Sleep that knits up the ravel'd sleave of care,
The death of each day's life, sore labor's bath,
Balm of hurt minds, great nature's second course,
Chief nourisher in life's feast.

--- William Shakespeare
Sleep is a conserved behavior
WHAT IS SLEEP? WHATEVER IT IS, IT’S FOR THE BRAIN

HOBSON: Of the Brain By the Brain For the Brain
Lack of sleep due to lifestyle, personal choice, shift work, jet lag, anxiety, or sleep disorders leads to:

ACCUMULATED SLEEP DEBT AND EXCESSIVE DAYTIME SLEEPINESS
Average Sleep Latency in Young Adults
2nd Day of Measurements for Each Nocturnal Sleep Time Condition

Sleep Latency (minutes)

0930 1130 1330 1530 1730 1930
Clock Time

9 hrs.
7 hrs.
5 hrs.
4 hrs.
0 hrs.

Carskadon & Dement, 1982
ASLEEP AT THE WHEEL
Healthy Sleep and Circadian Rhythms are of Great Importance to Society

Sleep Disorders
Industrial accidents
Automobile accidents
Poor performances
Life quality
And, even our National Pastime

The Home Team in Baseball can expect a 1.24 run advantage when the visitor has just completed Eastward travel (Nature 377:583, 1995).

Winning percentage jumps from 54% to 63%. Little or no effect of Westward travel.
Sleep Regulation

A Two-Process Model

- **Process C**: Circadian Regulation
 Behavior independent
 Clock

- **Process S**: Sleep Homeostasis
 Behavior dependent
 Hourglass

Artwork courtesy of Alexander Borbely
The Earth turning on its axis creates daily cycles in the physical environment.

Endogenous Circadian Clocks presumably evolved to keep time and anticipate these daily cycles.
circa 1937
Forced Desynchrony:

Living on a 28-h day in Mammoth Cave, 1938
Sleep is the absence of wake.

-Lucretius, 30 BCE
Sleep occurs when sensory input declines.

Early 20th Century
Cerveau Isolé – Bremer 1935

Separate brain stem from cortex with cut in midbrain — permanent state of somnolence.
Separate brain from spinal input
– alternating pattern of sleep and wake.
Bremer's Conclusions

Bremer - Since sleep/wake occurs with sensory input (from cranial nerves) and sleep occurs with no sensory input, sleep is the default condition of the brain and wake is evoked by sensation.

Alternatively, wake promotion could be generated by brain stem mechanisms and sleep could be generated by mechanisms existing above the brain stem (supported by Moruzzi and Magoun’s classic 1949 paper, but also earlier by Von Economo’s work in 1917 that was largely ignored).
Sleep and wake are actively regulated states.

Modern Viewpoint
How is wake regulated by the brain?

Reticular Activating System
How is wake regulated by the brain?

Possible Function
Sleep/Wake State

Serotonergic Raphe Nuclei
How is wake regulated by the brain?

Possible Function
General Attention

Serotonergic Raphe Nuclei
Noradrenergic Locus Coeruleus
How is wake regulated by the brain?

Serotonergic Raphe Nuclei
Noradrenergic Locus Coeruleus
Dopaminergic Ventral Tegmental Area/Substantia Nigra

Possible Function
Memory Acquisition
Viral encephalitis (encephalitis lethargica) outbreak of 1917 had three forms:

• Akinesia
• Hypersomnolence with ophthalmoplegia
 − associated with *posterior* hypothalamic lesions
• Insomnia with chorea
 − associated with *anterior* hypothalamic lesions

Von Economo’s observations of the importance of the posterior hypothalamus for wake promotion went largely unheeded until recently.
How is wake regulated by the brain?

Possible Function
General Arousal

Serotonergic Raphe Nuclei
Noradrenergic Locus Coeruleus
Dopaminergic Ventral Tegmental Area/Substantia Nigra
Histaminergic Tuberomamillary Nucleus
How is wake regulated by the brain?

- Serotonergic Raphe Nuclei
- Noradrenergic Locus Coeruleus
- Histaminergic Tuberomamillary Nucleus
- Dopaminergic Ventral Tegmental Area/Substantia Nigra

Possible Function
Sleep or Wake?
How is wake regulated by the brain?

Possible Function
Cortical Desynchrony, Learning/Memory

Serotonergic Raphe Nuclei
Noradrenergic Locus Coeruleus
Dopaminergic Ventral Tegmental Area/Substantia Nigra
Hypocretinergic Perifornical Nucleus
Histaminergic Tuberomamillary Nucleus

Cholinergic Basal Forebrain
Cholinergic Pedunculopontine/Laterodorsal Tegmentum
How is NREM regulated by the brain?

