipe system, and at one point the velocity of 
flow is 10.0 m/sec while at a point 30.0 m higher the velocity of flow is 12.5 
m/sec. If the pressure at the lower point is 4.00 x 105 N/m2 (a) what is the 
pressure at the upper point, and (b) if the water flow stops, what is pressure at 
the upper point?  
a. 4.00 x 105 N/m2, 4.00 x 10 5 N/m2  
b. 4.00 x 105 N/m2, 6.94 x 10 5 N/m2  
c. 4.00 x 105 N/m2, 1.06 x 10 5 N/m2  
d. 7.78 x 104 N/m2, 1.06 x 10 5 N/m2  
e. 7.78 x 104 N/m2, 4.00 x 10 5 N/m2  
f. 1.06 x 105 N/m2, 7.78 x 10 4 N/m2  

  
Viscous Flow Problem  

12. An elderly heart patient with hardening of the arteries has the effective diameter 
of his blood vessels reduced by 16 percent. What is the reduction of blood flow at 
constant pressure, and by what factor must his blood pressure increase if the rate 
of flow is to remain constant?  
a. The flow would decrease by 16 percent; so his pressure must increase by 16 

percent.  
b. The flow would decrease by a factor of 0.71; so his blood pressure would have 

to increase by a factor of 1.42.  
c. The flow would decrease by 41 percent; so the blood pressure would have to 

increase by 59 percent.  
d. The flow would decrease by a factor of two; so his blood pressure would have 

to increase by a factor of two.  
e. The flow would decrease by 84 percent, and the pressure would increase by 16 

percent.  
  

Answers  
1. It is rigid. (Section 8.2)  
2. Sink, e (Section 8.3)  
3. atmospheric, gauge, absolute, gauge, absolute (Section 8.7)  
4. because the buoyant force exerted upon objects weighed in air reduces their 

apparent weight (Section 8.9)  
5. If its weight is greater than the buoyant force acting on it, the object will sink. Can 

you rephrase this statement in terms of density or specific gravity using 
Archimedes principle? (Section 8.9)  

6. The viscous flow in Section 8.12 is treated as if it were streamline flow.  
7. f (Section 8.12)  
8. a, d, e, k      (Section 8.8);  b, h, l, m, r   (Section 8.9);  c, f, i, o, q   (Section 8.11);  j, n                  

(Section 8.10) 
9. d (Section 8.8)  
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10. The buoyant force is the same in all cases (i.e., equal to your weight), but less 
liquid is displaced as you swim in liquid of greater specific gravity. You float 
with a larger portion of your body above the surface of the liquid (Section 8.9)  

11. d (Section 8.11)  
12. d (Section 8.12).  
  

ALGORITHMIC PROBLEMS  
Listed below are the important equations from this chapter. The problems following the 
equations will help you learn to translate words into equations and to solve single 
concept problems.  
  
Equations  

ρ = m/V           (8.1) 
P = lim (ΔF/ΔA)            (8.2) 

ΔA→0 
 P = ρgh           (8.4) 

PT = P0 + ρgh           (8.5) 
F = f A/a                                      (8.6) 
specific gravity of the solid = Wa/(Wa - Ww)     (8.7) 
v'A = va              (8.8)  
P + ρgh + (½) ρv2 = constant             (8.15) 
v = [(P1 - P2) / 4ηL] (R2 - r2)                   (8.17) 
rate of flow = π/8η [(P1 - P2)/L] R4                (8.19) 
 

Problems  
1. Water moves through a horizontal pipe (radius = 3 cm) with a velocity of 1 m/sec. 

Find the speed of the water in a section of pipe that has been constricted to a 
radius of 1.5 cm.  

2. Find the pressure difference between the surface and the bottom of a lake 20.0 m 
deep. The density of water is 1.00 x 103 kg/m3.  

3. Water is flowing through a horizontal pipe. The velocity of the flow at point A is 
1.0 m/sec, and at point B the velocity is 2.0 m/sec. Find the pressure difference 
between points A and B.  

