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INTRODUCTION 

Core Conductor Concept 

A simple core conductor can be described as a long 
thin tube of membrane that is filled with a core of 
electrically conducting medium (e.g., axoplasm) and 
is bathed on the outside by another electrically con- 
ducting medium (e.g., extracellular fluid). This 
membrane tube is typically a cylinder whose length 
is very much greater than its diameter. For nerve 
axons or dendrites, the resistance to electric current 
flow across the membrane is much greater than the 
core resistance for short length (i.e., small, compared 
with the length constant A) increments along the 
cylinder. Because of these relative resistances, it fol- 
lows that electric current inside the core conductor 
tends to flow parallel to the cylinder axis for consider- 
able distance before ii significant fraction can leak 
out across the membrane. It is this simple physical 
concept that provides the basis for a cable theory 
treatment of steady-state distributions of current and 
potential in neuronal core conductors; for transient 
cable properties, the membrane capacitance must 
also be taken into consideration. An explicit mathe- 
matical derivation of cable theory from these physical 
concepts is provided later in this chapter (see the 
section ASSUMPTIONS AND DERIVATION OF CABLE THE- 
ORY). 

Perspective 

Both the concepts and the mathematical theory of 
core conductors have played an important role in 
neuroscience for over 100 years. They have provided a 
basis for the interpretation of electrophysiological 
observations in terms of the underlying anatomic 
structures. The early mathematical theory was a 
remarkable achievement that arose (ca. 1870) from a 
need to interpret early experiments made on whole 
nerve trunks (see references in section BRIEF HISTORI- 
CAL NOTES). Not until the introduction of single axon 
preparations and electronic instrumentation (ca. 
1930) did detailed quantitative testing of theoretical 
predictions become possible. 

Both theory and experiment underwent comple- 
mentary development during the period before and 
after World War I1 (1930-1950). Cable theory predic- 
tions were elaborated mathematically, computed nu- 
merically, and displayed graphically and thus pro- 
vided the basis for improved experimental designs. 
This led to remarkable success in the characteriza- 
tion of axonal membrane properties and cable proper- 
ties. It is relevant here to note that the most sophisti- 
cated studies of active (i.e., nonlinear) membrane 
properties were made under experimental conditions 
(space clamp and voltage clamp) designed to elimi- 
nate cable properties. Although this was highly suc- 
cessful with excised giant axons, such space clamping 
was not applicable to cells with dendritic trees. 

The use of intracellular micropipettes began (ca. 
1950) to provide a wealth of new electrophysiological 
data from neuromuscular junctions and from moto- 
neuron somas. Correct interpretation of these data 
depended on a careful consideration of the cable prop- 
erties to be expected in these experimental situa- 
tions. With the nerve-muscle preparations, it was 
found that the cable properties of the muscle fiber 
corresponded (at least in first approximation) to a 
core conductor of effectively infinite length; that is, 
the length was many times the length constant ( A ) ,  
as was also true for axons. With motoneurons, how- 
ever, the situation was complicated by the unknown 
contribution of the dendrites and by the fact that the 
intracellular recording site was usually restricted to 
the soma. It was necessary to apply cable theory to 
extensively branched dendritic trees and to consider 
such problems as the following. How significant is 
the contribution of dendritic cable properties to obser- 
vations recorded at  the soma? How should the den- 
drites be included in our efforts to estimate motoneu- 
ron membrane properties? How important are den- 
dritic synapses to the integrative performance of the 
neuron? Also, how well can a dendritic tree be repre- 
sented as an equivalent cylinder? How long are the 
individual dendritic branches relative to  their length 
constant (A)  values, and what is the effective length 
of a dendritic tree or its most nearly equivalent cylin- 
der? 

The theoretical and experimental efforts of the past 
15 years have provided some of the answers for moto- 
neurons of cat spinal cord and some general results 
and conceptual models that should be useful with 
other neuron types as well. 

Com men t 
Considerations of space, time, and the differing 

needs of various readers all share responsibility for 
the fact that different portions of this chapter are 
written at  different levels. The historical notes skip 
lightly over the efforts of many people. The mathe- 
matical derivation of the cable equation is rather 
detailed (probably too pedantic for some readers); it 
represents an attempt to meet a need that has been 
expressed to me by numerous colleagues. In contrast, 
the mathematical solutions €or various particular 
boundary conditions and initial conditions are pre- 
sented with less explanatory comment, but further 
details are available in the recent literature. Also 
many interesting topics and examples have been 
mentioned only very briefly or not at all. 

Reviews and Monographs 

Taylor (182) has reviewed many aspects of cable 
theory and also has provided references to the older 
reviews of the 1920's and 1930's. The bibliographies 
and comments on historical aspects of cable theory by 
Brazier (121, Harmon & Lewis (64a), Hodgkin (71- 
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76), Katz (97, 99), Lewis (107), Lorente de NO (113), 
Scott (169a) Stampfli (1761, and Tasaki (179, 181) 
are useful. A valuable monograph by Cole (24) pro- 
vides unique insights, knowledge, and review of 
membrane biophysics and cable theory. 

Some review of dendritic neuron models is provided 
by Barrett & Crill (6,7), Jack & Redman (92,931, and 
Rall (142, 143, 147, 148). A monograph by Hubbard, 
Llinas, and Quastel (82) includes some cable theory, 
as well as some aspects of dendritic neuron models. A 
monograph by Jack, Noble, and Tsien (91) provides 
a valuable presentation of many aspects of cable 
theory, neuron models, and membrane biophysics. 

With regard to the contrast of dendritic synaptic 
function with axonal function, the ideas of the late 
1950’s were discussed by Bishop (lo), Bullock (15) 
Eccles (37, 381, Fadiga & Brookhart (441, Fatt (46, 
46a, 46b), Frank & Fuortes (541, Grundfest (641, Lor- 
ente de NO & Condouris (1161, and Rall (138-142). By 
the mid 1960’s an increased understanding of the 
dendritic contribution to synaptic potentials in moto- 
neurons was both documented and reviewed in a 
series of five related papers (17, 129, 144, 149, 174). 
The role of dendritic cable properties in the genera- 
tion of cortical field potentials has been elucidated 
with application to the olfactory bulb (147, 151, 152, 
170) and then to the cerebellum (110, 190). Both the 
experimental evidence and the implications of var- 
ious recently discovered synaptic arrangements, 
some of which include dendrites as both presynaptic 
and postsynaptic, have been reviewed in a recent 
monograph by Shepherd (171). 

Terms used in this chapter are defined in the LIST 
OF SYMBOLS. 

BRIEF HISTORICAL NOTES 

Early Electrophysiology 
It is remarkable that not only electrophysiology, 

but also electrochemistry and much of electrophysics, 
can be traced back to a common origin (ca. 1790) in 
the provocative observations and arguments of Gal- 
vani (Professor of Anatomy at  Bologna) and Volta 
(Professor of Physics at Pavia). Systematic physical 
measurements of electric currents generated by 
nerve and muscle were begun in the 1840’s by Mat- 
teucci (Professor of Physics a t  Pisa) and by du Bois- 
Reymond (in the Berlin physiological laboratory of 
Johannes Muller); many references and comments on 
this early period can be found in a historical chapter 
by Brazier (12). 

Electrotonus 
Electrotonus has had various meanings over the 

years, sometimes descriptive and sometimes theoreti- 
cal. In a two-volume treatise in 1848-1849, du Bois- 
Reymond (36) dealt at great length with his observa- 

tions and his theory of the electrotonic state of nerve 
tissue (des elektrotonischen Zustandes des Nerven). 
To him this meant the state of changed electromotive 
forces (emf‘s) in the tissue during steady applied 
current. His theory involved polarizable “Molekeln” 
that were supposed to align themselves longitudi- 
nally under applied longitudinal current (in analogy 
with the magnetization of iron by a magnetic field); 
this theory lost in competition with core conductor 
and cable theory. It may be noted that in 1859 Pfluger 
(133) also wrote a book devoted to this early physiol- 
ogy of electrotonus. 

Passive Mem b rune E leetroton us 
With the development of core conductor theory and 

the improvement of experimental techniques over the 
years, it became recognized that linear aspects of the 
observed phenomena (those explainable in terms of a 
core conductor having a passive membrane) should 
be distinguished from the nonlinear aspects. A classic 
example was provided by the asymmetry found be- 
neath the cathode and the anode when externally 
applied current was just below the threshold for initi- 
ation of a propagated impulse. Such local nonlinear- 
ity was referred to as the “local response” by Hodg- 
kin, Katz, and Rushton (72, 80, 96, 163) and was 
sometimes characterized as a n  active membrane 
property. 

Passive Versus Active Membrane 
A passive membrane can be defined as one whose 

transmembrane impedance and emf remain constant 
(independent of transmembrane potential and time). 
An active membrane exhibits changing impedance, 
and/or emf, and regenerative coupling to the trans- 
membrane potential. The active membrane state 
defined by Hodgkin & Katz (79) differs from the rest- 
ing state by the greatly increased permeability to 
sodium ions; this changes the resultant effective 
membrane emf by changing the relative weighting 
of the parallel sodium and potassium emf‘s in their 
version of the Goldman equation (58, 79). With this 
distinction between passive and active membrane 
properties, the early confusion between different as- 
pects of empirical electrotonus can be understood. 
Most physiologists now restrict the adjective “electro- 
tonic” to passive membrane core conductor proper- 
ties. This applies to present terminology, such as 
electrotonic distance and electrotonic length. 

Cable Theory 
Cable theory dates back to 1855 when Professor 

William Thomson (later to become Lord Kelvin) pre- 
sented to the Royal Society a series of excerpts of his 
correspondence with Professor Stokes (101). This pro- 
vided a mathematical theory and practical applica- 
tions for the submarine (transatlantic) telegraph ca- 
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ble then being planned. Thomson not only derived 
the cable equation, but also, being thoroughly famil- 
iar with the mathematical advances made around 
1822 by Fourier (55) for problems in heat conduction, 
he presented both steady-state and transient solu- 
tions for particular cable boundary conditions and 
initial conditions. 

An important merit, of cable theory is the simplify- 
ing assumption that reduces the problem to a single 
spatial dimension, namely, distance along the cable; 
this greatly facilitates the theoretical treatment of 
transients, as well as steady states. The advantage to 
be gained by applying cable theory to neuronal core 
conductors was not explicitly recognized until about 
1900 (30, 68-70, 81). Since 1945 the two most impor- 
tant presentations of cable theory (with application 
to transients in axons) have been provided by the now 
classic papers of Hodgkin & Rushton (80) and Davis 
& Lorente de NO (33). 

Core Conductor Concept 
The idea of accounting for nerve electrotonus by 

means of a core conductor model was first proposed 
and demonstrated in 1863 by Matteucci (122). This 
suggestion was further developed, tested, and vigor- 
ously defended by Hermann (67-70) in the 1870's and 
on through 1900. The core conductor model (Kernlei- 
ter) consists of a long, thin electrically conducting 
core that is encased by a thin membrane (or sheath) 
and placed in a solution of electrolytes. The earliest 
models were made of platinum wire encased in a 
moistened cloth sheath; a more realistic model was 
made with a hollow grass stem (natural straw) filled 
with and soaked in electrolyte solution. When cur- 
rent is applied between two electrodes placed along 
the outside of the membrane sheath (see Fig. l), 
much of this current flows directly through the exter- 
nal electrolytic medium from the anode to the cath- 
ode, but some current flows from the anode inward 
across the membrane, then along the core conductor, 
and outward across the membrane to the cathode. 
Because the membrane offers significant resistance, 
the current flowing across it becomes spread out over 
a considerable membrane surface area. This spread of 
membrane current extends into extrapolar regions, 
as well as the interpolar region, which means that 
extracellular current must also flow into these extra- 
polar regions, thereby providing an important point 
of agreement between experiment and the core con- 
ductor model. Quantitative testing depends on a 
mathematical core conductor theory and careful ex- 
periments. Early testing was necessarily qualitative; 
quantitative testing had to wait for the development 
of single-fiber preparations and modern electronic 
instrumentation. 

Core Conductor Theory 
A mathematical treatment of core conductors was 

published in 1873 b:y Weber (184) who was a close 
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FIG. 1. Cylindrical core conductor with the spreading distri- 
bution of electric current indicated (only roughly) by dashvd 
lines, for 2 arrangements of electrodes; cylinders extend to (if 
infinite length. A :  both electrodes (cathode and anode) are  extra- 
cellular; some current flows entirely extracellularly, directly 
from anode to cathode in the interpolar rcgion; some extracellular 
current flows out into the extrapolar rctgion before crossing the 
membrane. B :  intracellular (micropipette) electrode provides 
source of current that  spreads along the core before crossing the 
membrane to the extracellular volume that is isopotential with a 
ground electrode. 

colleague of Hermann in Zurich. Weber provided a 
thorough three-dimensional analysis that is now rec- 
ognized as classical mathematical physics: the appli- 
cation of Bessel functions to the steady flow of elec- 
tricity in a cylindrical coordinate system. Whenever 
one is interested in analyzing the distribution of elec- 
tric current and potential in the external volume or 
within the cylindrical core cross section, it is neces- 
sary to use such a three-dimensional theory (22, 41, 
45, 132, 134-136, 146, 186). Weber's solutions also 
make explicit the nonuniformity of potential and cur- 
rent density in cylindrical cross sections near an 
electrode. Weber himself pointed out that, with in- 
creasing distance from the electrode, the potential 
within cylindrical cross sections becomes more nearly 
uniform and the (extrapolar) potential approaches an 
exponential decrement with distance along the core 
conductor (184). Thus, for locations not too close to an 
electrode, the steady-state results of three-dimen- 
sional core conductor theory do approach the simpler 
results of one-dimensional cable theory. Recently the 
differences between a three-dimensional and a one- 
dimensional treatment have been reexamined, both 
theoretically and computationally I for axons of infi- 
nite length, see (22, 41, 57, 65, 132, 134-136); for 
passive decay transients in core conductors of finite 
length, see (134a, 145, 14611. The conclusion is that 
one-dimensional cable theory provides an excellent 
approximation for most purposes (which involve lon- 
gitudinal distances that are many times the cylinder 
diameter) but that significant differences can occur a t  
locations close to point sources of current and in 
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problems where the distribution of potential in a 
large extracellular volume is of primary importance. 

Estimation of Membrane Capacitance 
The importance of electric capacitance for the time 

course of passive electrotonic spread and of impulse 
propagation in a core conductor was recognized and 
discussed by Hermann (69). He presented diagrams 
and equations for core conductor local circuits which 
demonstrated that extra charge (or depolarization) a t  
one location would produce local electric currents 
whose effect is to charge (or depolarize) the mem- 
brane capacity a t  successive locations along the core 
conductor. He reported overall capacitance values of 
the order of 0.5 pF for a whole nerve trunk but 
emphasized the unreliability of the measurements 
and the difficulty of estimating values for single fi- 
bers from nerve trunk measurements. These difficul- 
ties were not overcome until 1937 when Curtis & Cole 
(31) performed transverse AC impedance measure- 
ments with a squid giant axon and obtained a value 
of 1.3 pF/cm' for its membrane capacitance. Cole (24) 
provides a detailed account of the history of cell mem- 
brane capacity measurement and credits Fricke with 
the earliest reliable measurements and interpreta- 
tions, made in 1922 with red blood cell suspensions. 
Additional measurements by Fricke and others on 
red cells of many species all provided a membrane 
capacitance value of about 0.8 pF/cm', which was 
independent of frequency and variations in the sus- 
pending solution. These results, together with those 
that Cole and his collaborators obtained with suspen- 
sions of sea urchin eggs and later with Nitella and 
squid axons, all pointed to values of the order of 1 pF/ 
cm4 as the membrane capacitance of living cell mem- 
brane. Cole (24) regards this as a biological constant, 
with extreme values of about 0.5 and 2.0 pF/cm'. 
This is recognized as primarily a property of the thin 
lipid layer (inner biomolecular layer) that is common 
to all cell membranes. 

The representation and interpretation of tissue 
impedances and membrane impedances in the com- 
plex plane have been reviewed and discussed by both 
Cole and Schwan (24, 26, 166-168). The estimation of 

nerve membrane capacitance by means of a cable 
theory analysis of transients in single large axons of 
lobster and crab was provided by Hodgkin & Rushton 
(80), Hodgkin (73), and Katz (98); these estimates 
agree with a C, value of the order of 1 pFIcm*. Space- 
clamped squid axons have provided estimates of the 
same order. (See LIST OF SYMBOLS at the end of this 
section for definitions). 

It may be noted that similar experiments with 
muscle fibers yielded significantly larger membrane 
capacitance values (98); subsequent research ac- 
counts for much of this difference in terms of the 
sarcoplasmic reticulum and t tubes that are peculiar 
to muscle (see the chapter by Costantin in this Hund- 
book 1. 

Resting Membrane Resistivitiy 
The concept of a thin membrane having low perme- 

ability to ions and consequently a relatively low elec- 
tric conductivity (or high electric resistivity) was al- 
ready contained in the resting membrane concept of 
Bernstein (8) and in the core conductor concept. The 
early experimental determinations of membrane ca- 
pacitance also assumed and supported this idea. 
However, not until the squid giant axon preparation 
became available (189), could Cole & Hodgkin (27) 
obtain the first good estimate of nerve membrane 
resistivity in 1939. Using steady-state cable theory, 
they obtained a value of about 1,000 II cm2 for resting 
squid axon membrane resistivity. This order of mag- 
nitude has been confirmed by many subsequent ex- 
periments with squid giant axons, in which space 
clamping with current or voltage clamping was used 
(24, 99). This value is included in the representative 
set of passive cable parameter values for squid giant 
axon listed in Table 1. 

Passive Cable Parameters of Invertebrate Axons 
The values already noted for squid giant axon were 

obtained before World War 11. The study by Hodgkin 
& Rushton (80) was begun before the War but not 
published until 1946. In this paper they demonstrated 
how the several passive cable parameters can be 

TABLE 1. Cable Parameters for Invertebrate Giant Axons 
- - _ - ~ _ _ _ _ - _ _ _ ~ _ _  ___________~____ .~ 

Parameter Symbol Units Squid' Lobster' Crab' Lobster4 Earthworm' Marine worm" 
__ _ _  _ ~ _  ~ __~__._~____~ 

Axon diameter d P m  500 75 30 100 105 560 
Length constant, with r,. = 0 A cm 0.65 0.25 0.23 0.51 0.4 0.54 
Input resistance, for z to ?a, R,,  fl 5 x 10' 1.8 x 10' 1.5 x 10'' 2.5 x 1 0  4.6 x 10" 6.2 x 10' 

Core resistance, per unit r,  Wcm 15 x 10' 1.4 x 10" 13 x 10" 1 x 10" 2.3 x 10" 23 x 10' 

Membrane resistance, for unit r m  11 cm 6.5 x 10' 9 x lo4 0.7 x 10" 0.23 x 10" 0.37 x 10" 6.8 x 10' 

with r,, = 0 

length 

length 
lntracellular resistivity R i  11 cm 30 60 90 80 200 57 
Membrane resistivity R,,, il em' 1 x 10'  2 x 103 7 x 10' 8 x 10' 12 x 10'  1.2 x 10'  
Membrane time constant T ms 1 2 7 3 .6  0 .9  
Membrane capacitance C,,, PFlcm' 1 1 1 0 . 3  0.75 

76, 98, 99). Homarus americanus (13). Lurnbricus terrestris (59). M~vxicola infundihulurn (9, 57a, 61). 

_-___ ~~ 

Representative rounded values. ' Loligo paelei (24, 27, 31, 74, 76). Homarus vulgaris (80, 99). :I Carcinus n a e n a ~  (73, 
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estimated from a single axon by making several dif- 
ferent extracellular measurements and by using the- 
oretical expressions from cable theory to solve for the 
several unknown basic! parameters. They applied this 
method to the 75-pm diameter axon in the walking 
legs of the lobster (Homarus vulgaris); the same 
methodology was subsequently applied to the 30-pm 
diameter axon of crab (Carcinus maenas) by Hodg- 
kin (73) and by Katz (98). This milestone in establish- 
ing cable theory for single nonmyelinated axons is 
summarized by rounded representative values of ca- 
ble parameters included in three columns of Table 1. 
Definitions of symbols and the theoretical relations 
between these parameters are provided in later sec- 
tions of this chapter (Eqs. 3.15-3.22). It should be 
noted that these values have been adjusted, as in a 
previous tabulation by Katz in 1966 (99), to corre- 
spond to negligible extracellular resistance ( r ,  = 0). 
More recent experiments using intracellular elec- 
trodes (Fig. 1B) have provided the additional values 
listed in the last three columns of Table 1-for a 
different lobster (Homarus amricanus) and for the 
annelid worms Lumbricus terrestris and Myxicola 
infundibulum (9, 13, 57a, 59, 61). 