Possible Function
Suppresses monoamines, histamine

Serotonergic Raphe Nuclei
Noradrenergic Locus Coeruleus
Dopaminergic Ventral Tegmental Area/Substantia Nigra
GABAergic Ventrolateral Preoptic Nucleus
Hypocretinergic Perifornical Nucleus
Histaminergic Tuberomamillary Nucleus
How is NREM regulated by the brain?

- Serotonergic Raphe Nuclei
- Noradrenergic Locus Coeruleus
- Hypocretinergic Perifornical Nucleus
- Histaminergic Tuberomamillary Nucleus
- GABAergic Ventrolateral Preoptic Nucleus
- Dopaminergic Ventral Tegmental Area/Substantia Nigra
- Adenosinergic Basal Forebrain

Possible Function:
Suppresses cholinergic basal forebrain neurons
How is REM regulated by the brain?
Muscle Tone

NREM Sleep:
Decreased (akin to relaxed wakefulness)

REM Sleep:
Active inhibition of all spinal motor activity (cranial nerves *not* affected)
What Is EEG amplitude?

Low “amplitude” and high “amplitude” EEG indicates the degree of synchrony between cortical neurons, not the amount of activity. Desynchronized firing leads to destructive interference. Synchronicity additively combines waveforms.
From whence the EEG?

What causes cortical neurons to fire in synchrony?
Thalamocortical neurons synchronize cortical networks

![Graph showing EEG and LGNd Extracellular activity in Slow Wave Sleep and Wake/REM states.]

- Slow Wave Sleep
 - EEG
 - LGNd Extracellular
 - (McCarley et al., 1983)
- Wake/REM
 - bursts
 - single spikes
 - 0.5 sec
How do neuromodulators lead to EEG patterns?

Wake

NE
DA excitation
5-HT
ACh

ThC

Raises membrane potential (Vm) and shifts ThC neurons to single spike firing.
How do neuromodulators lead to EEG patterns?

NREM

NE

DA

5-HT

ACh

ThC

Loss of excitation lowers Vm and allows expression of T- and H-currents. This shifts ThC neurons to intrinsic burst firing.
How do neuromodulators lead to EEG patterns?

Acetylcholine elevates Vm enough to switch back to single spike firing.
All mammals divide their existence among three unique states of the brain:

- **Wakefulness**
- **Rapid-Eye-Movement (REM) Sleep**
- **non Rapid-Eye-Movement (NREM) Sleep**

Sleep states are determined by observing:

- Behavior/Posture
- Muscle Activity (**EMG**)
- Heart rate / blood pressure
- Temperature
- Brain Activity (**EEG**)
- Eye Movements (**EOG**)
- Respiratory Rate
First Electroencephalogram (EEG) Recording in humans in 1928

Hans Berger (1873 – 1941)
SLEEP STATES CAN BE DEFINED BY EEG ACTIVITY

- **Awake** - low voltage - random, fast
- **Drowsy** - 8 to 12 cps - alpha waves
- **Stage 1** - 3 to 7 cps - theta waves
- **Stage 2** - 12 to 14 cps - sleep spindles and K complexes
- **Delta Sleep** - ½ to 2 cps - delta waves >75 µV
- **REM Sleep** - low voltage - random, fast with sawtooth waves
The Duality of Sleep

REM Sleep
An active brain in a paralyzed body
(paradoxical sleep)

NREM Sleep
An quiescent brain in a movable body
REM Sleep

*Binocularly synchronous REMs, sawtooth waves
*Dreaming
*Muscle Atonia (Paralysis)
*High metabolic activity in brain
*Irregular breathing
 increased risk of apnea or hypoxic events
*Increased heart rate variability
 increased risk of arrhythmias, pulmonary hypertension, and heart attack
NREM Sleep

• **STAGE 1**
 Alpha activity decreases, mostly of low voltage, mixed frequency activity, much of it at 3-7 Hz. Slow rolling eye movements appear. The EMG is moderate to low.

• **STAGE 2**
 Low voltage, mixed frequency background activity, bursts of distinctive 12-15 Hz sinusoidal waves (sleep spindles). Eye movements are rare, and the EMG is low to moderate.

• **STAGE 3**
 High amplitude (>75 mV), slow (0.5-4 Hz) "delta waves" appear in the EEG.