4. Find the flow rate of olive oil through a pipe 0.5 m long with a radius of 1 cm. The 
viscosity of the oil is 0.18 N-sec/m2. The pressure difference across the pipe is 2 x 
104 N/m2.  

5. A cylinder "weighs" 27 g in air and 17 g in water. Find the specific gravity of the 
cylinder material.  

6. Find the volume of the cylinder in Problem 5.  
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Answers  

1. 4 m/sec  
2. 1.96 x 105 N/m2  
3. 1.5 x 103 N/m2  
4. 9 x 10-4 m3  
5. 2.7  
6. 10 cm3  

  
EXERCISES  

Section 8.3  
1. If the earth's atmosphere were uniform with a density of .00129 g/cm3, how high 

would the atmosphere extend? That is, what is the height of a column of air 1 m2 
in area which has a weight of 1.01 x 105 N?[7.99 km]  

  
Section 8.5  
2. Suppose that an airplane is flying at an altitude where the atmospheric pressure is 

4.03 x 104 N/m2 and the airplane has gradually become depressurized, so that the 
internal pressure is equal to atmospheric pressure. The airplane rapidly descends 
to an airport where the atmospheric pressure is 1.01 x 105 N/m2. What is the 
increased force on the eardrum (area 0.300 cm2) of a passenger? Perhaps you 
have experienced this sensation to some degree in airplane travel. [1.82 N]  

3. A pair of Magdeburg hemispheres (see Figure 8.21) are 10.0 cm in diameter. The 
barometric pressure is 75 cm Hg. What force will be required to separate them if 
the interior is completely evacuated? If the pressure inside is 10 cm Hg? [785 N; 
680 N]  
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Section 8.6  
4. Compute the equivalent pressure of 76.0 cm of Hg in dynes/cm2 and in 

newtons/m2. [1.02 x 106 dynes/cm2, 1.02 x 105 N/m2]   
5. The systolic blood pressure of an individual is 140 mm Hg, and the diastolic blood 

pressure of the same individual is 90.0 mm Hg. If the aneroid 
sphygmomanometer is to be calibrated in N/cm2, what will the equivalent 
readings be? For constant volume of blood flow compare the work done by this 
individual's heart with the work done by the heart of an individual who has high 
blood pressure of 180 mm Hg systolic and 120 mm Hg diastolic. [1.87 N/cm2, 
1.20 N/cm2, about 1.3]   

6. The U-tube shown in Figure 8.22 contains two liquids that do not interact 
chemically. The density of one is ρ1 and the density of the second is ρ2. What is 
the ratio of height h1 and h2? Suppose one liquid is Hg and the other is oil of 
specific gravity 0.800. If hHg is 2.00 cm, what is the height of the oil column? If you 
wished to construct an open tube barometer to indicate small pressure 
differences would you use a liquid of high or low density? Why? [h1/h2 = ρ2/ρ1, 

34.0 cm]  
  
Section 8.7  

7. The gauge pressure in an automobile tire is 2.07 x 105 N/m2. If the wheel supports 
4500 N, what is the area of the tire in contact with the road? [2.20 x 10-2 m2]   

  
Section 8.8  

8. The areas of the small and large pistons in a hydraulic press are 1.00 cm2 and 30.0 
cm2. What force must be applied to the small piston in order to lift a 3600-N load? 
Through what distance must the applied force act if the load is raised two 
meters? [120 N, 60 m]   

9. The piston under a barber's chair is 4 cm in diameter. If the weight of the chair 
and its occupant is 250 N, how much pressure is required to raise the chair? If 
this pressure is produced by means of a plunger 0.500 cm2 in area, what force 
must be applied to the plunger? [19.9 N/cm2, 9.95 N]   
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Section 8.9  
10. A uniform stick of wood, 100 cm long and of density 0.70 g/cm3, is made to float 

vertically in water. What length is submerged? How deep would it float in a 
liquid of density 0.80 g/cm3? Such a stick could be made into a crude 
hydrometer. If it were to be used in liquids in specific gravity of 0.8 to 1.2, how 
long would the scale be? [70 cm, 87 cm, 29 cm]   