Importance of Single Axon Preparations 
It may be noted that Davis & Lorente de NO (33) 

provided a useful presentation of cable theory results 
at about the same time as Hodgkin & Rushton (80). 
Their experimental applications, however, were not 
carried out with a single axon, but with a vertebrate 
nerve trunk (peroneal nerve of bullfrog) consisting of 
many axons of different diameters, some myelinated 
and some nonmyelinated. This made it extremely 
difficult to estimate the cable parameters for any one 
axon, and it was later found that serious complica- 
tions also resulted from the significant resistance of 
the epineural sheath that encloses this nerve trunk 
(157). 

Estimation of Pararrreters for Myelinated Axons 

Success with myelinated axons of vertebrate 
nerves depended also on experiments performed with 
single axons. The technique was introduced in 1934 
by Kato, and further developed and applied by Tas- 
aki and colleagues (178-181) and by Huxley & Stamp- 
fli (84, 85). Based on this research, a useful set of 
estimated parameters for a frog myelinated axon was 
assembled by Hodgkin [(76); cf. (2411 and is here 
summarized in Table 2. 

The idea of saltatory propagation of action poten- 
tials in myelinated axons seems to have originated in 
1925 with Lillie, but a detailed review of this subject 
is outside the scope of this chapter (see the chapter by 
Hille in this Handbook). Useful references to the 
cable aspects are provided by Rushton (1641, Tasaki 
(181), Hodgkin (76), and FitzHugh (50-52); recent 

computations of saltatory propagation are provided 
by Goldman & Albus (60) and by Koles & Rasminsky 
(104). Properties of active nodal membrane are 
treated in the chapter by Hille in this Handbook. 

Space and Voltage Clamp 
It is clear that both cable theory and single axon 

preparations were essential to the experimental de- 
termination of passive nerve membrane properties. 
Once this was accomplished, it became important to 
avoid the complications of cable properties in order to 
pursue the details of active membrane properties. 
Marmont (120) and Cole (23, 24) introduced the tech- 
niques now known as space clamping and current 
clamping by using a long axial electrode inside a 
squid axon; together with concentric extracellular 
electrodes (including a guard ring arrangement), this 
permitted control of membrane current density. Then 
Cole (23, 241, followed by Hodgkin, Huxley, and Katz 
(78), combined voltage clamping with space clamping; 
the space clamp prevents cable complications while 
the voltage clamp prevents complication by capaci- 
tive current; then ionic current is revealed. This pow- 
erful technique, combined with the crucial concept of 
distinguishing the sodium ion current from the potas- 
sium ion current (791, provided the basis for the great 
achievement of Hodgkin & Huxley (77) in character- 
izing the voltage dependence and the kinetics of these 
ionic currents. It is now widely appreciated that the 
resulting Hodgkin-Huxley equations for ionic cur- 
rent, when combined with an unclamped membrane 
capacity, can account very well for the space-clamped 

TABLE 2. Parameters for Frog Myelinated Axon 
Parameter Value 

Outer diameter 
Myelin thickness 
Core diameter 
Myelin sheath properties 

Capacity per unit length 
Capacity per unit area 
Dielectric constant 
Specific resistance 
Resistance for unit area 
Resistance for unit length 

Core resistance per unit length 
Specific resistance of axoplasm 
Distance between nodes 
Properties of node 

Capacity 
Resting resistance 
Area (assumed) 
Capacity per unit area 
Resistance for unit area 

Action potential 
Resting membrane potential 
Peak inward current density 

14 pm 

10 pni 

10-16 pF/cm 
0.003-0.005 pF/cmY 
5-10 
500-800 Mfj cm 
0.1-0.16 Mi1 cmz 
25-40 Mi1 cm 
140 MLl/cm 
110 I1 cm 
2 mm 

2 I*m 

0.6-1.5 pF 
40-80 MI1 
22 pmY 
3-7 pF/cm' 
10-20 i1 cmr 
116 mV 
-71 mV 
20 mA/cm' 

Conduction velocity 23 mmlms 

and Tasaki (180), as assembled by Hodgkin (24, 76) 

______ ___-____ ~ ~ - - ~  

Values based on Huxley & Stampfli (84, 851, Stampfli (176). 
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action potential (77). Also, when introduced into the 
partial differential equation (cable equation) for a n  
axon that is not space clamped, these ionic currents 
can account for action potential propagation (77). 

DENDRITIC ASPECTS OF NEURONS 

Axon-Dendrite Contrast 

Interesting correlations of structure to function are 
apparent when dendrites are contrasted with axons. 
Before going into those details, i t  is noteworthy that  
the dendritic trees of neurons are unlikely candidates 
for space-clamping techniques. (Try to imagine the 
difficulties in threading a branched intracellular 
electrode throughout the branched core of a dendritic 
tree!) It would seem that cable properties must be 
regarded as a n  unavoidable complication in experi- 
ments made with the soma-dendritic portions of most 
neurons. 

The morphological distinction between axon and 
dendrites arose about 80 years ago and thus ante- 
dates the neuron theory [see (154) for references]. The 
extensiveness of dendritic branching was established 
about 60 years ago by Ramon y Cajal (155) and con- 
firmed by many followers. Pioneering quantitative 
studies of dendritic trees in cerebral cortex were 
made as early as 1936 by Bok (11) and in the 1950’s by 
Sholl (173). These quantitative methods were ex- 
tended to spinal cord neurons in 1961 by Aitken & 
Bridger (1) and later by Gelfan et al. l(56); see (56) 
also for other references]. The variety of dendritic 
patterns in different neuron types has  recently been 
emphasized and illustrated by Ramon-Moliner (153, 
154) and by the Scheibels (165); contributions of many 
other anatomists are reviewed in those papers. Very 
briefly, i t  can be said that  the dendritic trees of 
vertebrate central nervous system (CNS) provide a 
very extensive surface area (about 20 times that  of 
the soma, for motoneurons) over which tens of thou- 
sands of synapses are distributed to provide a synap- 
tic surface density that  is at least approximately the 
same at distal branch locations as at the soma and 
dendritic trunks (158, 188). But the functional dis- 
tance from the soma of a distal dendritic synapse 
cannot be assessed in terms of anatomy alone. 

Although we now know that  dendritic branch 
lengths can be significantly less than A and that an  
entire dendritic tree of a motoneuron usually corre- 
sponds a t  least approximately to an  equivalent cylin- 
der whose length is between one and two times A ,  this 
knowledge is quite recent. In 1538, a t  a time when 
Lorente de NO made many pioneering contributions 
to neuroscience, his analysis of “synaptic stimulation 
as a local process” (112) convinced him that the den- 
drites were very long compared with A and that, even 
a t  the soma surface, synapses would need to be near 
each other to sum effectively; these opinions were 
rather widely accepted for many years. In 1959 Lor- 

ente de NO & Condouris (116) still regarded dendritic 
lengths to be large compared with A and therefore 
emphasized that  active decremental conduction could 
compensate for otherwise severe passive electrotonic 
decrement with distance. Eccles also believed the 
dendrites to be much longer than A .  As recently as 
1964 [(40), p. 1111 he asserted that  synapses on den- 
drites are  virtually ineffective if situated on the more 
remote regions of the dendrites; his low estimates of 
dendritic A values were based on a low estimate of 
membrane resistivity ( R ,  approx. 500 Iz cm‘), which 
was interrelated with an  underestimate of the den- 
dritic contribution to input conductance measured at 
a motoneuron soma [(4a, 37-40, 46b, 119, 138-145); 
see subsections Motoneuron Membrane Resistivity 
and Dendritic Dominance and Dendritic Electrotonic 
Length for additional references and comment]. 

Both the evidence and the early biophysical inter- 
pretations of junctional membrane potentials and 
membrane properties were provided in 1951 by Fatt 
& Katz (47,481 for the neuromuscular junction; corre- 
sponding results and interpretations were provided 
for synaptic transmission to spinal motoneurons by 
Eccles and his colleagues (14, 28, 29) and subse- 
quently by many others. These junctional potentials 
could be graded in amplitude, and the synaptic mem- 
brane model had ionic permeability changes that  
differed from those of active membrane in not being 
voltage dependent. The problem of combining cable 
theory with localized synaptic membrane was treated 
by Fatt & Katz (47); the problem for a distributed 
density of synaptic input over a portion of a finite 
dendritic cable length was treated by Rall [(141, 143, 
144); see also Eq. 2.36-2.49 in section ASSUMPTIONS 

In the late 1950’s Bishop ( lo) ,  Bullock (E), Grund- 
fest (641, and others [e.g., (37, 38, 44, 46, 116, 139, 
140)] reviewed and discussed what was being learned 
about synaptic and dendritic properties and functions 
and contrasted them with those of axons. On the one 
hand, the active (nonlinear) membrane properties of 
a n  axon can account for all-or-nothing impulse propa- 
gation from one end to the other; this enables an axon 
to fulfill its functional role of providing reliable sig- 
nal transmission over long distances, for example 
from one region of the nervous system to another. 
Different properties and different functional roles 
were recognized €or dendrites and synapses; the em- 
phasis here was on graded response to different 
amounts of synaptic input. Such grading of synaptic 
potentials seemed to have more in common with pas- 
sive membrane properties than with the all-or-noth- 
ing impulse of axonal membrane. It became impor- 
tant  to consider whether passive dendritic membrane 
properties (i.e., passive cable properties of dendritic 
branches) would be sufficient to account for effective 
spatiotemporal integration of many synaptic inputs 
delivered to various portions of a neuronal soma- 

AND DERIVATION OF CABLE THEORY]. 
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dendritic surface. This required not only an  extension 
of cable theory to such branching systems, but also 
required a theoretical basis for using both anatomic 
and electrophysiological data to estimate important 
geometric and membrane parameters of such neu- 
rons (139-145). 

Very briefly, for motoneurons of cat spinal cord, 
the combination of theoretical and experimental ef- 
fort has led to the conclusion that  these dendritic 
branches differ from axons in being relatively short 
and in normally not generating action potentials; the 
synapses on distal dendritic branches are  not too 
remote to be effective, and altogether the dendritic 
synapses can dominate the integrative behavior of 
the neuron. Nevertheless, if some other neuron type 
should correspond to different theoretical parame- 
ters, such that  synapses at distal dendritic locations 
were at greater electrotonic distance (more than 3 
times A) from the soma, this would provide a basis for 
suspecting at least some active membrane properties 
at some locations in the dendritic tree. 

Microelectrodes in  Motoneurons 

Direct electrical measurements on individual neu- 
rons of mammalian CNS depended on the introduc- 
tion of glass micropipettes for intracellular stimula- 
tion and recording. 'This technique was introduced 
with muscle, by Graham & Gerard (62a) and Ling & 
Gerard (108), followed by Nastuk & Hodgkin (126) 
and by Fatt & Katz (471, and then by many others 
(53); the application to motoneurons of cat spinal cord 
was pioneered by Woodbury & Patton (187) and by 
Brock, Coombs, and Eccles (14), as reported in the 
1952 Cold Spring Harbor Symposium for Quantita- 
tive Biology. By the mid-1950's there was a wealth of 
new electrophysiological data on motoneuron proper- 
ties (2, 28, 29, 37, 54). Some of the early interpreta- 
tions of these data  and the resulting early estimates 
of motoneuron parameters proved to be erroneous 
because the cable properties of motoneuron dendritic 
trees were either neglected or underestimated; the 
recognition and early discussion of these misinterpre- 
tations began in 1957 [(46b, 138-140); see also (391, 
174)). 

It has  usually been assumed that  a microelectrode 
has penetrated either the soma or one of the larger 
dendritic trunks, when stable intracellular record- 
ings are obtained; occasionally there is evidence for 
more distal dendritic locations. However, even if we 
know that  the microelectrode is in the soma, it is 
important to emphasize that we do not measure prop- 
erties of the soma membrane alone, uncomplicated 
by the cable properties of the dendrites. Figure 2 
illustrates that  when such a n  electrode is used to 
apply electric current between the soma interior and 
a distant extracellular electrode (not shown in Fig. 2) 
some of this current flows directly across the soma 
membrane and some of i t  flows into the several den- 
dritic trees (and the axon) for varying distance before 

FIG. 2. Flow of electric current from a microelectrode whose 
t ip penetrates the  cell body (soma) of a neuron. Full extent of 
dendrites is not shown. External electrode to which the  current 
flows is at a distance far beyond the  limits of this diagram. [From 
Rall (139).1 

crossing the membrane. How the applied current 
divides between these different paths depends on a 
combination of geometric and electrical considera- 
tions (139). The geometric considerations include the 
size of the neuron soma, the diameters of the several 
dendritic trunks, as well as their length and taper, 
and at least some measure of the amount and extent 
of dendritic branching in each tree. The electrical 
considerations include the membrane resistivity and 
capacity, as well as the volume resistivity of the 
intracellular and extracellular conducting media; the 
membrane resistivity is not necessarily the same for 
the soma and all the dendritic branches. 

For a better understanding of the interrelation of 
these many factors, and to make effective use of 
available anatomic and electrophysiological data, it 
became desirable (and even necessary) to formulate 
explicit theoretical models of neurons having exten- 
sive dendritic trees (139-144). 

Theoretical Neuron Models and Parameters 

It should be emphasized that there is a family of 
dendritic neuron models. This is composed of particu- 
lar models that  differ in their suitability for different 
applications because of different choices in simplify- 
ing assumptions. The most simplified cases have the 
advantage of simpler mathematical treatment and 
simpler biophysical insights. More complicated ex- 
amples include geometric or membrane complica- 
tions judged important for particular applications. 

It may avoid confusion to distinguish between the 
conceptual model and the mathematical model. The 
conceptual model consists of the various simplifying 
assumptions, some of which can be represented dia- 
grammatically (i.e., one diagram may provide a 
shorthand symbol for the geometric assumptions and 
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some of the boundary conditions, while other dia- 
grams represent the membrane models). Neverthe- 
less the working model is a mathematical model con- 
sisting of several equations that incorporate the sim- 
plifying assumptions and express the interdepend- 
ence of the primary variables and the theoretical 
parameters. For some problems, these equations can 
be solved explicitly; for other problems, the solutions 
can only be computed numerically. In either case, one 
often uses graphical methods (or numerical curve 
fitting) to test the agreement between experiment 
and theoretical predictions for different values of the 
parameters. In this way one can obtain estimates of 
the values of the parameters that provide best agree- 
ment with experimental data and one can judge the 
adequacy of the particular theoretical model for the 
experiments in question. 

Equations have been deferred to the latter portions 
of this chapter. Here the major simplifying assump- 
tions are noted briefly; a detailed exposition and dis- 
cussion of these assumptions was provided in 1959 
[(139); see also (91, 141, 143)l. 

A dendritic tree was idealized to consist of a cylin- 
drical trunk and cylindrical branch components. The 
membrane was assumed to be uniform. The extracel- 
lular surface of the entire neuron was assumed isopo- 
tential, a t  least for most purposes. The interior of the 
soma was assumed isopotential; together with the 
preceding assumption, this means that the entire 
soma membrane was assumed to be space clamped; 
this lumped soma membrane provided a common 
point of origin for the dendritic trees. At this origin 
and at all dendritic branch points, the internal poten- 
tial was assumed continuous and the current con- 
served (i.e., Kirchhoffs law). The electric current 
and potential in each trunk and branch cylinder were 
assumed to obey the one-dimensional cable theory 
idealization of a core conductor (see section ASSUMP- 
TIONS AND DERIVATION OF CABLE THEORY). The dendri- 
tic terminals were assumed to have sealed ends. The 
membrane was assumed to have simple passive prop- 

erties except where synaptic properties were specified 
(141). 

With these assumptions, Rall showed (139) how 
one can solve the steady-state distribution of current 
and membrane potential in a neuron model where 
dendritic branches could be of any arbitrary lengths 
and diameters, as indicated in Figure 3; how this 
solution provides a basis for estimating some moto- 
neuron parameters from the experimental data was 
also shown. 

Commentary on the estimation of motoneuron pa- 
rameters is provided in subsequent sections. A cur- 
rent set of parameter estimates for cat spinal moto- 
neurons is listed in Table 3, which includes a repre- 
sentative value together with a range of values for 
each parameter, as well as references to the litera- 
ture. Definitions of these parameters are given in the 
section entitled LIST OF SYMBOLS. The mathematical 
relations between these parameters are dealt with 
in later sections of this chapter and in the references 
cited. 

With regard to variety in neuron models, it should 
be noted that some models have made use of the class 
of dendritic trees that can be represented as an equiv- 

TABLE 3. Parameter Estimates for Cat Spinal Motoneurons 

FIG. 3. Arbitrary dendritic branching to illustrate the sub- 
script notation used to treat this problem. Originally L,, repre- 
sented actual trunk length; subsequently, I have preferred to use 
/,) for actual length and L,, = /,,/A,, as the dimensionless electro- 
tonic length of a dendritic trunk. [From Rall (139).1 

Parameter 

Neuron input resistance 
Membrane resistivity 
Membrane time constant 

Membrane capacitance 
Time constant ratio 
Neuron electrotonic length, soma 

plus dendritic trees 
Conductance ratio, dendritesisoma 
Intracellular resistivity 
Combined dendritic 
Dendritic surface area* 
Soma surface area*,? 
Neuron surface area*.t 

Representative Value and Range 
~ ~~ 

References 

1 5 Mf> (0.3-6) 
2,500 f l  cm' ( 101-108) 

5 ms (3-12) 

2 pF cm ' (1-4) 
5 (3-11) 

1 5  (1-2) 

10 (3-25) 
70 61 cm (50-100) 

200 x 10 I' cm"' (10 I to 10 9 
28 x 10 I cmL (10 to 10 ') 

1 x 10 ' cmL (10 to 10 I )  

29 x 10 I cm' (10 I to 10 2~ 

5 , 6 , 1 6 ,  1 8 , 2 8 , 5 4 ,  102, 119, 150 
5, 6 ,  8 7 ,  102, 119, 139 
6, 16, 18, 87, 119, 138, 140, 142, 

145 
6 ,  142 
6 ,  18, 88, 119, 130, 145, 146, 148 
5, 6 ,  18, 87, 119, 130, 141, 145, 

5, 6 ,  87 ,  102, 119, 130, 139, 140 
6 
5, 6 ,  102, 119, 139 
1, 56 
1, 56, 119, 139 
1. 5 .  6 .  56 

148 

* Representative values chosen to be consistent with those above, on the simplifying assumption that these dendritic trees can be 
t Representative values agree with p = 10, aceording to Eq. 5.15, provided either that Rn,,  = represented as equivalent cylinders. 

R,,, ,  with G ,,,, = 0.7AS/R, , , ,  or that R,,,, = 0.6 R,,, , , ,  with G ,,,, = 0. 
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alent cylinder l(92, 93, 141-145, 150, 161); see also 
subsection Class of Trees Equivalent to Cylinders]. 
Some have dispensed with an  explicitly lumped soma 
(150, 161) because of the advantage gained for explicit 
solutions in the dendritic branches; some models 
have treated dendritic trees as cylinders of semi- 
infinite length (4, 28. 92, 93, 138, 140). Still other 
computations have been done with compartmental 
models (143, 144, 151). [Each compartment represents 
a lumping of the membrane parameters for some 
region of membrane surface; with coarse lumping a 
compartment may correspond to several dendritic 
branches, while with fine lumping i t  could corre- 
spond to only a portion of a branch. Such a compart- 
mental model can accommodate as much detail in 
branching pattern, and as much detail in the spati- 
otemporal pattern of synaptic excitation and inhibi- 
tion, as one wishes to specify. This compartmental 
model corresponds mathematically to a system of 
ordinary differential equations; see (143) for further 
details and references I .  

Class of Trees Equiualent to Cylinders 

Although i t  was implicit in reference (1391, it was 
made explicit in references 141-143 that  a particular 
class of dendritic branching permits a n  entire dendri- 
tic tree to be reduced to an  equivalent cylinder. In 
Figure 4 a symmetrical example of a dendritic tree 
belonging to this class is illustrated. I t  should be 
noted that  the high degree of branching symmetry 
shown in this example is convenient but not neces- 
sary for this class. Given the usual simplifying as- 
sumptions (already noted above), the essential addi- 
tional condition is a constraint on branch diameters: 
the diameters ( d ,  and d,) of two daughter branches 
arising at any branch point can be unequal, but they 
must satisfy a particular constraint ( d.'i2 constraint), 
namely, that the sum of their 3/2 power values (d,:'"' + 
d 2 9  equals the 3J2 power of the parent cylinder 
diameter. Branch lengths can be unequal, provided 
that  all terminal branches end with the same bound- 
ary condition and at the same electrotonic distance 
(sum of (/A values from soma to terminal). This class 
of dendritic branching has been valuable both as an  
aid to intuitive understanding of cable properties in 
dendrites and as an  aid to the formulation of explicit 
mathematical solutions, including both steady-state 
and transient solutions in the separate dendritic 
branches [see (150, 161)l. Another useful property of 
such dendritic trees is the fact that equal increments 
of electrotonic distance (Ax /h )  in the whole tree (e.g., 
increments of 0.2 are indicated by dashed lines in Fig. 
4)  correspond to equal amounts of dendritic surface 
area (141); this property is helpful when thinking 
about various dendritic distributions of synaptic exci- 
tation and inhibition in terms of synaptic density and 
intensity . 