• **STAGE 4**
 There is a quantitative increase in delta waves so that they come to dominate the EEG tracing.
The Distribution of Sleep Stages Throughout the Night
Sleep is regulated by Circadian, Homeostatic, and Ultradian Processes
Local vs. Global Aspects of Sleep

Does Sleep Homeostasis reflect a Use-Dependent Process?

Krueger & Obal, JSR, 1993
Benington & Heller, Prog Neurobiol, 1995
Frontal predominance of the relative increase in EEG delta power after sleep deprivation

Cajochen et al. 1999
Finelli et al. 2000
Right hand stimulation (vibration) in humans for 6-h prior to sleep

Only in the central EEG derivation (over the somato-sensory cortex) and only in the delta frequency range, a shift in EEG power towards the stimulated, left hemisphere was observed.

Kattler et al. JSR 1994

Unilateral vibrissae stimulation in the mouse for 6-h prior to sleep

The hemisphere contra-lateral to the uncut whiskers showed increased EEG power in the delta frequency range.

Vyazovskiy et al. JSR 2000
Unihemispheric Sleep and Unihemispheric Sleep Deprivation in the Bottlenose Dolphin

Delta sleep during the 24-h following a 4-day unihemispheric delta-sleep deprivation (SD). Average of 9 trials in 5 animals

Mukhametov et al. Neirofiziologiia, 1988
Oleksenko et al. JSR, 1992
SLEEP
Hobson, 1988

Also wrote:
The Dreaming
Brain - 1988

The Chemistry of
Conscious States – 1994
These drawings from an early edition of *The Interpretation of Dreams* illustrate Freud’s belief that the dream is “the guardian of sleep.” The drawings depict the dream of a nursemaid whose charge cries during the night because he wants to go to the lavatory. The dream tries to guard her sleep by showing him doing so. But the child continues to cry and she dreams that the pool of urine floods the town and becomes a sea, until finally the dream can no longer prevent her waking.
Lucid dreaming: Evidence that REM sleep can support unimpaired cognitive function and a methodology for studying the psychophysiology of dreaming

Stephen LaBerge
The Lucidity Institute
What is Lucid Dreaming?

Lucid dreaming is *dreaming while knowing that you are dreaming*. This fascinating state of consciousness allows you to control your dreams and experience anything imaginable, from the sublime to the impossible.

http://www.lucidity.com
What is Lucid Dreaming?

- Possess clear cognizance that one is dreaming
 - Reason clearly
 - Remember conditions of waking life
 - Act upon reflection or in accordance with plans decided upon before sleep
What is Lucid Dreaming?

- Possess clear cognizance that one is dreaming
 - Reason clearly
 - Remember conditions of waking life
 - Act upon reflection or in accordance with plans decided upon before sleep

Allow precise correlations between physiology and the subjective reports and enabling the methodical testing of hypotheses.
Eye Movement Control

![Graph showing eye movement control in different states: awake and lucid REM.](image-url)
Theories of dreaming that do not account for lucidity are incomplete, and theories that do not allow for lucidity are incorrect.
“A dream is real while it lasts. Can we say more of life?”

Havelock Ellis
Dreaming permits each and every one of us to be quietly and safely insane every night of our lives.

Dr. William Dement
Some describe memory as a “heterogeneous entity,” involving two main divisions:

Declarative (explicit):
The subject is aware the information exists and is being accessed.

Ex. Direct memorization of information from a textbook.

Non-declarative (implicit):
The subject’s behavior is affected by the new memory, though he/she may not be aware of it.

Ex. Someone may have the ability to speak a complete sentence without being able to describe the grammatical rules used. Or, learning to ride a bicycle.
Memory Consolidation:

One definition:

“The time dependent process that converts labile memory traces into more permanent and/or enhanced forms.”
So, how does sleep consolidate memories?

Two of the major hypotheses:
The **dual process** hypothesis suggests that REM and nonREM sleep act differently on different memory traces, depending on the memory system in which the information/behavior belongs.

One example is the hypothesis that SWS (NREM) facilitates consolidation of declarative memory, while REM sleep consolidates non-declarative memory.
In the *double step* hypothesis, it is believed that REM and NREM sleep complement each others’ roles in memory consolidation.

This is achieved by the position that specific sleep stage sequences act in the brain’s consolidation of memory in successive steps.
Studies in humans and in rodents models have shown that sleep improves learning and memory.

1. Sleep deprivation after learning affects memory consolidation.
2. Learning affects post-learning sleep.
3. Stimulation during sleep and altering the sleep pattern affects overnight memories.
4. Neural patterns of specific behaviors are re-expressed during post-training sleep.
El sueño de la razón produce monstruos.