11. A 240-kg metal block has a volume of 0.200 m3. The block is suspended by a cord 
and submerged in oil that has a density of 770 kg/m3. Find  
a. the buoyant force  
b. the density of the metal block  
c. the specific gravity of the oil  
d. the tension in the cord  
[a. 1.51 x 103 N; b. 1.20 x 103 kg/m3; c. 0.77; d. 840 N]   

12. A casting is made of material that has a density of 7.5 g/cm3. In air the casting 
weighs 1.47 N. When submerged in the water the casting weighs 1.07 N. Is the 
casting solid, or does it have a cavity? If it has a cavity, what is the volume of the 
cavity? If there is no cavity, how much should the casting weigh in water? 
[hollow, 20 cm3, 1.27 N]   

13. A cylinder of aluminum is weighed on an equal arm balance. The aluminum is 
balanced by a 200.0-g brass weight. Assume the density of the brass weight to be 
8.00 g/cm3, the density of air to be 1.23 x 10-3 g/cm3, and the density of 
aluminum to be 2.7 g/cm3. What is the buoyant force on the brass weights? What 
is the buoyant force on the aluminum cylinder? What is the true mass of the 
aluminum cylinder? [3.02 x 10-4 N, 8.93 x 10-4 N, (200 + 6.03 x 10-2) g]   

  
Section 8.11  

14. Assume that from the human aorta, radius of 1 cm, carrying blood from the 
heart, the cardiac outflow is 5 liters per minute, and the mean blood pressure is 
100 mm Hg. Find the velocity of flow in the aorta and the work done per minute. 
[26.5 cm/sec, 66 J/min]   

15. In a perfume aspirator air is blown across the top of the tube which dips into the 
perfume. What is the minimum air velocity that will cause the perfume to rise to 
the top of the tube which is 10 cm long if ρair = 1.25 x 10-3 g/cm3 and ρperfume = 0.9 
g/cm3. [37.5 m/sec]   

16. A circular hole 2 cm in diameter is cut in the side of a large vertical pipe 8 m 
below the water level in the pipe. What is the velocity of outflow and the volume 
discharged in one minute? [12.5 m/sec, 0.236 m3]   
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17. It is desired to refuel a plane at the rate of 200 liter/min. The fuel line is an 8.00 
cm diameter hose connected to a pump 1.00 m above the ground. A 5.00 cm 
diameter nozzle delivers gasoline to the plane 5.00 m above the ground. Find the 
speed of the fuel at the nozzle, the speed of the fuel in the line near the pump, 
and the pressure difference between the pump and the nozzle. (Take the specific 
gravity of gasoline to be 0.700.) [170 cm/sec, 66.3 cm/sec., 2.83 x 104 N/m2]   

18. A fluid of density 0.800 g/cm3 is flowing through a 200-cm length of tube that is 
1.00 cm in diameter. The flow is found to be 10.0 cm3/sec, and the pressure drop 
over the length of the tube is 3.25 x 105 dynes/cm2. What is the viscosity of the 
fluid. What are the units? [3.99 poise]   

19. Given a hypodermic syringe with an inside diameter of 1.00 cm, and a needle 
with an inside diameter of 0.500 mm, find the force needed to keep the fluid from 
coming out of the needle if a 1.00 N force is applied to the plunger. Find the 
necessary plunger force needed to inject fluid into an artery where the blood 
pressure is 90.0 mm Hg. [2.50 x 10-3 N, 9.42 N]   

  
Section 8.12  

20. Find the pressure necessary to move serum through an intravenous injection 
tube (radius = 1.00 mm, length = 3.00 cm) at the rate of 1.00 cm3/sec into an 
artery where the pressure is 100 mm Hg. The viscosity of the serum is 7.00 x 10-3 
poise. [1.34 N/cm2]   

  
PROBLEMS  
These problems may involve more than one physical concept. The numerical answer is 
given at the end of each problem.  