This class of dentlritic trees was developed and 
used as a very convenient idealization. It was not 

x=o Equivolent Cylinder x= L 

SOMA 4 DE NDRl TE S - 
FIG. 4. Symmetrical dendritic tree, illustrative of a class o f  

trees that  can be mathematically transformed into an equivalent 
cylinder (141-144) and into approximately equivalent chains of 
equal compartments. Dashed lincis divide both the tree and the 
cylinder into 5 equal increments of electrotonic distance, having 
equal membrane surface area. In one specific example (141, 143), 
the dendritic trunk diameter was 10 pm, and successive branch 
diameters were 6.3, 4.0, 2.5, 1.6, and 1 . 0  pm, which satisfy both 
symmetry and the constraint on cl" values. Chain o f  5 compart- 
ments corresponds to the 5 increments o f  electrotonic distance 
above. Chain of 10 compartments, used for Fig. 7, 8, and 10, 
represents the soma as compartment 1, and progressive electro- 
tonic distance out into the dendrites is represented by compart- 
ments 2-10. 

proposed as  a law of nature, but it was  noticed that  
preliminary data on branch diameters in motoneu- 
rons did not deviate drastically from such a con- 
straint, and it was suggested that  future data be 
examined in terms of the sum of the tJ:'/? values (139). 
Thus it is noteworthy that  Lux et al. (119) examined 
50 bifurcations in motoneuron dendritic trees of their 
carefully studied sample and found that  the ratio of 
summed daughter d:i/' to parent d:'/2 ranged between 
0.8 and 1.2, with a mean value of 1.02 t 0.12 SD; this 
provides surprisingly strong support for using this 
idealization with motoneurons. The measurements of 
Barrett & Crill (5, 61, however, indicated a steady 
decrease of the summed tl:'12 value with increasing 
distance from the soma; some of this was due to taper 
and some was due to early termination of certain 
branches. While this taper provides a warning, it 
does not invalidate the notion that the equivalent 
cylinder concept provides a very useful idealization. 
Also, even when there is a small amount of taper, the 
concept of the electrotonic length of the most nearly 
equivalent cylinder is still a very useful one and 
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provides a good approximation to the more exact 
estimate that can be obtained when taper is taken 
into account (unpublished results of S. S. Goldstein 
and W. Rall, and personal communication with J .  N. 
Barrett). 

Motoneuron Membrane Resistivity and 
Dendritic Dominance 

In 1957 both Fatt (46b) and Rall (138) emphasized 
the importance of giving sufficient weight to the ca- 
ble properties of the dendrites when one interprets 
the microelectrade experiments. In 1959 Rall (139) 
also emphasized the importance of ranges of values, 
both because there is a range of motoneuron sizes and 
because of the uncertainties in matching one range of 
values (0.5-2.5 Mf1) for neuron input resistance (RN),  
measured by electrophysiologists on their experimen- 
tal sample of motoneurons, with another range of 
values for soma and dendritic dimensions, obtained 
by anatomists from their different sample of spinal 
cord neurons. It was found, on the basis of published 
data then available, that if the membrane resistivity 
(R,) is assumed to be uniform over the soma and 
dendrites, its theoretically est,imated value could 
range from 1,000 to 8,000 R cm2, with midrange 
around 4,000-5,000 R cm2. Then the factor of dendri- 
tic dominance ( p ) ,  defined as the ratio of combined 
dendritic input conductance to soma membrane con- 
ductance, was estimated to be 10 or more, with mid- 
range values from 21 to 35, or about 10 times the 
value of 2.3 used by Eccles and his collaborators. It 
was pointed out that large values of p provide a 
measure of the dominance of dendritic properties over 
somatic properties in determining various whole neu- 
ron properties of motoneurons. Rall 1(139), p. 5201 
also pointed out that this leads naturally to a possible 
functional distinction between dendritic and somatic 
synaptic excitation: the slower dendritic contribution 
would be well suited for fine adjustment of central 
excitatory states, while the relatively small number 
of somatic synaptic knobs would be well suited for 
rapid control of reflex discharge. 

Because of the functional implications and because 
of the uncertainties in matching the anatomic and 
physiological samples, this paper (139) drew atten- 
tion to a number of questions and problems, includ- 
ing the desirability of making histological measure- 
ments on the same individual neuron that physiologi- 
cal measurements have been made on. This difficult 
feat was accomplished about 10 years later by Lux et 
al. (119) and by Barrett & Crill (5-7); thus, improved 
estimates of these motoneuron parameters were pro- 
vided. For R,,, Lux et al. (119) obtained an average 
estimate of 2,750 f l  cm2 ? 1,010 SD; Barrett and Crill 
obtained a lower bound of about 1,800 f l  cm2 and 
pointed out that  the dendritic value could exceed 
8,000 (1 cm2 if the somatic value were much lower. 
Discussion of the various sources of uncertainty can 
be found in these papers. 

Even recent estimates of the dendritic dominance 
factor ( p )  have exhibited considerable variability and 
uncertainty. Nelson & Lux (130) estimated a range 
between 5 and 10. Lux et al. (119) regard p = 7 as a 
midvalue, while Barrett & Crill (5-7) have tabulated 
estimates ranging from 4.6 to 16 (mean 9.3). Jack & 
Redman (93) and subsequently Iansek & Redman (86) 
also provided estimates of p (and of pa, which corre- 
sponds to dendrites extended to infinite length) from 
analysis of transients; their estimates are usually 
greater than 4 and often greater than 20. However, it 
should be added that there is general agreement 
among all who have recently studied both the estima- 
tion of p and dendritic electrotonic length ( L )  that a )  
the values of L can be estimated more reliably than 
the values of p and h )  the concept of dendritic domi- 
nance is not only supported by the values of p ,  but 
also enhanced by L values around 1.5, which means 
that distal dendritic synapses are not functionally 
remote from the soma. 

Dendritic Electrotonic Length 
The idea that the dimensionless electrotonic length 

of a dendritic tree (sum of A x l A  values from trunk 
origin to a representative dendritic terminal) could 
have a value as small as 1 or 2 can be found in the 
early numerical examples of explicit dendritic 
branching [see (1391, Table 1 and (141), Table 11. 
However, because such low values conflicted with the 
opinions of Lorente de NO (112, 116), Eccles (37-40), 
and others, it was important to consider the best 
available measurements of actual dendritic branch- 
ing, including both branch lengths and diameters. 
These were provided by Aitken [(l)  and personal 
communication] for 10 neurons in the lumbosacral 
region of cat spinal cord. A computational analysis of 
these data was carried out for a wide range of R ,  
values. The resulting ranges of calculated input re- 
sistances and dendritic electrotonic lengths were 
studied, and the midrange (corresponding to the ex- 
perimental range of motoneuron input resistance val- 
ues) was found to correspond to a dendritic electro- 
tonic length range of approximately 1-2; this conclu- 
sion was stated explicitly (1431, but the full details of 
the computation remain unpublished. 

This knowledge was important for computations of 
theoretical synaptic potentials designed to demon- 
strate the effect of different dendritic input locations 
(143, 1441, especially when the theoretical range of 
results was to be compared with the experimental 
range found for miniature excitatory postsynaptic 
potentials (EPSPs) in cat spinal cord (17, 149). The 
kind of agreement found between these experimental 
and theoretical results (149) had several implica- 
tions. Not only did it demonstrate that different den- 
dritic synaptic input locations could account for most 
of the observed variety, but it also provided indirect 
support for the estimated range of dendritic electro- 
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tonic length. It may be noted that this indirect sup- 
port came from a study of membrane potential tran- 
sients; it did not depend on measurements of dendri- 
tic branches. 

A theoretical basis for estimating dendritic electro- 
tonic length from the multiple time constants con- 
tained in membrane potential transients was pro- 
vided in 1962 (141), and this was made more explicit 
some years later “145); see Eqs. 4.1-4.6 below, with 
the associated discussion of passive decay transients, 
time constant ratios, and electrotonic length]. The 
point to be emphasized here is that this new method 
of estimating dendritic electrotonic length is inde- 
pendent of the older method. The older method de- 
pended on the details of branch lengths and diame- 
ters and on estimates of R ,  and R ,  leading to esti- 
mates of A values in the branches. The new method 
depends on an  analysis of transients; it depends on 
branch dimensions only in the general sense that 
dendritic trees are approximated by their most nearly 
equivalent cylinder, and it depends on the assump- 
tion of uniform passive membrane properties, but not 
on any particular estimated range of values for R ,  
and R,.  

The agreement between these two methods of esti- 
mating dendritic electrotonic length for cat spinal 
motoneurons has been very encouraging. In several 
laboratories, the analysis of transients alone has con- 
firmed the earlier estimate of L values ranging 
approximately from 1 to 2 (18, 86, 90, 130). Further- 
more both methods have been applied to individual 
motoneurons in the remarkable experiments of Lux 
et al. (119) and of Barrett & Crill (6, 7); they found 
good agreement between the two methods and with 
the range of L values already noted. 

Such confirmation in several laboratories has con- 
tributed to a growing recognition that these theoreti- 
cal models do provide a means of combining anatomic 
and electrophysiological information into a useful 
representation of dendritic cable properties. Also cal- 
culations of passive electrotonic spread from dendri- 
tic synaptic locations to the soma have now been 
carried out by several research groups (4, 7, 87, 90, 
93, 141-144, 149, 159, 161, 183); their conclusion has 
been that for L values between 1 and 2, even distally 
located dendritic synapses should not be dismissed as 
ineffective. 

When people ask me questions about the functions 
of dendritic branches in other neuron types, both 
vertebrate and invertebrate, my response is to ask 
them for experimental data needed to estimate the 
electrotonic distances involved. It seems timely to 
explore the feasibility of both methods of estimating 
dendritic electrotonic lengths in several different 
neuron types. Both tissue culture and those inverte- 
brate preparations that permit visual control of elec- 
trode locations provide the possibility of more com- 
plete experimental testing of both methods and of the 
assumptions that underlie them. 

Membrane Potential Transients and 
Time Constants 

Except in the simplest cases, it is necessary to use 
the mathematical results of cable theory to define the 
relation of a membrane potential transient to the 
passive membrane time constant. Many of those 
mathematical results are presented in a later section 
(PASSIVE MEMBRANE POTENTIAL TRANSIENTS AND 
TIME CONSTANTS). 

In 1957 it was recognized (138, 140) that erro- 
neously low estimates of motoneuron membrane time 
constants had resulted from a neglect of dendritic 
cable properties. At issue was not merely the correc- 
tion of a low estimate of T ,  but also some complicated 
arguments about the duration of synaptic potentials 
(54) and whether prolonged residual synaptic cur- 
rents need be postulated to account for the observa- 
tion that monosynaptic EPSP’s usually had longer 
durations than monosynaptic inhibitory postsynaptic 
potentials (IPSPs) (32, 37-40). These issues have 
been carefully discussed elsewhere (1401, and the de- 
tails are not repeated here. Already then it was 
pointed out that the difference in time course be- 
tween the brief IPSP and the usually longer EPSP 
could be understood if these inhibitory synapses were 
located near the soma and these excitatory synapses 
were distributed over the dendrites, as well as the 
soma [(140), p. 521; cf. (32, 39, 149, 174)l. The central 
idea was that once the erroneously low membrane 
time constant was corrected, the decay of these syn- 
aptic potentials could be regarded as a passive decay 
of membrane potential, following a brief flow of syn- 
aptic current; thus for brief synaptic input (or brief 
applied current) a t  the soma, the passive decay must 
be initially more rapid because of electrotonic spread 
from the soma out into the dendrites. 

Although these transient dendritic cable properties 
were analyzed first for dendritic trees approximated 
as cylinders of semi-infinite length, solutions for 
equivalent cylinders of finite length were derived, 
illustrated, and discussed by 1962 (141-153). The 
mathematical results (141) were used to calculate the 
spatiotemporal distributions of membrane potential 
illustrated here in Figures 5 and 6 ,  for the case where 
steady synaptic excitation is applied uniformly to 
half the length of the equivalent cylinder. Figure 5 
shows the membrane depolarization as a function of 
dimensionless electrotonic distance at  several differ- 
ent times during sustained synaptic excitation; it can 
be seen that for this example (with L = 1.0) the “hot” 
end is about l0Y0 more depolarized than the midpoint 
and the  COO^" end is about 10% less depolarized than 
the midpoint (for T = 1.0 or more); however, a t  early 
times the differences are relatively greater. The time 
course at these three locations is illustrated by Fig- 
ure 6A, and the effect of suddenly turning off the 
synaptic excitation after a duration AT = 0.2 is 
shown by the inset (Fig. 6B). The three transients of 
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FIG. 5. Distributions of membrane depolarization for an excit- 
atory conductance step in the peripheral half of a dendritic tree, 
for several values of T = th. In the central half of the dendritic 
tree (i.e., X = 0 to X = 0.5) the conductances are assumed to 
remain at  their resting values. Over the peripheral half of the 
dendritic tree (i.e., X = 0.5 to X = 1.0) the conductance (G. )  is 
assumed to step from zero to a value of 2G, at T = 0. [Calculations 
are based on equations in (141).1 
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FIG. 6 .  Transients of membrane depolarization at the central 
end, the peripheral end, and at the middle of a dendritic tree. A:  3 
curves at left illustrate the same problem as in Fig. 5; uppermost 
curue corresponds to the peripheral end ( X  = 1); intermediate 
curue corresponds to X = 0.5; lowest curve corresponds to the 
central end ( X  = 0). B :  3 curves at right illustrate the response to 
a square conductance pulse. On step is the same as in A ;  off step 
occurs 0.2 units of T later; the duration of the square conductance 
pulse is indicated by vertical dashed lines. [For equations used to 
calculate the off transients, see (1411.1 

Figure 6B can be regarded as theoretical synaptic 
potentials when the synaptic conductance is approxi- 
mated as a square step on followed by a square step 
off after AT = 0.2 ,  over half the length of the equiva- 
lent cylinder. At the hot end, the transient rises more 
rapidly to a higher peak and then falls more rapidly 
during its early decay. At the cool end, there is a 
delayed rise, but the rise continues after the conduct- 
ance pulse is over; the latter can be understood as the 
result of an equalizing spread of membrane depolari- 
zation from the hot half to the cool half of the equiva- 
lent cylinder. This equalizing spread is governed by a 
time constant that is shorter than the passive mem- 

brane time constant (see Eq. 4.3); this corresponds to 
the fact that the early decay at  the hot end is more 
rapid than the later decay; the later decay is essen- 
tially the same at all locations because by this time 
the remaining membrane depolarization has become 
essentially uniform. 

This simple example illustrates two aspects of den- 
dritic cable properties that have been explored exten- 
sively in subsequent research. One aspect, how the 
shape of a synaptic potential depends on the location 
of the synaptic input, in relation to that of the record- 
ing electrode, has been examined by means of compu- 
tations with compartmental models (143, 144, 149) 
and also by computations with series solutions (90- 
93, 146, 161). Another aspect, how the differences in 
shape can be understood in terms of equalizing elec- 
trotonic spread, has been made explicit in the analy- 
sis of transients to separate out the time constants 
(145), thus providing estimates for both the passive 
membrane time constant and the dendritic electro- 
tonic length (see Table 3 and the discussion of Eqs. 
4.1-4.6). 

Spatiotemporal Effects with 
Dendritic Synapses 

At a time when dendritic synapses were usually 
ignored or treated as equivalent to somatic synapses, 
it was important to demonstrate both the effect of 
different dendritic input locations on the resulting 
EPSP to be expected at  the soma and the effect of 
contrasting spatiotemporal patterns constructed from 
such input locations. In Figures 7 and 8 the results of 
computations with the 10-compartment model are 
summarized; this model was included earlier in Fig- 
ure 4 and has been mathematically defined and dis- 
cussed (143). The four cases in Figure 7 show the 
EPSP time course computed for the soma (compart- 
ment no. 1) when an equal amount of synaptic con- 
ductance (step on, with step off after AT = 0.25) was 
assumed to be located as shown in the four inset 
diagrams. In case A, the proximal dendritic input 
location resulted in the EPSP with the steepest rise to 
the earliest and largest peak. In cases B-D, as the 
input location was shifted to more distal dendritic 
compartments, the EPSP shape was progressively 
delayed, with a slower rise to a lower peak ampli- 
tude. In Figure 8, the same four inputs have been 
applied in opposite spatiotemporal sequences, 
A+B+C-D and D-tC-+B-+A. It can be seen that 
the two results were quite different, although the 
amount of synaptic conductance was the same in both 
cases; only the spatiotemporal pattern of the two 
inputs was different. Furthermore, when the same 
total amount of synaptic conductance was distributed 
uniformly over compartments 2-9 for T = 0-1.0, the 
intermediate (dashed) curve was obtained. At least 
three conclusions can be drawn: 1 )  a temporal se- 
quence of synaptic inputs does not result in a unique 
EPSP unless the soma-dendritic locations of these 
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FIG. 7. Computed transients at the soma (compartment 1) for 
4 synaptic inputs tha t  differ only in their  input locations. In each 
case, the synaptic input consisted of G, = G,. in 2 compartments 
for a time interval, T=O to T=0.25 ,  indicated by heauy black bar. 
In A ,  the input was applied to compartments 2 and 3, i n B  to 4 and 
5, in C to 6 and 7, and i n D  to 8 and 9. \See Fig. 4 for the relation of 
such compartments to the dendritic branches; see (143) for equa- 
tions and discussion of compartmental modeling. l 
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inputs are specified; 2 )  for a maximal peak depolari- 
zation at the soma, the distal dendritic synaptic input 
should occur earlier than the somatic and proximal 
dendritic synaptic input; and 3 )  for rapid achieve- 
ment and maintenance of a steady soma depolariza- 
tion level, a brief somatic input followed by a pro- 
longed sequence of distal dendritic inputs would be 
more effective. 

In addition to these conclusions, it has also been 
demonstrated and discussed (143, 144, 149, 150, 161) 
that, when synaptic inputs are localized to particular 
dendritic branches, both the effectiveness of synaptic 
inhibition and the departure from simple summation 
of two synaptic excitations depend on large local 
membrane depolarizations and especially on how 
much of the depolarization generated at one location 
has spread to the other location by the time the 
synaptic conductance transient occurs there, because 
this influences the amount of synaptic current gener- 
ated; a large membrane depolarization at the second 
synaptic site will decrease both the driving potential 
and the resulting synaptic current for an excitatory 
synapse, but, for an inhibitory synapse, its driving 
potential and the resulting inhibitory synaptic cur- 
rent would be increased. Because of this, one can 
easily distinguish the effects of simultaneous distal 
dendritic synaptic excitation and inhibition for two 
extreme cases: when these inputs occur in different 
dendritic trees they do not influence each others' 
driving potentials and their EPSP and IPSP ampli- 
tudes combine linearly at the soma; however, when 
they occur in the same or sister branches of one tree, 
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FIG. 8. Effect of two spatiotemporal sequences on transient soma-membrane depolarization. 
Two input sequences, A -+ B ---* C + D and D + C + B + A, are  indicated a t  upper left  and upper 
right, respectively; component input locations a re  the  same as  in Fig. 7.  Time sequence is 
indicated by means of the 4 successive time intervals, At,, At2, At:,, and At,, each equal to 0.25 T .  

Dotted curve shows the computed effect ofG, = 0.25 G,. in compartments 2-9 for the period T = 0 to t  
= T .  [For further details, see (143).1 
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there is local interaction (caused by changes in syn- 
aptic driving potentials) with the result that the 
EPSP at the soma is reduced by more than the ampli- 
tude of the separate IPSP. 

It may be noted that an early treatment of nonlin- 
ear summation of muscle end-plate potentials was 
provided by Martin (121). Calculations for brief tran- 
sients and for dendritic locations have been reviewed 
recently (7, 150, 159, 161). 

Excitatory Postsynaptic Potential Shape 
Index Loci 

Because the experimental variety of EPSP shapes 
is discussed later in this Handbook (see the chapter 
by Burke and Rudomin), and the detailed comparison 
between theory and experiment can be found in sev- 
eral papers (87, 90, 149), the objective here is to focus 
briefly on two contrasting theoretical shape index 
loci. These loci were obtained because of a need to 
compare experimental variety with theoretical vari- 
ety, when the source of the variety was not under full 
control. We wish to contrast the variation in EPSP 
shape that would be caused by varying the time 
course of synaptic input alone with the variation that 
would be caused by changing only the input location. 
By choosing two shape indices, the time to peak (or 
rise time) and the half-width, the shape of each EPSP 
could be represented as a point on a two-dimensional 
graph of half-width versus time to peak. Figure 9 
shows a plot of three shape index pairs, at left, for the 
three EPSP shapes a t  right; these EPSP shapes were 
computed for the three synaptic current time courses 
shown as dotted curves, on the assumption that the 
synaptic input was spatially uniform over the entire 
soma-dendritic surface; thus no cable properties were 
involved. The straight line drawn through the three 
points at left can be regarded as the theoretical locus 
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FIG. 9. Righf: computed EPSP’s (solid / raws )  generated by 
synaptic currents of different time courses ( t l o t t c ~ l  truccss). Synap- 
tic currents a re  assumed to be uniformly distributed over entire 
soma-dendritic surface. Arrows on the lowermost EPSP indicate 
its half-width. L(1ft: plot of paired shape index values for EPSP’s 
generated by uniformly distributed synaptic input with coordi- 
nates a s  labeled. The +, A, and on the plot represent the shapes 
of corresponding EPSP’s on the  right side of the  figure. \See 
(149). I 

of shape index pairs for this family of EPSP shapes. 
What makes this locus interesting is that it is quite 
different from that obtained when a single input time 
course is applied at different dendritic locations (Fig. 
10). Similar loci were computed also for a faster input 
time course and a slower input time course (144, 149). 
The effect of combining two or three input locations 
was also explored (149). When experimental EPSP 
shapes are plotted in the same way, it is possible to 
compare the pattern of their scatter with these loci. 
The original sample of Burke (17, 149), despite scat- 
ter caused t y  the unknown variation in membrane 
time constant, permitted us to conclude that the locus 
(Fig. 9) resulting from variation of input time course 
alone could be ruled out and that single input loca- 
tions could account for more than half of the EPSP 
shapes, while two or more input locations were 
needed to account for the longer half-widths. The 
later experimental sample of Jack et al. (89,90) had a 
reduced scatter (see Fig. 11) because the membrane 
time constants had been determined and also any 
shapes that were obviously due to two or more loca- 
tions were excluded; these data, and also the average 
EPSP shapes of Mendell & Henneman (123), have 
shown good agreement with shape index loci, like 
that in Figure 10, based on single input locations. 

In Figure 12 an additional test of our interpreta- 
tions is shown. Here a shape index plot was used to 
display the EPSPs studied earlier by Smith et al. 
(174) using impedance bridge techniques at the soma. 
The filled circles represent those EPSPs for which an 
impedance transient was detected, while the open 
circles represent those for which an impedance tran- 
sient was not detected. The correlation of the slower 
EPSP shapes with failure to detect impedance tran- 
sients is theoretically expected for distal dendritic 
input locations (144, 149, 174). In contrast, the corre- 
lation of the faster EPSP shapes with detection of 
impedance transients is theoretically expected for 
proximal dendritic synaptic input locations. 

This section is concluded with the cautionary re- 
mark that such an analysis must not be applied 
uncritically to other experimental situations where 
there may be little reason to believe that the several 
synaptic inputs have the same brief time course. 

Comments on Extracellular Potmtials 
Early insights into the relation of extracellular 

potential distributions to dendritic orientation in- 
clude those of Bishop and colleagues (10a, 21a), and of 
Lorente de NO (114, 1151, who made a distinction 
between open and closed fields, the latter being char- 
acterized by radial (spherical) symmetry. A computa- 
tion of the time course of extracellular potential in 
such a closed field, generated by a somatic action 
potential with passive electrotonic spread into den- 
dritic trees (assumed to extend symmetrically in all 
directions from the soma) has been reported (142) and 
is illustrated in Figure 13. These computed results 
were in good agreement with experimental results 
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FIG. 10. Right: diagrammatic representation of the transformation of soma-dendritic receptive 
surface of a neuron into a chain of 10 equal compartments. Below are  graphs of computed EPSP's 
occurring in compartment 1, obtained with the compartmental model for the medium synaptic 
current time course (upper. graph. dotted line). Synaptic current introduced equally to all compart- 
ments gave the upper computed EPSP (A). Synaptic current localized to a single compartment 
gave the lower 3 computed EPSP's: compartment 1 ( A ), compartment 4 ( A ), or compartment 8 
( A ) .  Left: EPSP shape index values for computed EPSP's shown at right. Dashed l ine,  locus of 
EPSP shapes generated when synaptic input is limited to the numbered compartment. Solid l ine,  
locus for spatially uniform depolarization of the cell. Note tha t  scales a re  in units of dimensionless 
ratio tlr. [See (149).1 
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FIG. 11. Scatter diagram of normalized shape indices of the 
EPSP's from the  motoneurons for which a time constant was 
obtained. 0 ,  EPSP's recorded from knee flexor motoneurons; $1, 
EPSP's recorded from ankle extensor motoneurons. Two dashed 
lirrcs show theoretical boundaries for the shape indices with the 
assumed values of parameters ( c r  = 12-100; IJ, = 4-25; L = 0.75- 
1.5). The set of areas, each bounded by acvrztiriuous l i tw ,  show the 
theoretical boundaries for particular distances. [See (90). 

(46a, 128) from cat spinal motoneurons; this agree- 
ment was timely in demonstrating the error of a 
belief that a diphasic extracellular record in the den- 
dritic region could result only from active propaga- 
tion of an  impulse along the dendritic branches. Here 
(1421, and in the closed field portion of the computa- 
tions for the olfactory bulb (147, 1511, it was shown 
that extracellular negativity (relative to a distance 
reference electrode) throughout the closed field corre- 
lates with centripetal extracellular current flow from 
dendrites to the actively depolarizing soma; the cur- 
rent flows inward across the soma membrane and 
then returns as centrifugal intracellular current in- 
side the dendritic trunks and branches. The subse- 
quent (diphasic) reversal from extracellular negativ- 
ity to extracellular positivity correlates with active 
repolarization of the somatic membrane; then the 
extracellular current flows centrifugally from the 
soma out into the volume between the dendrites, 
then across the dendritic membrane, and finally re- 
turns as centripetal intracellular current. 

Because intuition based on axonology had led to a 
belief that extracellular positivity should always be 
expected just outside a membrane source (where cur- 
rent flows outward into the extracellular medium), it 
is important to emphasize that this is not true for 
multipolar dendritic neurons or for closed fields (142). 
This can be understood in two different ways. For an 
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idealized closed field, when the dendritic membrane 
is a (passive) source of extracellular current that 
flows (centripetally) to the somatic sink, the poten- 
tial near dendritic membrane (source) is negative 
relative to a distant electrode; however, it is less 
negative than the potential near the soma sink. Fur- 
thermore, in the reversed phase, when the dendritic 
membrane is a (passive) sink for extracellular cur- 
rent that flows (centrifugally) from the repolarizing 
somatic source, the potential near dendritic mem- 
brane (sink) is positive, but less positive than that 
near the soma source. Even without the assumption 
of an idealized closed field, for a multipolar neuron 
(Fig. 14) one can gain understanding by considering 
this as the superposition of two separate fields: a 
soma sink field for current flowing from infinity, and 
a separate dendritic source field for equal total cur- 
rent flowing to infinity (142). The dendritic surface 
area is large and widely distributed and must have a 
low source current density; the much smaller soma 
surface must have a relatively large sink current 
density. The separate dendritic source field does gen- 
erate a positive potential relative to a sink at infin- 
ity, but this positive potential is small (+50 pV at 
R = 4 of Fig. 14). The separate somatic sink field 
generates negative potentials of larger magnitude, 
especially near the soma and proximal dendrites, be- 
cause of the high current density converging toward 
the soma (about -900 pV at the soma surface and 
-150 pV at R = 4 of Fig. 14). When these two fields 
are superimposed, the negativity outweighs the posi- 
tivity except at  locations close to distal dendritic 
branches (- 150 pV + 50 pV yields - 100 pV at R = 4 
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FIG. 12. Shape index plot for evoked EPSP’s for which imped- 
ance measurements were available. Time to peak as abscissa; 
half-width as ordinate; scales in milliseconds. 0 ,  EPSP’s accom- 
panied by a measurable impedance change; 0, EPSP’s not accom- 
panied by a detectable impedance change. Dotted outline, scatter 
of shape index values for observed miniature EPSP (for refer- 
ence). [See (149, 174).1 
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FIG. 13. Theoretically calculated relation between intracellu- 

larly and extracellularly recorded action potentials. Uppermost 
curve, experimental “AB spike” followed by an  “A spike” as 
recorded intracellularly from a cat motoneuron by Nelson & 
Frank (128). The other intracellular curve represents the theoret- 
ically calculated passive electrotonic spread into a dendritic cyl- 
inder of infinite length; it corresponds to a radial distance, R = 18 
[i.e., an  electrotonic distance, r l h ,  of (R - 11/40 = 0.425; this 
would correspond to about 600 p m  in the examples considered]. 
Extracellular curves were calculated on the assumption of radial 
symmetry. Curve for R = 18 has been multiplied by 10 to aid the 
comparison of shape. Curve a t  R = 3 has a shape extremely 
similar to that  at R = 1, except that  the peak at R = 1 has an  
amplitude about 5 times that  a t  R = 3.  [See (128, 142).] 

in Fig. 14). With superposition the source and sink at 
infinity are cancelled and the distributed dendritic 
source matches the concentrated somatic sink cur- 
rent; the resultant extracellular potential near the 
dendritic sources is negative, yet the current does 
flow away from these sources (it flows from - 100 pV 
at R = 4 to ca. -800 pV at the soma in Fig. 14). These 
quantitative details are included here to help con- 
vince readers that insights gained from axonology 
should not be applied uncritically to the dendritic 
regions of a multipolar neuron. 

When a population of neurons is arranged as a 
cortex, with complete spherical symmetry, and the 
neurons are activated synchronously, this also gener- 
ates a closed field of extracellular potential (114, 115, 
147,151). By using cable theory to compute the spati- 
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FIG. 14. Computed isopotential contours for a spherical soma with 7 cylindrical dendrites, of 
which only 3 can be seen in the plane shown here. Relative to 1 dendrite shown on the vertical 
(polar) axis, 3 dendrites were equally spaced a t  60" from the polar axis, and 3 more dendrites were 
equally spaced a t  the  equator (see inset) .  The soma was the sink for extracellular current; the 
dendritic cylinders were sources of extracellular current corresponding to passive electrotonic 
spread a t  the time of the peak of an  antidromic action potential. For this calculation, dendritic A 
was set equal to 40 times the somatic radius. Numbers labeling the contours correspond to the 
quantity VJiI,R, /4rrb), where I ,  is the  total current flowing from dendrites to soma, R,. represents 
extracellular volume resistivity, and b represents the soma radius. For the  particular case of the  
peak somatic action potential in a cat motoneuron, this numerical quantity expresses the value of 
V,. approximately in millivolts. This is because of the following order of magnitude consideration: 
I ,  is of the order lo-' A, because the peak intracellular action potential is of the order lo- '  V ,  and 
the whole neuron instantaneous conductance is of the order P'; RJ4nb is of the  order lo4 {I, 
because the soma radius, b ,  lies between 25 and 50 pm,  and the  effective value ofR,. probably lies 
between 250 and 500 ( 1  cm. [ S e e  ClSZ).] 

otemporal distribution of membrane potential and 
current in each neuron and by assuming perfect 
spherical symmetry and synchrony in the population, 
the resulting spatiotemporal distribution of extracel- 
lular potential can be computed (147, 151). Further- 
more, if the spherical symmetry is punctured, either 

by incompleteness of the spherical shell or by incom- 
plete activation, the resulting field of extracellular 
potential is no longer closed, but important aspects of 
the resulting open field can be usefully approximated 
by the considerations summarized diagrammatically 
in Figure 15; these considerations have been pre- 
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FIG. 15. Cortical symmetry and synchronous activation of the mitral cell population. A :  sche- 
matic diagram of experimental recording situation. Microelectrode ( M E )  penetrates the  olfactory 
bulb; reference electrode (RE) is distant. Mitral cells a re  arranged in a n  almost spherical cortical 
shell; their axons all project into the  lateral olfactory tract. Single-shock stimulation to  the lateral 
olfactory tract results in synchronous antidromic activation of the mitral cell population. E :  
complete spherical symmetry of a cortical arrangement of mitral cells. Cone indicates a volume 
element associated with one mitral cell; arrows indicate extracellular current generated by this 
mitral cell; current is as though confined within its cone when activation is synchronous for the  
population. C: punctured spherical symmetry. Arrows inside the  cone represent t he  primary 
extracellular current generated per mitral cell; dashed line (with arrows) represents the  secondary 
extracellular current per mitral cell. Location of the  reference electrode along the  resistance of 
this secondary pathway serves as a potential divider. D: the potential divider aspect (C)  combined 
with a compartmental model. Relations of both the  microelectrode (ME) and the  reference 
electrode (RE)  to the  primary extracellular current ( P E C )  and the  secondary extracellular current 
( S E C )  are  shown. Generator of extracellular current ( G E C )  is a compartmental model represent- 
ing the synchronously active mitral cell population. Solid arrows adjacent to the  compartmental 
model represent the  direction of membrane current flow at the  moment of active, inward, soma- 
membrane current (heavy black arrow); dendritic membrane current is outward. Open arrows 
represent the direction of extracellular current flow (both PEC and SEC) at this same moment. 
[See (147, 1511.1 

sented and discussed in some detail by Rall and Shep- 
herd (147, 151) who were concerned with an applica- 
tion to field potentials in the olfactory bulb of rabbit. 
The concept is most easily understood for a small 
puncture that offers a relatively large resistance to 
the secondary extracellular current (SEC) that flows 
from the outer surface of this cortex, around, and 
through the puncture to the inner surface of this 
cortex. For complete, unpunctured spherical symme- 
try, there is no such secondary extracellular current; 
there is only the primary extracellular current 
(PEC), which, because of the symmetry and syn- 
chrony, flows as though it were confined within coni- 
cal volumes, each cone being associated with one 
neuron of the synchronously active population. With 

a small puncture of high resistance, most of the ex- 
tracellular current still flows as primary extracellu- 
lar current in such conical volumes (except for edge 
effects near the puncture), and only a small fraction 
of the total extracellular current flows as secondary 
extracellular current; this means that the gradient of 
extracellular potential within the cones is almost 
unchanged from the unpunctured case, but the val- 
ues of extracellular potential, relative to a distant 
reference electrode, can be significantly shifted by 
what we have called a “potential divider” effect. As 
explained more fully by Rall and Shepherd (1511, the 
outer arm of the potential divider can be thought of as 
the resistance along which the secondary extracellu- 
lar current flows from the dendritic terminals out- 
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ward to a zero potential surface that is isopotential 
with ground and the distant reference electrode; the 
inner arm of the potential divider corresponds to the 
resistance from the zero potential surface, through 
the puncture, to the inner spherical boundary of the 
primary region. In the application to the mitral cell 
population of olfactory bulb, the ratio of these two 
resistances (outerlinner) was taken to be about 114; 
this was consistent with a peak extracellular poten- 
tial of +0.5 mV at  the bulb surface, coincident with a 
peak extracellular potential of -2.0 mV at the inner 
boundary of the mitral body layer. 

The agreement betwen theory and experiment for 
the mitral cell population led to the recognition that 
subsequent activity (in period 111) must be mainly in 
the granule cell population (147, 151); additional con- 
siderations of polarity and timing led to the postula- 
tion of dendrodendritic interactions between mitral 
cells and granule cells, and these theoretical consid- 
erations were reinforced by independent electron-mi- 
croscopic observations of reciprocal synapses between 
the dendrites of mitral and granule cells [(152); see 
(147, 151, 170-171) for details and additional refer- 
ences]. It was recognized then (152) that these results 
and interpretations contained wider implications for 
neurophysiology: neurons having dendrites but no 
axon could perform locally, possibly without an  ac- 
tion potential; they might contribute to lateral inhi- 
bition and enhancement of contrast; they could also 
provide a recurrent inhibition that might contribute 
to adaptive damping and possibly also to rhythmic 
activation of a population. The possibilities of such 
dendrodendritic pathways are now beginning to be 
explored in many regions of the CNS (171). 

With regard to the potential divider concept, it was 
conjectured that this might provide a useful approxi- 
mation also in cases of larger puncture or of less 
complete cortical activation (151). This conjecture 
had already found experimental support (172). Re- 
cent extensive computations carried out with very 
large punctures (more than hemispheric) have shown 
that the potential divider concept (together with in- 
creasing secondary current shunting of the primary 
current) can provide quite good approximations even 
in such cases [see M. Klee & W. Rall, (103b)l.The 
application to cerebellum has been discussed and 
illustrated by Zucker (190); additional computations 
for cerebellum have been carried out by Llinas & 
Nicholson (110). 

Additional Comments and  References 

A number of topics are mentioned only briefly to 
draw attention to references where details can be 
found. 

With regard to the application of dendritic models, 
the emphasis here has been on motoneurons of cat 
spinal cord. Applications to pyramidal cells (83, 94, 
118, 175, 177) have been reviewed briefly 1(150), p. 

671-673; see (183, 183a) for application to neurons of 
the red nucleus]. 

In a detailed study of the input resistance at one 
dendritic branch, Rall & Rinzel (150) showed explic- 
itly that this input resistance (RBI,) exceeds that at 
the soma (RN) by less than the series sum of the core 
resistances along the direct line from the input point 
to the soma. Also they showed that the steady atten- 
uation factor (voltage at branch input point/voltage 
at  soma) is always greater than the input resistance 
ratio (RBJRN). Furthermore, for equal synaptic con- 
ductance inputs to a branch or to a soma, although 
the local depolarization is greater at the branch input 
site than at a soma input site, the attenuation factor 
is even greater, and less depolarization reaches the 
soma; for the steady-state problem, the voltage ratio 
at the two input sites is less than RHlJRN [(150), p. 
673-6751; for the transient problem, the ratio of peak 
voltages at the two input sites is greater than RBJRN 
[(161), p. 777-7791, but the attenuation factor is much 
larger still; numerical illustrations, as well as ana- 
lytical expressions, are provided for both cases (150, 
161). Despite very large attenuation of peak voltages, 
a consideration of charge dissipation ratios shows 
that a very significant portion of the dendritic input 
charge does reach the soma (4a, 7, 87, 159, 161). 

With regard to the size principle relating to synap- 
tic excitation thresholds in motoneuron populations 
(661, considerations involving synaptic densities on 
dendrites and soma have been discussed by Burke 
[(16, 18); see the chapter by Burke and Rudomin in 
this Handbook] and by Zucker (191). 

Some aspects of repetitive firing of motoneurons 
have been explored with soma-dendritic modeling 
(63, 103, 168a). Recent useful analog models have 
been described (48a, 107a, 137). Detailed modeling of 
antidromic activation, from axon, to hillock, to soma 
and dendrites, has been reported and described (35, 
151). Changes of action potential shape and velocity 
have been studied in regions of changing core conduc- 
tor geometry [ (62, 152al; see also (103a) for additional 
references]. 

The idea that action potentials in dendritic 
branches could provide a basis for logical operations 
relating to success or failure a t  branch points has 
been noted by many researchers L(3, 62, 116, 148); R. 
FitzHugh, personal communication; Y.  Y. Zeevi, 
Ph.D. thesis and personal communication]. Such a 
phenomenon may well prove important to the under- 
standing of activity in the dendritic trees, or axonal 
branches, of some neuron types. However, the den- 
dritic membrane of cat spinal motoneurons does seem 
to be essentially passive [(150), p. 6711, except per- 
haps under the abnormal conditions associated with 
chromatolized motoneurons (106). 

The effect of an extracellular potential gradient on 
the excitability of a dendritic neuron depends on how 
the dendritic trees are aligned with respect to the 
potential gradient (127, 142, 151). If dendritic trees 
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extend equally in both directions (from a central 
soma) along a constant gradient, one set of dendritic 
terminals will be depolarized while the other set is 
hyperpolarized, and the soma remains unaffected. 
However, with a radial gradient (127), or with den- 
drites extending only in one direction (142, 1511, it is 
possible for a neuron soma or a spike trigger zone to 
receive either hyperpolarization or depolarization 
sufficient to  change the threshold or the frequency of 
firing. 

A very generalized treatment of dendritic branch- 
ing has recently been provided by Butz & Cowan (191, 
utilizing Laplace transforms and special symbols. A 
method of solving cable problems with Laplace trans- 
formed boundary conditions, by a computational in- 
version procedure, has recently been described by 
Norman (131). Voltage clamping has recently been 
explored numerically by Moore et al. (125a). 

CABLE EQUATIONS DEFINED 

Usual Cable Equation 

differential equation that is usually expressed 
The cable equation of neurophysiology is a partial 

Aza2V/ax2 - V - TaV/at = 0 (1.1) 

where the variable, V, depends on two independent 
variables, x and t; A and T are constants depending on 
the materials. As explained in the derivation below, 
V represents the departure of membrane potential 
from its resting value, x represents distance along the 
length of the core conductor, and t represents time; 
also T is known as the time constant of the membrane 
and is sometimes designated T,, while A is the length 
constant of the core conductor and is sometimes 
called the space constant. The way in which A and T 

depend on the electrical properties of the core conduc- 
tor materials (the membrane and the intracellular 
and extracellular media) is shown in the LIST OF 
SYMBOLS and explained below (see section ASSUMP- 
TIONS AND DERIVATION OF CABLE THEORY). 