21. An airplane weighing 5000 N has a wing area of 12 m2. What difference of 
pressure on the two sides of the wing is required to sustain the plane in level 
flight? Assume the density ρ of air is 1.2 kg/m3. If the velocity of air relative to 
the wing is 40 m/sec on the lower side, what is the relative velocity on top of the 
wing? [420 N/m2, 48 m/sec]  

22. The large section of the pipe in Figure 8.23 has a cross section of 40.0 cm2 and the 
small pipe's cross section is 10.0 cm2. A volume of 30 liters of water is discharged 
in 5 sec. Find the velocities in both the small and the large pipe. What is the 
difference in pressure between these portions? What difference in height of a 
mercury column corresponds to this pressure difference? [150 cm/sec, 600 
cm/sec, 1.70 x 105 dynes/cm2, 127 mm] 
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23. Reynolds discovered that the transition from streamline flow (or laminar flow) to 
turbulent flow (eddy currents form) occurs at a critical relationship among flow 
velocity, radius of channel, density and viscosity of the fluid. He defined the 
relationship in terms of the dimensionless number that is now called the 
Reynolds number Re:  

Re = (vρr)/η  
where v = flow velocity, ρ = density, r = radius, and η = viscosity. If the value of 
Re is greater than 1000, turbulent flow begins; if Re is less than 1000, laminar, or 
streamline, flow results. When blood undergoes turbulent flow, vibrations are set 
up in the blood vessels. Assume that the radius of a blood vessel is 0.800 cm, 
blood viscosity is 0.0200 poise, and the density of blood is 1.00 g/cm3. Find the 
velocity that corresponds to the onset of blood vessel wall vibrations [25.0 
cm/sec]  

24. One method of measuring the viscosity of a fluid is to measure the terminal 
velocity of a sphere falling through the fluid. The viscous drag force on a sphere 
is given by Stokes' law:  

F = 6πηrv  
where η = viscosity, r = radius of sphere, v = terminal velocity. Show that the 
viscosity can be expressed as follows:  

η = (ρ - ρ') 2r2/9v  
where ρ = density of sphere, ρ'= density of fluid.  

25. The average blood flow velocity in arteries is found to be about 10.0 cm/sec and 
the average pressure is around 100 mm Hg. Using a density of 1.00 g/cc for 
blood, compare the energy density due to velocity to that due to pressure. (Hint: 
units of energy density are N/cm2). If a girl is 165 cm tall and has a blood 
pressure of 100 mm at her heart, find the blood pressure in her feet 100 cm below 
her heart. [2.32 N/cm2]  

26. Use the values of blood pressure given in Section 8.13. Assume that each portion 
of the blood vessel system has a length of 0.8 m, and take the quantity of blood 
flow to be equal to 1.00 x 10-4 m3/sec. Use the value of 4.00 x 10-3 N-sec/m2 for the 
viscosity of whole blood. Calculate: 
a. the pressure gradients across each element of the blood vessel system, i.e., 

aorta, arteries, arterioles, capillaries, and veins  
b. the effective radius for each portion of the system  
c. the average velocity of blood flow through each portion of the system  

[a. 4.99 x 102 N/m3, 2.83 x 103 N/m3, 9.14 x 103 N/m3, 3.33 x 103 N/m3, 1.66 x 
103 N/m3; b. 2.13 x 10- 2 m, 1.38 x 10-2 m, 1.02 x 10-2 m, 1.33 x 10-2 m, 1.58 x 10-2 
m; c. 7.02 x 10-2 m/sec, 1.67 x 10-2 m/sec, 3.00 x 10-2 m/sec, 1.79 x 10-2 m/sec, 
1.27 x 10- 2 m/sec]  

27. Assume that the density of your blood is the same as that of water, that your 
heart is two-thirds of the way up from your feet to your head, that you are 2.00 m 
tall, and that your average blood pressure is 1.33 x 104 N/m2. In an upright 
position what is the pressure difference between your head and your feet, 
between your heart and your feet, and between your heart and your head? [1.96 
x 104 N/m2, 1.31 x 104 N/m2, 6.50 x 103 N/m2] 