Sometimes this cable equation is reexpressed in 
terms of the dimensionless variables X = x / A  and 
T = t/T, 

a2V/aX2 - V - aV/aT = 0 (1.2) 
This can be useful in simplifying certain manipula- 
tions and in simplifying the mathematical expres- 
sions for solutions. Also tabulating and plotting solu- 
tions in terms of X and T means that a single set of 
numerical values can be applied equally well to dif- 
ferent core conductors having different A and T val- 
ues. 

Steady-state Cable Equations 

We distinguish between DC and AC steady states. 
For the DC steady state, V depends onx, but not on t; 

then aV/at = 0, and the cable equation (Eq. 1.1) 
reduces to an ordinary differential equation 

A2d2V/d2 - V = 0 (1.3) 

Many useful results, such as cable input resistance 
and steady-state attenuation with distance, can be 
obtained most simply by studying the solutions of 
Equation 1.3 for various boundary conditions. 

For an AC steady state, we consider the variable V 
= U expbwt), where V and U are both complex 
variables and U is independent oft. Then the cable 
equation (Eq. 1.1) reduces to the expression 

X2d’ U/dx2 - (1 + j w ~ ) U  = 0 
or to the expression 

d2U/U2  - q2U = 0 (1.4) 
where q = (1 + ~ w T ) &  and U is a complex function ofX 
and w .  Solutions of this equation can be used to 
obtain expressions for AC admittance, impedance, 
and transfer functions [e.g., (6, 117, 140, 150)l. 

Augmented Cable Equations 

For situations where applied electric fields, synap- 
tic excitation, or active membrane properties are 
present, it becomes necessary to consider a more 
general cable equation 

a2v/axi - v - aV/aT = F (1.5) 
which includes a function F on the right-hand side. 
When F = 0, one recovers the homogeneous partial 
differential equation (Eq. 1.2) considered before. 
When current or voltage is applied only at a few 
discrete points along a passive cable, then F = 0 for 
lengths of cable that lie between these points. When 
an extended electrode or complex electrode array is 
applied along the length of the cable, we obtain 
Equation 1.5 with F as a function of X, and if this 
applied field varies with time, we have F as a func- 
tion ofX and T ,  but still not of V (e.g., see Eq. 2.31). 
But, when the input disturbance is a synaptic con- 
ductance change, the resultant synaptic current de- 
pends on V, as well as on the spatiotemporal distribu- 
tion of synaptic input; in this case, F is a function of 
V, as well asX and T ,  as illustrated in Equation 2.43. 
Furthermore, when consideration is extended to ca- 
bles having active membrane properties, F in Equa- 
tion 1.5 becomes not only a function of V, X, and T ,  
but also a function of one or more auxiliary variables, 
and Equation 1.5 must be supplemented by equations 
governing these auxiliary variables; the BVP model 
of FitzHugh (49, 51) has one auxiliary variable, while 
the well-known model of Hodgkin & Huxley (77) has 
three auxiliary variables, m, n, and h [see (51,52) for 
discussion of the mathematical properties of such 
systems; see also (43, 160) for further results and 
references]. 
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Comment: Cable Versus Wave Equation 

The cable equation, heat conduction equation, and 
diffusion equation are all partial differential equa- 
tions of the same parabolic type. Such equations, and 
their solutions, differ significantly from those of the 
elliptic type (e.g., Laplace's equation of potential the- 
ory) and from those of the hyperbolic type (e.g., elec- 
tromagnetic wave equation). When electromagnetic 
inductance is added to a telegraph cable or transmis- 
sion line, the partial differential equation gains a 
term that  is proportional to LC d'V/i)t', and this 
changes the equation from the parabolic type to the 
hyperbolic type; engineers have long known that  this 
can enhance telegraph signal propagation. However 
important this is for engineering, a recent attempt 
(109) to account for nerve impulse propagation as a 
wave solution of such a differential equation can be 
dismissed for two important reasons: not only did this 
involve a misunderstanding of the importance of the 
nonlinear membrane properties elucidated by Hodg- 
kin and Huxley, i t  tacitly assumed a n  amount of 
electromagnetic inductance that  far exceeds the neg- 
ligible amount present in nerve (95, 169). Many have 
recognized that  nerve impulse propagation has  much 
more in common with the traveling chain reaction of 
a lighted fuse than with electromagnetic wave propa- 
gation. 

Modified Cable Equation for Tapering Core 

Previous equations (Eqs. 1.1-1.5) all apply to a 
uniform cable, corresponding to a core conductor of 
constant cross section. If the cross section changes 
continuously with distance, a partial differential 
equation more complicated than Equation 1.1 results. 
However, for a particular class of exponential flare or 
taper, this equation can be transformed to the rela- 
tively simple form 

i)'v/azZ + KaV/aZ - v - aV/aT = o (1.6) 
where K is a constant that  determines the amount of 
exponential flare or taper, and Z represents a gener- 
alization of X = x / A ,  for changing A [see (62, 14111. 
For the special case of zero taper or flare, K = 0, and 
2 becomes equivalent to X, with the result that  
Equation 1.6 then is reduced back to Equation 1.2. 

General Solution o f  Steady-state Cable Equation 

The ordinary differential equation (Eq. 1.3) is ho- 
mogeneous, linear, and of second order, with con- 
stant coefficients. It can have only two linearly inde- 
pendent solutions; its general solution is composed of 
two such (linearly independent) solutions, with two 
arbitrary constants. For any specific problem, two 
boundary conditions are  needed to determine the two 
arbitrary constants and thus provide a unique solu- 
tion of that  problem. 

The general solution of Equation 1.3 can be ex- 

pressed in many alternative (but equivalent) forms. 
The most familiar form is 

V = A ,  exp ( x / A )  + A, exp (-x/A) (1 .7)  

where the two exponential functions are  linearly in- 
dependent solutions, while A , and A: represent the 
two arbitrary constants. It can be verified by differen- 
tiation twice with respect to x ,  that  Equation 1.7 is a 
solution of Equation 1.3 for any values of A ,  and A,. 

Particularly useful alternative forms of this gen- 
eral solution can be expressed in terms of hyperbolic 
sines and cosines 

V = B ,  cosh ( x / A )  + B ,  sinh ( x / A )  (1.8) 

and 

V = C, cosh ( L  - X )  + C, sinh ( L  - XI, (1.9) 

where the hyperbolic functions (available in standard 
mathematical tables and standard computer subrou- 
tines) are  defined by 

2 cosh ( x / A )  = exp ( x / A )  + exp ( - x / h )  

2 sinh ( x / A )  = exp ( x / A )  - exp ( - x / A )  

also, in Equation 1.9, X is the dimensionless distance 
variable ( x / A )  and L = 1 / A  is a constant relevant to a 
cylinder of finite length. 

The equivalence of general solutions (Eqs. 1.7-1.9) 
implies the following relations between the different 
pairs of arbitrary constants. 

2A, = B ,  + B1 = (C, - C,) exp ( - L )  
2A2 = B, - B, = ( C ,  + C,) exp (+L). 

The advantage of these alternative forms of the 
general solution is the simplification achieved when 
one selects the form best suited to particular bound- 
ary conditions. Equation 1.7 is best for infinite 
lengths because regularity at + x requires that  A , = 
0 when x ranges from x = 0 to x = +x; regularity at 
--x requires that A, = 0 whenx ranges fromx = 0 to 
x = -=. Equations 1.8 and 1.9 are useful for finite 
lengths, especially for the sealed-end boundary condi- 
tion, dV/dx = 0 at x = 0 or at X = L ,  or for the 
clamped-end boundary condition, V = 0 at x = 0 or at 
X = L. Specifically, V = 0 at x = 0 requires that  B , = 
0 in Equation 1.8, while V = 0 at X = L requires that  
C ,  = 0 in Equation 1.9; on the other hand, dVldx = 0 
at x = 0 would require that  B ,  = 0 in Equation 1.8, 
while dVIdx = 0 at X = L would require that  C ,  = 0 
in Equation 1.9 [see (34, 139, 1851. 

Basic Transient Solutions of Cable Equation 

differential equations of the general form 
Both Fourier and Kelvin knew tha t  for partial 

(1.10) a2V/aX - V - dV/i)T = 0 

V = U exp ( -TI  

solutions can be expressed in the form 

(1.11) 
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where V and U are both functions ofX and T ,  and U 
is a solution of the simpler heat conduction equation 

d2U/dX - aU/dT = 0 (1.12) 

This means that Fourier’s methods and the many 
specific solutions that he and later workers elabo- 
rated for the simple heat equation (Eq. 1.12) can be 
applied also to the cable equation (Eqs. 1.2 and 1.10) 
through the transformation defined by Equation 1.11, 
when care is given to changed boundary conditions. 

Solutions Using Separation of Variables 
One type of solution is called separable because it 

can be expressed as the product of two functions, of 
which one is a function of X but not of T ,  while the 
other is a function of T but not of X. An example of 
such a solution of Equation 1.12 can be expressed 

U = cos ( a x )  exp (-a*T) (1.13) 

where a can be any constant; it is easily verified that 
this is a solution of Equation 1.12 because a2U/aX 
and dU/dT both equal -a2U. It follows from Equa- 
tion 1.11 that the corresponding solution of the cable 
equation (Eq. 1.10) can be expressed 

V = cos (d) exp (-T-a2T) (1.14) 

If cos (ax) is replaced by sin (ax), this also provides a 
solution. Furthermore, because the differential equa- 
tion is both linear and homogeneous, such solutions 
can be combined into a more general solution 

V = [A sin (aX) + B cos (am] exp (-T-dT) (1.15) 

where we now have three arbitrary constants, A ,  B ,  
and a. It may be noted that dependence on X and T 
are still separated in this more general solution of the 
cable equation. For any specific problem, the values 
of A,  B, and a must be determined from the boundary 
conditions and the initial condition. For finite 
lengths with simple boundary conditions at  both 
ends, Fourier first showed how to construct the spe- 
cific solution that satisfies an arbitrary initial condi- 
tion. This solution has been applied to nerve (141, 
145, 150, 161); for a finite length of passive cable with 
sealed ends (dV/dX = 0 a t  X = 0 and X = L )  the 
solution can be expressed as the infinite series 

(1.16) 

exp [-T-(nn/L)’T] 
where the coefficients (B,) are known as the Fourier 
coefficients 

Bit = (1/L) 1’ W(X) d X  (1.17) 

and, for positive integer values of n, 

B ,  = (2/L)  1‘’ W(rD cos (nrX/L) d X  (1.18) 

where W ( X )  represents the initial condition V(X, 0). 
For the particular initial condition of a point charge, 
Q o ,  a t  X = 0 and T = 0, these Fourier coefficients 
reduce simply to 

Bii = Qi,/(LAc,) (1.19) 

B, = 2B,, (1.20) 

where Ac,, represents the membrane capacity per A 
length of cylinder. Thus B,, represents the voltage 
expected if the charge (Q0) were distributed uni- 
formly over the membrane capacity along its finite 
electrotonic length ( L ) .  

Related solutions for different boundary conditions 
are available elsewhere (145), as are superposition 
solutions for certain dendritic trees [(150, 161); see 
also (6, 7, 90-93)l. 

Fundamental Solution for Instantaneous 
Point Charge 

Useful solutions of a different mathematical form 
can be constructed from what is sometimes called the 
fundamental solution, or the Green’s function, or the 
instantaneous point source solution. For the one-di- 
mensional heat conduction equation (Eq. 1.12), this 
solution can be expressed 

U ( X ,  T) = C,,T-j exp ( - X / 4 T )  (1.21) 

where C, is a proportionality constant related to the 
amount of the instantaneous point charge located a t  
X = 0, T = 0. One can confirm that this is a solution 
of Equation 1.12 by verifying that both d’U/dX2 and 
dU/dT are equal to the same expression, namely 

C (- f T-3E + $ X2T-~X2) exp ( - p / 4 T )  

From Equations 1.11 and 1.21, the corresponding 
fundamental solution for the cable equation (Eq. 
1.10) can be expressed 

V(X, TI = C,,T-I exp (-X2/4T -T) (1.22) 

It may be noted that where X extends to +*, 
Ci, = Qo/(2A~m~i)  (1.23) 

for an instantaneous point charge of Q,, coulombs 
applied a t  X = 0, T = 0 in agreement with Hodgkin 
[(47), Appendix 11; for the semi-infinite case, where 
X extends only from 0 to + x ,  C,, is twice as large. 
Because hc, is the capacity per A length, integration 
of Ac,V over X yields an overall charge equal to Q o  
exp (--T). 

This fundamental solution underlies many more 
complicated solutions constructed to fit particular 
initial conditions and boundary conditions. Some of 
these can be obtained by superpositions based on the 
method of images (21, 92, 93, 161). Other solutions 
involving error functions and closely related func- 
tions are usually obtained by “operational methods” 
that were pioneered by Heaviside and are now usu- 
ally carried out by means of Laplace transforms (21, 
33, 80, 92, 93, 117, 131, 140, 161). 
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Because solutions 1.21 and 1.22 do not have their 
dependence on X and T separable (in contrast to  
solutions 1.13 and 1.14), i t  is of interest to point out 
that  already in 1822 Fourier demonstrated and dis- 
cussed the fact that such solutions are related by an 
integral 

t x  

cos (d) exp (-&T)dcu = (n-/T)i exp ( -X‘/4T) L 
[see articles 374 and 375, (5511. This underlies all 
passive membrane transients and explains why they 
can be decomposed either into sums of exponentials 
or into sums of response functions (to instantaneous 
point charge) [see (91. 145, 161) and (21), p. 274-275; 
see also section PASSIVE MEMBRANE POTENTIAL TRAN- 
SIENTS AND TIME CONSTANTS 1. 

LIST OF SYMBOLS 

For Membrane Cylinders 

E,. 

v = v,,, - E ,  

Electric potential on intracel- 
lular side of membrane (V) 
Electric potential on extracel- 
lular side of membrane (V) 
Membrane potential differ- 
ence, intracellular minus ex- 
tracellular (V) 
Resting membrane emf; rest- 
ing value of V ,  (V) 
Electrotonic potential, as de- 
viation of membrane poten- 
tial from its resting value (V)  
Value of V at x = 0 or t = 0 
(V) 
Volume resistivity of intra- 
cellular medium (61 cm) 
Volume resistivity of extra- 
cellular medium (61  cm) 
Resistance across a unit area 
of passive membrane (II cm’) 
Capacitance per unit area of 
membrane (F cm-? 
Diameter of membrane cylin- 
der (cm) 
Core resistance per unit 
length (62 cm-’) 
Resistance per unit length of 
a thin external cylindrical 
layer of thickness h (SZ cm 
Resistance across a unit 
length of passive membrane 
cylinder (0 cm) 
Membrane capacity per unit 
length of cylinder ( F  cm-’) 
Passive membrane time con- 
stant (s) 
Time (s) 
Dimensionless time variable 
Length constant of core con- 
ductor, where r,. is usually set 
equal to zero for large exter- 
nal volume (cm) 

X 

X = x/A 

L, 

I,, 

Length constant of cylindri- 
cal core conductor, when ex- 
tracellular resistance is ne- 
glected (cm) 
Actual distance along the 
core conductor axis (cm) 
Electrotonic distance (dimen- 
sionless) 
Intracellular core current 
along axis, positive toward 
increasing x ( A )  
Extracellular current paral- 
lel to axis, positive toward in- 
creasing x (A) 
Membrane current per unit 
length, positive outward (A 
cm 
Membrane current density, 
positive outward (A cm ? )  

Internally applied current 
per unit length, positivp out- 
ward (A cm ! )  

Externally applied current 
per unit length, positive out- 
ward (A cm ’ )  

Input current applied intra- 
cellularly at X = 0 (A) 
Input resistance for a semi- 
infinite length, when r, = 0 
(62) 
Input resistance when x ex- 
tends to both + and - x 
away from the  input point, 
and r,. = 0 ( I ) )  
Input conductance for semi- 
infinite length, when rc = 0 
(mho = SZ I) 

For Finite Length of Uniforrn Cylinder 

R,.,. = R ,  t anh  L 

Actual length of core conduc- 
tor (cm) 
Electrotonic length of core 
conductor (dimensionless) 
Input resistance at one end 
of cylinder of length L ,  when 
the other end is insulated 

Input resistance at one end 
of cylinder of length L ,  when 
the other end is clamped (V  
= 0)  (fZ) 
Input impedance a t  one end 
of cylinder of electrotonic 
length L ,  when the  other end 
is insulated (iJV/,Ix = 0)  lSee 
(150)l 
Input impedance a t  one end 
of cylinder of electrotonic 
length L ,  when the  other end 
is clamped (V  = 0) [see (150)l 
For a n  AC steady s ta te  
Equalizing time constants 
for cable of finite length 
Coefficients (independent of 
1 ) used to form a linear com- 

(dV/iIX = 0 )  ( S 2 )  
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For Synaptic Membrane 

Er 
E, 
Ei 

V = Vm - E ,  

V, = E ,  - E, 

V, = E, - E ,  

G, = l / R m  

G, 

Gi 

8 = GJG, 

A,j = A / ( l  + 8 + $)l'* 

bination of exponential de- 
cays 
Response a t  time T and loca- 
tion X in a cylinder of length 
L ,  insulated (dV/dX = 0) a t  
the origin for instantaneous 
point charge placed a t  the 
end X = L [see (1611, both for 
the Laplace transform of this 
response function and for 
two representations in the 
time domainl 
Response a t  time T and loca- 
tion X in a cylinder of length 
L ,  clamped ( V  = 0) at the 
origin for instantaneous 
point charge placed at the 
end X = L [see (161), both for 
the Laplace transform and 
for two representations in 
the time domainl 

Resting membrane emf (V) 
Synaptic excitatory emf (V) 
Synaptic inhibitory emf (V) 
Deviation of membrane po- 
tential from rest (V) 
Synaptic excitatory equilib- 
rium value of V (V) 
Synaptic inhibitory equilib- 
rium value of V (V) 
Resting membrane conduct- 
ance per unit area ( 0 - l  cm-') 
Synaptic excitatory conduct- 
ance per unit area ( 0 - I  cm-*) 
Synaptic inhibitory conduct- 
ance per unit area (0-l cm-*) 
Dimensionless synaptic excit- 
atory intensity; also excit- 
atory variable in Eqs. 2.50- 
2.52 
Dimensionless synaptic inhib- 
itory intensity; also quench- 
ing auxiliary variable in Eqs. 
2.50-2.52 
Normalized membrane depo- 
larization (dimensionless) 
Rate constant in Eqs. 2.39 
and 2.42 (s-l) 
Effective membrane time 
constant for an area receiving 
uniform and constant synap- 
tic input; see Eqs. 2.43-2.49 
( S )  
Effective length constant 
over a length receiving uni- 
form and steady synaptic in- 
put; see Eqs. 2.43-2.49 (cm) 

For Dendritic Neuron Model 

R, Whole neuron input resist- 
ance 
Whole neuron input conduct- 
ance 

GN = l /RN 

L = p A ) b r  

L, 

Soma conductance 
Combined dendritic input 
conductance 
Dendritic to soma conduct- 
ance ratio 
Input conductance ofjth den- 
dritic tree 
Input conductance ofjth den- 
dritic trunk cylinder when 
extended for infinite length 
away from soma 
Weighting factor for jth den- 
dritic tree at origin, X = 0; 
see Eq. 3.37 
Input conductance of axon 
Injury conductance 
Soma surface area 
Surface area of dendritic tree 
or equivalent cylinder 
Summed surface area of all 
dendritic trees belonging to 
one neuron 
Surface area of soma and 
dendrites, and of most nearly 
equivalent cylinder 
Membrane resistivity when 
uniform everywhere 
Membrane resistivity of 
soma membrane 
Membrane resistivity of den- 
dritic membrane 

Electrotonic distance from 
the origin in a dendritic tree, 
where A changes at every 
branch point 
Electrotonic length of a den- 
dritic tree where all terminal 
branches terminate a t  the 
same electrotonic distance 
from the origin 
Electrotonic length of jth 
dendritic tree or equivalent 
cylinder 
Dendritic electrotonic length 
when all trees have same 
value (LD = Lj for all j) 
Electrotonic length of that 
cylinder most nearly equiva- 
lent to soma plus dendrites 

For Idealized Neuron Model [see (150, 16l)l 

N 

L 

M 

XI 

Number of equivalent den- 
dritic trees (or their equiva- 
lent cylinders) that are cou- 
pled at X = 0 
Electrotonic length of each of 
those trees or equivalent cyl- 
inders 
Number of orders of sym- 
metrical branching, specifi- 
cally in the dendritic tree 
that receives the input 
Electrotonic distance from 
the origin to the first point of 
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branching 
Electrotonic distance from 
the origin to the kth-order 
branch points 
Value of R ,  for the trunk 
cylindor of one dendritic tree 
Whole neuron input resist- 
ance a t  the point ( X  = 0) of 
common origin of the N trees 
or equivalent cylinders 
Input resistance at the end 
( X  = L )  of one terminal 
branch of the neuron model 
Steady value of V at input 
branch terminal 
Steady value of V at the ori- 
gin of the neuron model 
Attenuation factor from in- 
put branch terminal to  soma 

ASSUMPTIONS AND DERIVATION OF CABLE THEORY 

The assumptions and derivation have been pre- 
sented variously by many authors [e.g., (24, 33, 52, 
69, 80, 101, 136, 141, 162, 179, 181, 182)l. In the 
following presentation the simplest case is ex- 
plained first; the  effects of complicating assumptions 
are  explained later. 

One Dimensional in Space 

The basic simplifying assumption of cable theory 
is to reduce the spatial dependence of V to one 
dimension, namely, distance along the length of the 
cable or core conductor. Thus i t  is assumed tha t  any 
radial or angular dependence of V within the core, 
or outside the membrane, can be neglected. Support 
for this has  been obtained in two different ways. 
Experiments with single nonmyelinated axons have 
yielded reasonably good agreement with cable the- 
ory predictions (24, 27, 73, 80, 98, 157, 181, 182). Also 
errors resulting from this simplification have been 
assessed in theoretical studies tha t  explicitly in- 
clude all three dimensions of a cylindrical coordi- 
nate system (22, 41, 132, 134-136, 146); such errors 
are found to be negligible for many problems of 
interest. 

Intracellidar Core Resistance 

I t  is assumed tha t  the intracellular medium pro- 
vides a simple ohmic resistance to electric current 
flow. Together with the preceding assumption, this 
implies tha t  the long, thin core can be characterized 
by a core resistance per unit length, symbolized ri .  
For a simple, uniform core conductor, the value of r,  
is constant for all x ;  however, core conductors of 
different cross section, or of different material, will 
have different ri values. If R i  (il cm) represents the 
specific resistance, or volume resistivity (i.e., resist- 
ance across a unit cube) of homogeneous intracellu- 
lar  material and i f A i  (cm’) represents the area of 

cross section of the core, then ri = R J A ,  (Wcm). 
Because the core is usually assumed to have a circu- 
lar cross section, this is usually expressed 

ri = R i / ( n a 2 ) ,  lil/cml (2.1) 

where a represents the core radius. 

Ohm’s Law for Core Current 

For a length increment, Ax = x2 -- xI ,  illustrated 
in Figure 16A, the core resistance equals riAx 0; 
this resistance has  been assigned to the lumped 
resistance element shown in  Figure 16B. If Ax is 
small enough tha t  the core current, i i ,  does not 
change along this length increment, Ohm’s law im- 
plies tha t  

iiriAx = -AVi, [V] (2.2) 

where Vi represents the intracellular potential, and 
-AVi represents the potential difference, Vil  - Vi2, 
as shown in Figure 16, A and B. The minus sign in 
Equation 2.2 satisfies the physical requirement t ha t  
positive core current (flowing in the direction of 
increasing x corresponds to negative AVi (i.e., de- 
creasing Vi with increasing x ). For continuously 
varying Vi and i i ,  we divide both sides of Equation 
2.2 by Ax and then take the limit as Ax --$ 0. This 
limit, for AVi/Ax, can be expressed as the ordinary 
derivative dVi/dx, if Vi depends only on x and not on 
t ;  however, when Vi is a function of both x and t ,  but  
t is held constant during the limiting process, this 
limit is known as the partial derivative, aVi/ax. The 
resulting version of Ohm’s law for the core current 
can be expressed 

iiri = -aVi/i)x, lV/cml (2.3) 

Conservation of Current 

Because the core has  been assumed purely resis- 
tive and one-dimensional, conservation of current 
implies tha t  whenever the core current flowing into 
a small length increment, Ax, exceeds the amount of 
core current flowing onward from that region, this 
excess of current must be accounted for. As indi- 
cated in Figure 16, C and D ,  this excess current 
must escape from the core as membrane current, 
provided that no intracellular electrodes a re  pres- 
ent. If i ,  represents outward membrane current per 
unit length, and, if Ax is small enough that  i, does 
not change along this length, then imAx equals the  
amount of current escaping outward across this  Ax 
length of the membrane cylinder. Then current con- 
servation can be expressed 

i,,& = - A ’  z i ,  LA1 

as can be verified in Figure 16, C and D.  Dividing 
through by Ax, and taking the limit as Ax + 0, 
yields the expression 

i, = -i)ii/dx, [A/cml (2.4) 
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B 
A X  = x 2 - x 1  

A 

X 1  X2 

C D 

FIG. 16. Derivation of cable equation. Relation between cylin- 
drical core conductor length increments and the lumped elements 
of the electric equivalent circuit are shown. A and B: relation of 
core current to the increment in voltage and in length (see Eq. 
2.1-2.3). C and D: relation between membrane current and 
change in core current (see Eq. 2.4). E: membrane current divided 
into 2 parallel components, one capacitive and one resistive (see 
Eq. 2.10). F lumped circuit approximation to a continuous cable, 
sometimes called a ladder network. 

where i ,  and i i  can be functions of both x and t .  
Before introducing complications caused by applied 
current electrodes (see Eqs. 2.28-2.301, we continue 
the cable equation derivation for the least compli- 
cated case. 

Relation of Membrane Current to Vi 
The relation of core current to Vi is already given 

by Equation 2.3. For a uniform core conductor, ri is 
independent of x ,  and differentiation of Equation 2.3 
with respect to x yields 

ridii/dx = -d2Vi/ax2, [V/cm21 
which, when substituted into Equation 2.4, yields 

imri = a2vi/dx2, [V/cm'l (2.5) 

It is important to note that this equation is valid, 
regardless of the detailed membrane model chosen 
and regardless of the extracellular potential distri- 
bution; it depends only on the one-dimensional core 
with constant ri and on conservation of current with 
no intracellular electrodes applying current. 

Effect of Assuming Extracellular Isopotentiality 

In many problems of interest, the extracellular 
potential is nearly isopotential over a large extracel- 
lular volume, and the value of dV,/dx along the 
outside surface of the membrane is very much 
smaller than dVi/dx along the inside. This provides 
a partial justification for assuming extracellular iso- 
potentiality, implying dv,/ax = 0; additional incen- 
tive is provided by the fact that this simplification is 
especially useful when there is taper or branching of 
the core conductor (139, 141). 

The membrane potential difference is defined, V, 
= Vi - V,, in agreement with what has become the 
usual convention since 1958 (24, 37,75,99,139). (The 
older convention of using V, - Vi arose long before 
intracellular electrodes made it usual to record Vi 
relative to V,, experimentally.) The departure of V m  
from its resting value is defined V = V, - E,, or 

V = Vi - V, - E,, [Vl (2.6) 

where E ,  is the resting emf of the membrane. 
For a uniform membrane, E,  must be independent 

of x ,  implying aE,/dx = 0. This together with dV,/dx 
= 0 (for extracellular isopotentiality) means that dif- 
ferentiation of Equation 2.6 implies dV/dx = dVi/dx, 
and further that 

a2v/ax2 = d2Vi/dx2, [V/cm2] 

Using this, Equation 2.5 can be reexpressed as 

i, = ( l /r iPV/dx2,  [A/cm] (2 .7)  

which relates i, to V without yet having specified 
any particular membrane model. It should be noted 
that this rather simple equation becomes sup- 
planted by a more complicated equation (Eq. 2.30) 
when extracellular isopotentiality is not assumed 
and when electrodes apply current inside the region 
of interest. Before treating these complications, we 
introduce the passive membrane model that is 
needed to complete the simpler cable equation deri- 
vation. 

Passive Membrane Model 

In Figure 16E the equivalent circuit that is gener- 
ally used to represent passive membrane properties 
is shown; a membrane capacity is regarded as elec- 
trically in parallel with a membrane resistance, and 
there is a resting emf or battery (E,) placed in series 
with the resistance. The membrane capacitance per 
unit length, c, (F/cm), and the passive membrane 
resistance for unit length, r, (a cm) are related to 
the membrane capacitance per unit area, C ,  (F/ 
cm?, and the passive membrane resistance for unit 
area, R ,  (0 cm2), by the expressions 

c,  = 27raC,, [F/cm] (2.8) 

(2.9) 

and 

r,  = R,/(27ra), [a cm] 
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where 2 r a  represents the circumference of the mem- 
brane cylinder; if there is significant departure from 
circular cross section, 27ra should be replaced by an 
expression for the noncircular circumference. For 
the length increment, Ax, Figure 16E indicates a 
capacity of c,Ax F, and a resistance of r,/Ax R. The 
fact that  the total outward membrane current, i,Ax, 
is the sum of the resistive and capacitative currents 
can be expressed 

This equation can be simplified because Ax can be 
factored out of every term and because V = V ,  - E ,  
and aV/at = aV,/at on the assumption that E,. is 
independent of time; the result is 

i, = V / r ,  + c,dV/dt, [A/cm] (2.10) 

for outward membrane current per unit length. It 
may be noted that this also implies 

I ,  = V / R ,  + C,dV/dt, [A/cm'] (2.11) 

where I ,  represents outward membrane current 
density (A/cm') and in agreement with previous 
expressions (Eqs. 2.8 and 2.9) 

i ,  = 27raZ,, [A/cm] (2 .12)  

Resul t ing  Cable Equat ion  for S imp le  Case 

Now the expression for i ,  provided by Equation 
2.10, for the passive membrane model, can be 
equated with that provided by Equation 2.7, from a 
consideration of core current; the result can be mul- 
tiplied through by r, to obtain the expression 

V + r,c,dV/Ot = (rm/ri)d2V/dx' ,  [V] (2.13) 

By defining r = rmc, and hr = rm/ri, we can rewrite 
this partial differential equation in the form 

A2d'V/dxz - V - rdV/d t  = 0 ,  [v] (2.14) 

which agrees with the cable equation shown earlier 
(Eq. 1.1). 

Physical Meaning  of Cable Equat ion  T e r m s  

By reviewing how Equation 2.14 was obtained, 
one can check the physical meaning of each term in 
the cable equation: V is proportional to the resistive 
(or leakage) component of the outward membrane 
current, as it varies with x and t ;  aVldt is propor- 
tional to the capacitive component of the outward 
membrane current, as it varies withx and t; d'Vldx2, 
traced back through Equations 2.7-2.4, is propor- 
tional to the excess of core current (excess of that 
which enters over that which leaves a small length 
increment of core) as it varies with x and t ;  this 
excess escapes the core as outward membrane cur- 
rent, when no intracellular current electrode is 
present. 

Physical Mean ing  of T 

The left-hand side of Equation 2.13 and the result- 
ing definition of T = r,c, depend on the passive 
membrane model (Fig. 16E and Eqs. 2.8-2.12); they 
do not depend on assuming extracellular isopoten- 
tiality or absence of current electrodes. From Equa- 
tions 2.10 and 2.11, i t  can be seen that dependence 
on membrane surface area becomes cancelled in 
forming the product rmc, or R,C,. This product has 
electrical units of ohm times farad [the fact that this 
product has the physical dimension of time can be 
verified as follows: a capacity has the physical di- 
mensions of Q / V  or ofZ/idV/dt), in AI(Vls1, which is 
equivalent to SIR; therefore the RC product reduces 
simply to s]. Thus the passive membrane time con- 
stant 

r = R,C, = rmc,, [ s]  (2 .15)  

is a membrane parameter that has the dimension of 
time and does not depend on membrane area. 

The physical significance of T as a natural decay 
constant for uniform membrane potential decay is 
seen most easily by considering a patch of mem- 
brane that is assumed to have a spatially uniform 
membrane potential and to  be electrically isolated 
in the sense that its total membrane current is held 
to zero (i.e., space clamp, with current clamp set to  
zero). Then Equations 2.10 and 2.11 simplify to 

dV/dt = - V / T ,  [V/S] (2 .16)  

This ordinary differential equation is of a form that 
is very well known for simple first-order decay; it 
implies that the rate of change of V is proportional 
to -V and that the constant of proportionality is 1 1 ~ ;  
its solution can be expressed 

V = V,, exp ( - t / T ) ,  [V] (2.17) 

where V,,  represents the initial value of V ,  when t = 
0. This implies that  when t = T ,  the value of V will 
have decayed to lie of V,,, or about 0.37 V,,; also, 
when the natural log of V is plotted against t ,  this 
results in a straight line whose slope is - 1 1 ~ .  This 
provides the basis for an experimental estimate of T 

for a membrane that can be space clamped. How- 
ever, when V ( x ,  t )  is not spatially uniform, its pas- 
sive decay is more complicated than Equation 2.17; 
the mathematical expressions for such passive decay 
are solutions of the cable equation for particular 
initial boundary conditions (e.g. see Eqs. 4.1 and 
4.8). It is interesting to add, as pointed out by Hodg- 
kin & Rushton (801, that even when V i x ,  t )  is not 
spatially uniform the total charge on the membrane 
still undergoes a simple exponential decay with T as 
the time constant; this does assume absence of any 
short circuit or voltage clamp across the membrane. 

Physical Meaning  o f  A 

The right-hand side of Equation 2.13 and the re- 
sulting definition of A' = rm/r i  do not depend on the 
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membrane capacity, but they do depend on passive 
membrane resistance and on the assumption of ex- 
tracellular isopotentiality. As shown in the next 
section, the definition of A becomes generalized to 

A' = rm/ ( r i  + r,.), [cm'] (2.18) 

when one assumes an extracellular resistance per 
unit length, re (n/cm). Because r ,  is expressed in 
ohms centimeters and ( r i  + re) in ohms per centime- 
ter, the expression for A2 corresponds to square cen- 
timeters. Also, because rearrangement yields 

A(ri + rJ = rJA,  [ill (2.19) 

i t  can be seen that (for r ,  = 0) the length constant ( A )  
corresponds to that length of core conductor for 
which the core resistance (Ar,) exactly equals the 
resistance (r,,,/A) across the membrane for the same 
length of membrane cylinder; such characterization 
of the length constant was noted long ago by Rush- 
ton (162) and by others. 

When r, = 0, one consequence is extracellular 
isopotentiality. Also then Equations 2.1,  2.9, and 
2.18 can be used to express the length constant as a 
simple function of the cylinder radius ( a )  or diame- 
ter ( d )  and the more general resistivities, R ,  and R i .  
Thus, for r, = 0 

A ' =  (z)($) 
This provides the basis for the expression 

(2.20) 

which shows that A is proportional to the square root 
of the cylinder diameter ( d )  when RJRi is constant 
and extracellular isopotentiality (rc, = 0) is as- 
sumed. If, for example, R, /R i  = 40 cm, or 4 x 1 0  
pm, then d = 10 pm implies A = 10:' pm, or 1 mm, 
while d = 90 pm implies h = 3 mm. It may be noted 
that, when the core does not have a circular cross 
section, one should use the more general expres- 
sions, r,  = R, /P ,  and ri = Ri/Ai,  where Ai is the 
area of core cross section and P ,  is the perimeter 
described by the membrane in this cross section; 
then one obtains 

as has been pointed out by Mirolli & Talbott (124); 
this also depends on extracellular isopotentiality. 

The physical significance of A as a natural length 
constant is illustrated most easily by considering 
the special case of a steady-state distribution of V 
along a semi-infinite cable, extending from x = 0 to 
x = m. Assume that a steady value, V = Vo, is main- 
tained at x = 0 and that no voltage is applied else- 
where (i.e., V is continuous and bounded out to x = 
03). The solution of the steady-state cable equation 
(Eq. 1.3) for these boundary conditions is simply 

V = V,, exp ( - x / A ) ,  [V] (2.21) 

For this special case, Equation 2.21 defines a simple 
exponential decrement with distance, where the 
length constant (A)  plays a role similar to that of the 
time constant (7) in Equation 2.17. Clearly Equation 
2.21 provides a basis for an experimental estimate of 
A ,  but it is important to add the warning that 
steady-state decrement with distance can be very 
different from this for different boundary conditions 
(see Eq. 3.24 and Fig. 21). 

Electrotonic Distance, Length, and Decrement 

Because electrotonus and electrotonic spread with 
distance were central to the early history of core 
conductor theory and because actual distances ( X I  
become more meaningful when expressed in terms 
of the natural length constant (A) i t  has been found 
convenient to refer to the dimensionless distance 
( X  = x / A )  as electrotonic distance; also a core conduc- 
tor of finite length (t) can be characterized as having 
a n  electrotonic length ( L  = [/A). An axon usually has 
a large electrotonic length of at least 10, but more 
often of the order of 100 or even 1,000. Individual 
dendritic branches can correspond to electrotonic 
distance increments ranging from about 0.1 to 1 or 2, 
while the entire dendritic tree of a spinal motoneu- 
ron corresponds to an electrotonic length usually 
ranging between 1 and 2. For such finite lengths, i t  
is important to emphasize that electrotonic decre- 
ment with distance depends as much on the bound- 
ary conditions at both ends as on the electrotonic 
distance (see Fig. 21). Also, under transient condi- 
tions, electrotonic decrement with distance can dif- 
fer very significantly from that under steady-state 
conditions. Thus it should be understood that elec- 
trotonic decrement cannot, in general, be character- 
ized by Equation 2.21. 

Effect of Placing Axon in Oil 

When a nonmyelinated axon is removed from a 
large volume of ionic solution and placed in air or in 
oil, a thin layer of ionic solution remains on the 
outside surface of the membrane. For convenience, 
this thin layer is assumed to be uniform and to pro- 
vide an extracellular resistance per unit, length (r( ,) .  
In air, r, changes with time as evaporation takes 
place, or as isotonic solution is dripped on to prevent 
membrane injury caused by drying; in oil, r,. is much 
more nearly constant with time. 

For one-dimensional flow of extracellular current 
(&I,  Ohm's law can be expressed 

irrl, = -aV,./dx, [V/cm] (2.22) 

where V,. now depends on x and t ,  and this equation 
may be compared with the corresponding equation 
(i.e., Eq. 2.3) for the intracellular core current. Be- 
cause V = Vi - V,, - E,  and because E ,  is assumed to 
be independent of x ,  differentiation yields 
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(2.23) 

where the last expression makes use of Equations 
2.3 and 2.22. When ri and r,. are  both independent of 
X 

PV/ijx2 = ri( - i i i i / dx )  + r,,iii,,/i)x, [V/cm'] (2.24) 

At this point of the derivation, expressions for 
i) i i / i)x and i)i,./dx are needed and the presence of 
applied current (intracellular or extracellular) 
within the region of interest becomes important; 
that  complication is dealt with later in Equations 
2.28 and 2.29. For regions containing no current 
electrodes, conservation of current implies 

i,,, = -dii/,3x = di,,/iIx, [A/cni] (2.25) 

where the first two terms restate Equation 2.4 (see 
Fig. 16, C and D )  and the third term extends the 
same principle to the (one-dimensional 1 extracellu- 
lar  current. When this is substituted into Equation 
2.24, the result is 

iPV/i)x' = ( r ,  + r,.)illl, [V/cm'] (2.26) 

and when this is combined with Equation 2.10, 
Equation 2.13 becomes supplanted by 

(2.27) 

This corresponds to the same cable equation (i.e., 
Eqs. 1.1 and 2.14) a s  before, provided tha t  the defini- 
tion of A' is generalized to rlll/(ri + r?) ,  as in Equation 
2.18. 

Such a core conductor is illustrated diagrammati- 
cally in Figure 17A in which both the intracellular 
core and the extracellular conducting layer, as well 
as both intracellular and extracellular electrodes 
that  apply current, are  shown. 

V + r,,,c,, ,i~V/~~ = [riIl/(ri + r,.)]d'V/i)x', [V] 

Effect of Applied Current 

First suppose that  one or more intracellular elec- 
trodes (one of which could be a long axial electrode, 
as used with squid axons) apply current in the core. 
Let i,, represent this intracellularly applied current 
per unit length of core. If i,\, is constant along a 
length ( A x ) ,  then i , , A x  is the amount of this current 
introduced into this increment of core. Then, as 
illustrated in the upper half of the lumped circuit 
diagram (Fig. 17B), conservation of current can be 
conveniently expressed as Kirchhoffs law; namely, 
that  the algebraic sum of all currents flowing into a 
circuit node must be zero; for the upper half of 
Figure 17B, this requirement is 

i,, - ilz + iA,Ax - imA x = 0 

Because i,, - i,, = -Ai l ,  one can divide through by 
Ax, and take the limit as A x  4 0, obtaining 

di,/i)x = i,, - iIl1, [A/cm] (2.28) 

Similarly extracellularly, let i,\, Ax represent the 

'A i 
A 
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FIG. 17 .  Relation ofapplied current ( a t  both intracellular and 
extracellular points) to membrane current and to longitudinal 
current (both intracellular core current and extracellular longi- 
tudinal current). A :  2 microelectrodes with a core conductor dia- 
gram somewhat similar to tha t  used by Taylor (182). Zntrucrl., 
intracellular; cxtrucel., extracellular. B: lumped parameter cir- 
cuit diagram used for a n  application of Kirchoffs law for con- 
servation of current (see Eq. 2.28-2.33). 

current flowing from Ax of the exterior layer to 
external applied current electrodes (see subsection 
Comriient on Sign Conventions); then, as illustrated 
in the lower half of Figure 17B, conservation of 
current requires that  

i,, - i,, - i,,,Ax + i,A x = 0 

which implies 

iIi,./ilx = it,, - i,\,,, [A/cm] (2.29) 

When Equations 2.28 and 2.29 a re  used instead of 
Equation 2.25 for substitution into Equation 2.24, 
the result is 

d'V/iIx' = (Ti + r,.)i,,, - rii),, - r,.i;,,., [V/cm2] (2.30) 

When this is combined with Equation 2.10 and use 
is made of T = r,,,c,,, and A' = r,,,/(ri 4 r , , ) ,  the  result 
can be expressed 

which is an  example of the augmented cable equa- 
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tion (Eq. 1.5),  where the forcing function on the 
right-hand side can be a function of both x and t .  

A particularly interesting special case results 
when 

iA i  = iAc, iAit., [A/cm] (2.32) 

Then Equation 2.31 simplifies to 

h2d2V/dx2 - V - d V / d t  = -rmiAi, . ,  [V] (2.33) 

On the other hand, if riiAi = -rc.iAc, the right-hand 
side of Equation 2.31 is reduced to zero. 

Comment on Sign Conventions 

The contribution of applied current in Equations 
2.30 and 2.31 is consistent with that exhibited by 
earlier derivations in the literature Ie.g., (33, 80, 
182) I if one is careful to note the sign convention for 
V, and i,. [According to the earlier (i.e., pre 1958) 
convention, i, was regarded as positive inward and 
V,, = V, - Vi had a positive resting value; also 
applied current, designated i, for “polarizing” cur- 
rent, was positive inward and was applied only by 
extracellular electrodes; with this older convention, 
positive i ,  contributes to positive i ,  and tends to 
increase V,, which represents a hyperpolarizing 
change from resting conditions; however, excitatory 
depolarizations and action potentials appear as neg- 
ative deflections. I With the present sign convention 
[e.g., (24, 37, 75, 99, 13911 V, = Vi - V, has a 
negative resting value, and i ,  is taken as positive 
outward; to be consistent, intracellularly applied 
current ( i A i )  is regarded positive outward and extra- 
cellularly applied current ( iAe)  is also regarded as 
positive outward (see Fig. 17B); with this conven- 
tion, positive applied current contributes to positive 
i,, and tends to increase V, as before, but such 
increasing V,, (e.g., from -70 to -60 mV) represents 
a depolarizing change from resting conditions; thus 
excitatory depolarizations and action potentials ap- 
pear as positive deflections. 

It may also be noted that the older derivations 
defined total longitudinal current as 

Z, = i i  + i,,, [A] (2.34) 

which is also adopted here. However, because the 
older derivations treated only extracellularly ap- 
plied current, they obtained the expression dz,/ax = 
i,, and then substituted dZ,/dx for i,, in some of their 
equations. Today, it seems preferable to restore 
their i,, for their i)Z,/dx in their equations before 
comparing them with the present results, because 
here Equations 2.28 and 2.29 imply that 

dZl/dx = iA i  - iAc ,  [A/cm] (2.35) 

which is more general than in the older papers. It is 
interesting to note that the special case of Equations 
2.32 and 2.33 corresponds to az,/ax = 0. This case is 
valuable for superposition purposes because it pro- 
vides for an applied current arrangement that depo- 
larizes the membrane without disturbing dZ,/dx. 

Effect of Synaptic Membrane Conductance 

The idea that synaptic current is generated by a 
change in postsynaptic membrane conductance 
came from the experiments and interpretations by 
Fatt & Katz (47, 48) with neuromuscular junctions 
and by Coombs, Eccles, and Fatt (29) with spinal 
motoneurons of cat. When such a conductance 
change is localized to a few discrete points (or very 
small areas) along a core conductor, the cable equa- 
tion remains unchanged along lengths between 
these points, and both the synaptic conductance and 
the resulting synaptic current can be incorporated 
into boundary conditions at these points. On the 
other hand, when the synaptic conductance change 
is distributed over the entire membrane surface by a 
very large number of widely distributed synapses, 
the cable equation itself becomes modified. 

In Figure 18 an equivalent circuit used to repre- 
sent synaptic membrane is shown where both syn- 
aptic excitation and synaptic inhibition can be pres- 
ent (141-144). Based on diagrams of Fatt & Katz (47, 
48) and Coombs et al. (29), it shows four parallel 
pathways for current flow across the membrane; one 
pathway is capacitive and three are conductive. 
Each conductive pathway contains a different emf 
that is assumed to remain constant. The resting 
emf (E,) is in series with the resting membrane 
conductance, G, = (l/R,) (mho/cm2). The synaptic 
excitatory emf (E, )  is in series with its associated 
synaptic conductance, G, (mho/cm*). Also the synap- 
tic inhibitory emf (El) is in series with its associated 
synaptic conductance, GI (mho/cm2). Both G ,  and G, 
are zero under resting conditions (V, = E,) and also 
under conditions where there is passive electrotonic 
spread in the absence of distributed synaptic input. 
When G, is very much larger than G ,  and GI and I ,  
is very small, then V, tends very close to E,; thus E,  
can also be called the synaptic excitatory equilib- 
rium potential. Similarly, when GI is dominant, V, 

vi 

FIG. 18. Electric equivalent circuit model of synaptic mem- 
brane. Per unit area, C,, is the membrane capacity, G ,  is the 
resting membrane conductance in series with battery E ,  repre- 
senting the resting emf, G, is the synaptic excitatory conduct- 
ance in series with battery E,  representing the synaptic excit- 
atory emf, and G ,  is the synaptic inhibitory conductance in series 
with battery E ,  representing the synaptic inhibitory emf (see Eq. 
2.36 and 2.37). [This model was based on those of Fatt & Katz (47, 
48) and of Coombs, Eccles, and Fatt (29); see also Hodgkin & Katz 
(79).1 
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(2.43) A'd'V/dx' - V - Ti)V/ift 

This corresponds to the augmented cable equation 
(Eq. 1.5) ,  where the forcing function 

F = f ( V  - V,) + j7V - V,I (2 .44)  

9 a function of V, as well as the synaptic intensities 
8 and $, which may depend on X and T ;  this expres- 
sion for F can be normalized by dividing through by 

Furthermore, when P and j' are  uniform over the 

tends very close to Ej, which can be called the synap- 

Under all conditions, the outward membrane cur- 
rent density, ( A ~ ~ ~ ~ ' ) ,  in ~i~~~~ 18 can be ex- 
pressed mathematically as the sum of four compo- 
nents 

Z, = C,dV,/dt + Gr(Vm - E r )  (2 .36)  

where C, is expressed in farads per square centime- 
ter, as elsewhere, G,., G,, and Gj are  all expressed in 

a re  all expressed in volts (with signs taken as inte- question, it is then useful to transpose gv and 9v 
rior minus exterior). [t is useful to multiply every from the right to the left side of Equation 2.43 to term of this equation by R,  (or the equivalent of obtain dividing by G,) and to define the synaptic intensity 
variables (8 and $1 as the conductance ratios, Z = A2d2V/dx' - ( 1  + P + .$)V 

I,,R, = d V / d t  + V + which no longer has  V on the right side but now 
differs from the augmented cable equation (Eq. 1.5)  
on the left side. This complication can be handled as 

lent, and perhaps more illuminating, way of ex- 
pressing the same approach is to divide both sides of 

reexpress the result in terms of modified A and T 

values 

tic inhibitory equilibrium potential. = 6 ( V  - V,) + $(V - v,, 

+ G,(V, - E,) + Gj(V, - Ej) 

V, = E, - E,. (143, 151). 

mho per 'quare centilneter, and 
EIY E E >  and E j  length in question and constant Over the time in 

(2.45) GJG, and 9 = Gj/G,. Then this equation becomes - TdV/dt = - CV, - $vj 

(2.37, 
8 ( V  - V,) + g(v - Vj) 

where not Only = Vm - Er' with 
= aVm/a t  i t  was by Rail [(141), p. 1082-1085], but a n  equiva- because E, is constant, but also V, = E, - E, and Vj 

= E, - E,, which constants are  consistent with a 

Before considering cable effects, we consider a n  
isolated uniform patch of membrane, where I,, 8, 
and 4 are  all assumed to be uniform. Equation 2.37 

convention adopted by Hodgkin ' Huxley (77).  Equation 2.45 by the factor (1 + (4r + 9) and to 

can be rearranged to the form (A,j)'a'V/d~' - ( V  - V,j) - ~,jdV/dt = 0 (2.46) 

where (2.38) 

Also, for periods of time during which the synaptic 
intensities 8 and 4 remain constant, this can be 
reduced to a simpler form 

dV/dt = - p ( V  - V,) (2.39) 

TdV/dt + ( 1  + 8 + 9 ) V  

7,j = T/(1 f f + 9) (2.47) 

AEj  = A / ( l  + 6 + $ ) I / '  (2.48) 

VCj = (PV, + $V,)/i l  + C + I )  (2 .49)  

For a time and distance over which C and F remain 

= I,R, + %V, + $Vj 

where the rate constant, p,  is defined constant, Equations 2.47-2.49 define constants, and 
the Dartial differential eauation (Ea. 2.46) becomes 

p = (1 + 8 + $ ) I T  = (G, + G, + G,)/C, (2.40) a homogeneous cable eqbation with modified con- 
s tant  coefficients. The new variable V - V,, has  the 
same derivatives as V because V,. is a constant that  also 

V, = (Z,R, + ('V, + $V,)/(l  + P + $9 (2.41) 

represents the steady-state value of V for this patch 
when I,,,, as well as (6 and 9, remains constant. It 
may be noted that  with p and V, constant, Equation 
2.39 has the well-known solution for t > 0 

V - V, = I V,, - V,) exp ( -p t )  (2.42) 

where V,, represents the value of V when t = 0. I t  
may be remarked tha t  this is a n  example of expo- 
nential decay to a nonresting steady s ta te  with a 
time constant, ~ / ( 1  + 6 + 2), which is smaller than 
the passive membrane time constant. 

Next, to find the cable effects, we refer back to  
Equations 2.7, 2.10, and 2.11 and, noting that  z,r, = 
I,R,, we use Equation 2.37 in place of Equation 2.10 
to obtain the following partial differential equation 
instead of Equation 2.14 

can be regarded as a combined synaptic equilibrium 
value (for V, and not V,) obtained when both dVldt = 
0 and 82Vidx2 = 0; i t  is almost a weighted mean of 
V, = E, - E, and V, = Ei - E,, with 8 = G,/G, and 
9 = G,/G, used as weights; i t  is also equal to V, of 
Equation 2.41 when I ,  = 0 for the isolated patch. I t  
may be noted that  T,, and A,, a re  both smaller than  
normal, but not by the same factor. A method and 
examples for treating a cylinder composed of two 
regions with different constant d and 9 values have 
been illustrated (141 1. A compartmental treatment 
of such problems is also available (143, 144). 

Effect of Active Membrane Properties 

Both the Hodgkin-Huxley model (77) and Fitz- 
Hugh's BVP model (49, 51) have been fully pre- 
sented elsewhere. The purpose here is to indicate 
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very briefly how the circuit diagram (Fig. 18) and 
the notation of the preceding section can be reinter- 
preted and extended to provide a useful model of 
active membrane. Here we reinterpret G ,  as the 
excitatory conductance of the active process; i t  can 
be thought of as corresponding to Hodgkin-Huxley 
sodium conductance, less its resting value. Simi- 
larly we reinterpret Gj as the conductance of the 
quenching or restorative component of the active 
process; it can be thought of as corresponding to 
Hodgkin-Huxley potassium conductance, less its 
resting value. The resting conductance ( G , )  is re- 
garded as incorporating both the resting values of 
sodium and potassium conductances, as well as the 
leakage conductance of Hodgkin and Huxley. If we 
also introduce the normalized, dimensionless varia- 
ble ‘V = V/V,, Equation 2.43 can be reexpressed 

(2.50) 

where @ = Vj/V, is a dimensionless constant; the left 
side of Equation 2.50 represents passive membrane 
cable properties, while the right side represents the 
contribution of active membrane properties. The di- 
mensionless variables V, 8, and 9 all vary with X 
and T .  To generate and propagate an action poten- 
tial, one needs auxiliary equations that govern the 
early rise and fall of %5 together with a slower but 
overlapping rise and fall of 8. A particular pair of 
auxiliary equations has been used (62, 151) 

a’V/aT + ‘V - a2v/ax 
= (1 - V)8 - (‘V - @)$ 

a%/dT = k , V s  + k,V4 - k z 8  - k4%59 (2.51) 

d$/dT = k 5 8  + k(;%’$ - ki$ (2.52) 

where k ,  . . . k ,  are constant coefficients whose val- 
ues must be chosen to obtain suitable behavior. 
Suitable sets of values of these coefficients have 
been previously reported (62, 151). It may be noted 
that the system composed of Equations 2.50-2.52 has 
the merit of being an autonomous system of differ- 
ential equations because all the coefficients (@ and 
k ,  . . . k i )  are independent of X and T and also 
independent of V. 

INPUT RESISTANCE AND STEADY 
DECREMENT WITH DISTANCE 

Both input resistance and steady decrement with 
distance are steady-state concepts associated with a 
constant current or voltage applied across the mem- 
brane at  some point, together with the assumption 
of constant membrane properties. Usually passive 
membrane properties are assumed and solutions of 
the steady-state cable equation (Eq. 1.3) are needed; 
the boundary conditions are used to determine the 
arbitrary constants of the general solution (Eqs. 
1.7-1.9). Occasionally one may assume constant 
synaptic activity; then steady-state solutions of 
Equation 2.45 or 2.46 are required. 

Note on Correspondence with Experiment 

The results below are for one-dimensional cable 
theory with idealized boundary conditions. For any 
given experiment, one should consider what discrep- 
ancies may result from mismatch between the real- 
ity and the idealized assumptions. A fine-tipped mi- 
cropipette can have an electrical resistance of as 
much as 10 or 100 M a ,  which must not be confused 
with the input resistance of the neuron. This high 
resistance results from the constricted channel for 
ionic current flow inside the pipette tip taper. Just 
outside the tip, an additional “convergence resist- 
ance” of the order of 10s-106 R results from the 
convergence of the three-dimensional current flow 
very close to the pipette orifice; this convergence 
resistance becomes further increased when the pi- 
pette orifice is very close to the membrane. Signifi- 
cant complication can occur when current and volt- 
age electrode tips are very close to each other and to 
the membrane. Such problems have been empha- 
sized by Eisenberg and his colleagues [(41, 42); see 
also (91, 132, 134a, 146, 183b)l. Because such three- 
dimensional effects, both in the volume and at  the 
membrane, have extremely short time constants 
(132, 1461, they can be separated from the primary 
one-dimensional cable effects by examining tran- 
sients when applied current has been turned off or by 
careful comparison between the effects of low-fre- 
quency and high-frequency sinusoids (183b). 

Cable of Semi-infinite Length 

It is important to distinguish the semi-infinite case 
(Fig. 19, A and B ) ,  extending from x = 0 to x = + x ,  
from the doubly infinite case (Fig. 19, C and D), 
extending from x = --x to x = S X .  By realizing that 
twice as much steady current applied across the 
membrane at x = 0 is required to maintain V = V,, at 
x = 0 in the doubly infinite case, one can understand 
that its input conductance ( G z x )  is twice as large as 
that ( G ,  for the semi-infinite case and that its input 
resistance (R+,) is half as large as that (R,)  for the 
semi-infinite case. 

In the semi-infinite case (Fig. 19, A and Bj,  the 
boundary conditions can be stated as 

(3 .1)  V = V,, a t  x = 0, 

and 

V remains bounded as X -+ x (3.2) 

Physical intuition suggests an even stronger second 
boundary condition, such as V being smaller than V,, 
for all x > 0, on the assumption that the membrane 
is everywhere passive and that no current or voltage 
is applied anywhere except a t  x = 0. However, the 
weaker boundary condition (Eq. 3.2) is sufficient 
because exp ( x / A )  in general solution (Eq. 1.7) be- 
comes unbounded as x -+ x ,  and this requires setting 
A ,  = 0. Then because exp (-x/Aj = 1 when x = 0, the 
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FIG. 19. Steady states for infinite and semi-infinite lengths. A 
and B :  semi-infinite length extending from a sealed end ( a t X  = 0) 
out toward X = x ;  a n  intracellular electrode applies I,, a t  X = 0; 
placement of the extracellular electrode is not critical because 
extracellular isopotentiality is assumed. C and D: doubly infinite 
length, with symmetry about intracellular electrode tha t  intro- 
duces I , ,  a t  X = 0. E and F :  intracellular electrodes a t  X = X ,  and 
X = X,; I, and I, a re  those currents needed to clamp V to V, a t  X = 
X I ,  and V to V, a t X  = X1; the  core conductor is sealed a t X  = 0. 

first boundary condition (Eq. 3.1) requires tha t  we 
select A, = VIl. Thus the boundary value problem 
defined by Equation 1.3 over the range from x = 0 to 
x = ,x,  w ith the two boundary conditions (Eqs. 3.1 
and 3.2),  has the solution 

V = V,, exp ( - x / A ) ,  for x 2 0 (3.3) 

This exponential decrement with distance is illus- 
trated graphically as curve B in Figure 19. It has  the  
following simple properties: the slope, dVldx, equals 
-VIA for every x 2 0; also, when the natural  log of V 
is plotted against t ,  the  result is a straight line 
whose slope is - 1 / A .  The steady voltage decrement 
(attenuation) from the value at x = xl  to that at x = 
x, can be expressed 

V! -- .- exp (y) 
V, (3.4) 

If x, - x ,  happens to equal A,  then the attenuation 
factor, V,/VB, is 2.718, corresponding to the base e of 
the natural logarithms. 

For this semi-infinite case (Fig. 19, A and B )  the  
steady applied current, lo, flowing out of the intra- 
cellular electrode a t  x = 0, must equal the core 

current flowing to the right from x = 0, on the usual 
assumption that  no current can leak out to the  left 
through the sealed end. Referring to Equation 2.3 
for core current, this means tha t  

(3 .5)  

When extracellular isopotentiality is assumed, dVi/ 
dx = dV/dx; then differentiation of Equation 3.3 and 
substitution in Equation 3.5 yields 

11) = Vl)/(Ar1) 
The input resistance (R,) is simply the steady ratio, 
Vl,/Zl,; this equals Ari. This result for the semi-infinite 
case, with extracellular isopotentiality, can be ex- 
pressed in  several alternate forms 

(3 .6 )  

The fact tha t  Ari also happens to equal the resist- 
ance of a A length of core and the fact tha t  rl,,/A 
happens to equal the resistance to a current of uni- 
form density across the membrane of a A length of 
cylinder have often been noted before. I t  should be 
added, however, that  in this steady state, the core 
current and the membrane current density both de- 
crease exponentially with distance. 

[It may be noted that  for a cable corresponding to 
a nonmyelinated axon placed in oil, the input resist- 
ance for a pair of electrodes (inside and outside at x 
= 0) would equal 

A(ri + re) = [r,,,(ri + re)]"" -= rm/A 
where A' = r,,,/(ri + rc,); see Eq. 2.22-2.27.1 

Comments about R,, G,, Core Current, and 
Input Current 

The fact that  R ,  is proportional to the -312 power 
of diameter and tha t  the corresponding input con- 
ductance (G,) is proportional to the +3/2 power of 
diameter has  proved important in the consideration 
of dendritic branching. Thus i t  is relevant to note 
explicitly that  these proportionalities depend on the 
assumption of extracellular isopotentiality and on 
the assumption of constant resistivities of core and 
membrane materials. It is easy to understand why a 
smaller diameter should give a larger input resist- 
ance, because both the core resistance per unit length 
and the membrane resistance for unit length are 
increased by the smaller diameter, but the 312 power 
is not quite as obvious. For anyone who already 
knows that  A is proportional to dll', one need only 
point out that ri is proportional to d z ,  and thus the 
product Ari is proportional to d :L/z .  Alternatively, one 
can note that  r,,, is proportional to d I and that  the 
product r,ri is proportional to d-  ". 

Although R ,  and G, have been defined in terms of 
the semi-infinite length, one finds tha t  they prove to 
be useful core conductor parameters also when deal- 

rmlh R, = hri = ( r  r.)l/z = m I  

= (2/.rr)(R,,Ri)"'(d) ')'' 
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ing with finite lengths and with branching boundary 
conditions. For example, a very useful expression for 
core current is 

ii = G,(-dV/dX) (3.7) 
This follows from the original expression (Eq. 2.3) 
because the definition ofX = x / A  means tha t  dV/dX 
= (l/A)(dV/dx) and because the assumption of ex- 
tracellular isopotentiality means tha t  dVi/dx = 
aV/ax. In Equation 3.7,  the  voltage gradient is with 
respect to dimensionless X;  both the physical resis- 
tivities and the diameter of the core conductor are 
contained in the value of G,. 

Similarly, when a n  intracellular micropipette in- 
troduces input current ( I , )  at X = X I  of a core con- 
ductor (see Fig. 19, E and F and Fig. B), this input 
current divides into two core currents; the core cur- 
rent  flowing to the right at X = XI  can be expressed 

1. ‘ i , . \ = = . \ , + ,  . . = G&dv/dXl.~=.y,, 

while the core current flowing to the left is negative, 
with its absolute value given by 

Jirtx=x,-,l = - ii,x=x,-) = G,[ + d V / d X L x , -  

Conservation of current (in the core at the point X = 
XI)  requires that  the input current ( I , )  be equal to 
the sum of these two core currents; thus 

(3.8) 

provides a n  expression for the input current tha t  is 
valid for any boundary conditions assumed to the 
left and to the right of X = X I .  For steady-state 
conditions, this provides a means of solving for input 
conductance or input resistance in problems with 
complicated boundary conditions (e.g., see Eqs. 
3.11-3.14). 

I ,  = G, {[+dV/dX].,=.v,- + [-dV/dX],V:.,,+} 

Doubly Znfinite Length 

For the doubly infinite case (Fig. 19, C and D ), V 
must remain bounded for x = * m .  Does this mean 
that  A t ,  as well as A ,, in Equation 1.7 must be set 
equal to zero, implying tha t  V = 0 for all x? If no 
current is applied across the membrane and the 
membrane is passive everywhere; then V, = E ,  
everywhere, implying V = 0 everywhere. However, 
when current is applied across the membrane at one 
point, we can choose tha t  point as the origin ( x  = 0); 
relative to this origin, we can now distinguish two 
semi-infinite regions. The solution of this problem 
consists of two solutions, one for each region; this 
means tha t  four boundary conditions a re  needed. 
Two are provided by boundedness at x = -+ x and at x 
= --cc. A third boundary condition can be expressed 
as V = V,, at x = 0. The fourth condition can be 
expressed as continuity of V at x = 0, where the two 
regions a re  joined; this is equivalent to using the 
third condition twice, once for each region. For the 
region x = 0 to x = +x, Equations 3.1-3.4 apply as 
before; but for the region x = 0 to x = - m ,  bounded- 

ness requires A, = 0 in Equation 1.7 while the 
boundary condition at the origin requires tha t  A , = 
Vo, which yields 

(3.9) 

This, together with Equation 3.3,  provides the solu- 
tion for the doubly infinite length, with steady cur- 
rent or voltage applied across the membrane at x = 
0. Curve D in Figure 19 illustrates this solution; i t  
can be seen that ,  while V is continuous at x = 0, the 
slope (dVldx) is discontinuous at x = 0; tha t  is, this 
slope jumps from +V,,/A to -V,,lA at x = 0. The fact 
tha t  these slopes are of equal absolute magnitude is 
consistent with a physical intuitive understanding 
that  for such a symmetrical situation, equal 
amounts of oppositely directed core current must 
flow away from the intracellular electrode. Thus, for 
the same V = V,, at X = 0, the input current is twice 
that  of Equation 3.5 and the input conductance 
(Z,,/V,,) can be expressed 

G,= = ZG, 

V = V,, exp(x/h), for x 5 0. 

while the input resistance ( V,l/Zl,) can be expressed 

R,, = R , / 2  
= r,/2A = hri/2 (3.10) 
= (l/Tr) (R,,R,)”’qd,-‘”‘ 

which may be compared with Equation 3.6. The 
same result can be obtained from Equation 3.8 for 
input at X = X I ,  provided that  one assumes doubly 
infinite extension of the cylinder from X = X I  to 2% 
without any other complicating inputs or boundary 
conditions. Then the  steady-state slopes ( d V 1 d X )  at 
X = XI are equal to + V ,  at left, and -V, at right, 
with the result tha t  I, = 2G,V,, implying ZllVl = 
ZG,. 

Case of Voltage Clamps at X I  and X, 

The case of voltage clamps at XI and X ,  (Fig. 19, E 
and F )  serves several purposes. Input currents di- 
vide nonsymmetrically, and a semi-infinite length is 
divided into three regions, 0 5 X 5 X I ,  X,  i X 5 X.,, 
X ,  5 X 5 m. Thus it is useful to display and briefly 
to discuss the steady-state solution for this case, 
especially since some experiments may resemble 
this case much more closely than the simpler pre- 
vious cases. 

For the region 0 5 X 5 XI,  we assume a sealed end 
(dV/dX = 0) at X = 0 and V = V, at X = X I .  With 
these two boundary conditions, i t  is advantageous to 
use the form of general solution given by Equation 
1.8 because the boundary condition at X = 0 requires 
tha t  we set B, = 0. Then the boundary condition at X 
= XI requires that  B ,  = V,/cosh(X,), and the solu- 
tion for this region can be expressed 

v = v -- cosh(X) ~~ for 0 5 X 5 X,  (3.11) ’ cosh(X, )’ 

For the region between the two voltage clamps, the 
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steady-state solution can be expressed 

v = ~~~~. ~- - -~~~ ~~ 

V, sinh (X, - X) + V, sinh (X - X,)  

sinh (X, ~ X I )  (3.12) 

for XI 51 X 5 X, 

where it can be seen that setting X = XI makes V = 
V,,  and setting X = X, makes V = V,. It may be 
noted that the two voltage clamps need not be set a t  
the same voltage. 

For the semi-infinite region from X = X, to + x ,  

the steady-state solution can be expressed 

(3.13) 

By examining the slopes (dV/dX) at X = X ,  and 
X = X,, we can find the input currents I, and 12, 
required to maintain the steady voltage clamps (re- 
fer back to discussiori associated with Eq. 3.8). Then 
we find that the input conductance a t  X = XI can be 
expressed 

V = V, exp ( X ,  - X), for X 2 X, 

= G ,  tanh (XI)  

(3.14a) 
cash (X.) - Xi)  - V,/V, 

+ ~ 

L- - - ~- ~ 

sinh (X, - X,) 

V, i 
while that a t  X = X, can be expressed 

+ 1) (3.14b) 
-V,/V, + cosh(X, - Xi)  
- -  - - - 

sinh (X, - Xi)  
I, 
V, 
-~ 

It is noteworthy that the solution (Eq. 3.12) be- 
tween XI  and X, is completely independent of condi- 
tions outside this region, when V, and Vr are speci- 
fied. This would not be true i f I ,  and I 2  were specified 
instead of V, and V r ,  because then the two input 
conductances (which do depend on the boundary 
conditions and solutions in the other regions) be- 
come unavoidably involved. 

/If either voltage clamp is set a t  V = 0, this means 
V,,, - E,. = 0, and hence that V,, is clamped to its 
resting value at  that point. On the other hand, a 
complete short circuit of the membrane means V, = 
0, which implies that V = -E, at  that point; for 
example, when E,. == -70 mV (interior minus exte- 
rior) a membrane short circuit implies clamping V = 
+70 mV a t  the point. 1 

Relations Between Axon Parameters 

At this point it seems useful to summarize the 
relations between axon parameters, such as those 
tabulated in Table 1. Although extracellular elec- 
trodes with axons placed in oil were used in the 
earlier experiments, ever since the 1951 paper of 
Fatt & Katz (47) it has seemed both simpler and 
more useful to give primary emphasis to intra- 
cellular electrodes with extracellular isopotentiality 
(re, = 0). Then, supposing that experimental measure- 
ments have provided estimates of A and of input 

resistance (either R, or R,,), one wishes to obtain 
estimates of r ,  and r, and then of R ,  and R ,  and, 
from transients, also r and C,. The following equa- 
tions summarize these relations 

( r m / r 1 ) 1 1 2  = A (3.15) 

(3.16) (r ,r , )1/2 = R ,  = 2R,, 

From these two relations, it follows that 

r,, = AR, = 2AR,, (3.17) 

r, = R,/A = 2R+,/A (3.18) 

Given these estimates, one needs the axon diameter 
to  calculate estimates of R,  and R, 

R,, = r,,rrd (3.19) 

R, = r,rrd2/4 (3.20) 

However, the axon diameter may be neither uni- 
form nor easily determined. As good direct esti- 
mates of R, become available (20a, 57a), these pro- 
vide an indirect means of estimating an  effective 
diameter value from r, as 

(3.21) 

If r is correctly estimated from an analysis of tran- 
sients, then the estimates of r ,  and R,  lead to 
corresponding estimates of c, and C,. In other 
words, cable experiments can be used to estimate A ,  
R,,, and r ,  from which one can deduce r i ,  r,, and c,; 
then one must have an experimental estimate of 
either d or R i  in order to obtain estimates of R,, C,, 
and either Ri  or d. With very complete and accurate 
experimental results, computational best estimates 
of all parameter values could be solved for simulta- 
neously. 

In order to facilitate understanding of the relation 
between the earlier extracellular experiments (27, 
80) and the more recent experiments with intracel- 
lular electrodes (13, 47, 59), the following brief com- 
ments are included. The purpose of placing the axon 
in oil was to  restrict the extracellular electrolyte to a 
thin layer whose resistance per unit length (rc , )  ex- 
ceeded ri .  This forced a significant fraction of the 
applied current to cross the membrane; i t  also in- 
creased the amplitude of the electrotonic component 
of the extracellularly recorded potential difference. 
With the two extracellular electrodes placed far 
apart (many A lengths), the fraction of the applied 
current that penetrated the axon was equal to rJ(rc .  
+ r i ) ;  furthermore the ratio of the extracellular com- 
ponent to the total steady electrotonic potential gen- 
erated across the membrane was also rJ(rc. + T i ) .  

The compounding of these two effects can be seen to 
account for the fact that the apparent extracellular 
input resistance, which was designated y by Hodg- 
kin & Rushton (801, is smaller than the transmem- 
brane input resistance, X(r, + r , ) /2 ,  by exactly the 
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square of the above factor; that is 

(3.22) 
Are2 

2(r, + ri) 
____ - - 

This has also been expressed 

y = mh re/2ri 

where m represents the resultant, ri r,/(r, + ri ) ,  for 
re and r, considered in parallel (24, 27, 80). 

Finite Length: Effect of Boundary 
Condition at X = X I  

Here attention is focussed on a finite length of core 
conductor, extending from X = 0 to X = XI, with 
steady voltage applied at  the origin (see Fig. 20). The 
boundary condition at X = XI is left adjustable to 
facilitate comparisons between several possibilities: 
a )  termination of the core conductor, possibly by a 
sealed end, by a voltage-clamp condition, or by a 
synaptic input or an injury condition and b )  contin- 
uation of the core conductor, by means of daughter 
branches (see Fig. 20 B ) or by an unbranched exten- 
sion that may have a different diameter or different 
membrane properties. 

For this purpose, a particularly useful form of the 
general solution is 

V/V, = cosh (XI - X )  + B ,  sinh (XI - X) (3.23) 

which differs from Equation 1.8 only by substituting 
the constant XI for L and by relabeling the two 
arbitrary constants. The values of V, and B ,  still 
need to be determined from a pair of boundary condi- 
tions. If we choose V = V,, at X = 0 as one boundary 
condition, then setting X = 0 in Equation 3.23 pro- 

A 
VO 

[ +i i t  

x=xo x=x , 
B 

VO “1 
I 

I d0 

Y 
x=xo X=X1 

FIG. 20. Finite length of core conductor, fromX = 0 toX = XI.  
Core conductor is sealed at X = 0, but the boundary condition at  
X = XI is adjustable. Core current, i,, a t  X = XI depends on the 
conditions there: whether a sealed or leaky termination, or 
whether a branch point. In B ,  the parent branch (trunk) has a 
diameter d,,; one daughter branch has a diameter d , ,  and extends 
fromX = X, toX = X,,; the other daughter branch has a diameter 
d,, and extends to Xz2.  

vides the expression 

V,,/V, = cosh (XI) + B ,  sinh (XI)  (3.24) 

This defines the attenuation factor for the steady 
attenuation of V from X = 0 to X = XI as a function of 
XI and B,.  Using this relation to eliminate V, from 
Equation 3.23 provides the useful solution 

) (3.25) 
cosh (XI - X) + B ,  sinh (XI - X )  

cosh X, + B ,  sinh XI ( v = v,, 
This solution still contains the constant B , ,  which 
provides for different boundary conditions at  X = 
X , .  An illustration of how this solution (and the 
attenuation defined by Eq. 3.24) can be quite differ- 
ent for different values of B ,  is provided by glancing 
briefly ahead at  Figure 21, which is discussed more 
fully below; briefly, the upper three curves corre- 
spond to B , = 0 for three different values of XI ,  while 
the lower three curves correspond to B ,  = x ,  the 
middle curve corresponds to B ,  = 1. Although B ,  can 
have other values, these few curves suggest the 
desirability of obtaining an understanding of what 
the value of B , means biophysically. 

It is helpful to think of B ,  as a dimensionless ratio 
of conductances 

B ,  = G , / G ,  (3.26) 

where GI can be regarded as a formal conductance 
such that the core current at X = X, can be ex- 
pressed 

Zi = VIGI, at X = XI (3.27) 

If the core conductor is terminated at  X = XI,  then 
GI represents the terminal conductance. However, 
when the core conductor is not terminated at  X = 
XI,  then G I  corresponds to the input conductance 
into the continuation, whether branched or un- 
branched; for the special case where the original 
cylinder is extended to + x ,  one gets G I  = G , ,  imply- 
ing B ,  = 1. When the continuation has an input 
conductance ( G I )  that exceeds the G ,  value of the 
original cylinder, then B ,  > 1 and the attenuation 
factor (V,,/V,) is greater than for B ,  = 1; on the other 
hand; G ,  < G ,  implies B ,  < 1, and the attenuation 
factor is smaller than for B ,  = 1. 

The advantage of leaving the value of B ,  adjusta- 
ble was demonstrated in a systematic solution for 
arbitrary dendritic branching (139). However, use- 
ful insight can also be gained by explicitly noting 
the limiting special cases corresponding to values of 
0, 1, and x for B,.  Such limiting cases were noted 
also by Weidmann (1851, in relation to Purkinje 
fibers. 

Sealed End at X = XI: Case of B ,  = 0.  

Usually a sealed end is idealized by assuming that 
no current can leak out of the core conductor a t  X = 
XI; this has also been called an  “insulated” bound- 
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ary condition because it is equivalent to an insulat- 
ing terminal membrane (150); i t  has also been called 
the “open-circuit” terminal boundary condition (92). 
This boundary condition can be expressed equiva- 
lently as GI  = 0 or as dVIdX = 0 at X = XI; each of 
these implies B ,  = 0. When B ,  = 0, Equation 3.25 
reduces to the simpler solution 

cash ( X I  - X) v = v,, 
cosh XI ‘ 

(3.28) 

This solution is illustrated by curves A,  B,  and C in 
Figure 21, for three different electrotonic lengths, 
L = X, of 0.5, 1.0, and 2.0; each of these three curves 
can be seen to have a zero slope at  X = XI, as 
required by the sealed end. 

It follows (from Eqs. 3.7 and 3.28) that the input 
current can be expressed 

I,, = G,V, tanh X ,  

provided that none of the input current can leak 
leftward at  X = 0. Here the input conductance 
(ZJVJ is proportional to the tanh of XI,  while the 
input resistance (V,,/Z,,) is proportional to the coth of 
XI.  If XI is replaced by L ,  this input resistance can 
be expressed 

RCL..ins = Rzc coth L (3.29) 

where the subscript “CL” designates a cylinder of 
finite electrotonic length (L)  and subscript “ins” des- 
ignates a sealed or insulated boundary condition a t  
the far end of the cylinder. These subscripts were 
introduced in an  earlier context (150, 161) where 
they also designated corresponding AC input imped- 
ances and transient. response functions, especially 
for use as components in superposition solutions of 
more complicated problems. 

1 

0 0.5 I 2 
FIG. 21. Decrement of V with distance for different boundary 

conditions a t  the far end of a cylinder of finite length. Curves A ,  
B ,  and C correspond to a sealed-end boundary condition (dVidX = 
0)  a t  X = 0.5, 1.0, and 2.0, respectively (see Eq. 3.28 for B ,  = 0 in 
Eq. 3.25). Curves E, F ,  and G correspond to a voltage-clamped 
boundary condition ( V  =: 0, meaning V, = E,) a t  X = 0.5, 1.0, and 
2.0, respectively (see Eq. 3.31 forB,  = in Eq. 3.25). CurveD is a 
simple exponential (Eq. 3.34) corresponding toB,  = 1 in Eq. 3.25. 
[From Rall (139)l 

[Corresponding to Equation 3.29, the input 
impedance for an  AC steady state is a complex quan- 
tity that can be expressed 

zcL , ins  = (Rx/q)  coth (qL) (3.30) 

where q represents the complex quantity 

q = ( Y,/G,)”’ = (1 + j w ~ ) ” ’  

as in Equation 1.4; see (150) for additional imped- 
ance expressions, including separation into real and 
imaginary parts. The expression on the right side of 
Equation 3.30 also represents the Laplace transform 
of the corresponding transient response function 
(1611, provided that q = (1 + p)I‘?,  where p repre- 
sents the Laplace transform variable.] 

With regard to the sealed or insulated boundary 
condition, if the cylinder were sealed with a disk 
composed of resting membrane, this would strictly 
imply G, = (nd2)/(4R,), giving B ,  = G,/G, = [ ( d /4 )  
(Rm/R,)]1‘2. For example, if d = 4 pm and RJRi = 25 
cm = 25 x l o4  pm, then B ,  = 2 x which differs 
negligibly from B ,  = 0. If the terminal membrane is 
made more conductive than resting membrane, 
either by injury, synaptic input, or pharmacological 
agents, then B ,  can differ significantly from zero, 
(see Eqs. 3.46, 3.47 and 3.55). 

Voltage Clamp (V,  = 0) at X = XI: 
Case o f B ,  = x 

Although this boundary condition has sometimes 
been referred to as a “short circuit,” such a designa- 
tion risks confusion and error. An actual physical 
short circuit of resting membrane must mean V, = 0; 
this would imply V = - E r ,  which differs from V = 0 
except for a membrane that has a zero resting mem- 
brane potential. The present case of B ,  = x ,  or V = 0 
at  X = XI, means that V, - El  = 0 and thus really 
implies that the membrane potential (V,) is clamped 
to its resting value at X = XI. This condition reduces 
Equation 3.25 to the simpler solution 

sinh (XI - X )  
sinh XI 

- v = v,, (3.31) 

which is illustrated graphically by curves E, F, and 
G in Figure 2 1  for the three electrotonic lengths, L = 
XI of 0.5, 1.0, and 2.0; each of these curves slopes 
more steeply than reference curve D. 

It follows (from Eqs. 3.7 and 3.31) that the input 
current can be expressed 

I,, = G ,  V,, coth XI 

provided that none of the input current can leak 
leftward at X = 0. Here the input conductance 
(ZJV,,) is proportional to the coth of XI,  while the 
input resistance ( VJZ,J is proportional to the tanh of 
XI; exactly the reverse of the previous special case. 
If X ,  is replaced by L ,  this input resistance can be 
expressed as 
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R,.,,,c,, = R,  tanh L (3.32) 

where, as with Equation 3.29, subscript CL desig- 
nates a cylinder of finite electrotonic length ( L ) ,  but 
another subscript, clp, designates a voltage clamp 
(V = 0, meaning V, = E,) at  the far end [see (150, 
16l)l. 

[The corresponding AC input impedance can be 
expressed 

(3.33) 

where q is the same complex quantity noted above 
with Equation 3.30. The expression on the right side 
of Equation 3.33 also represents the Laplace trans- 
form of the corresponding transient response func- 
tion (1611, provided that q = (1 + p)Ir2, where p 
represents the Laplace transform variable. 1 

~ C , > , , l ,  = ( W q )  tanh (qL) 

Semi-infinite Extension at X = XI: 
Case of B ,  = 1 

Semi-infinite extension of the original cylinder 
means G I  = G,,  or B ,  = 1. We already know that the 
solution for semi-infinite length is given by Equa- 
tion 3.3; however, it should also be noted that when 
B ,  = 1 in Equation 3.25, the definitions of the hyper- 
bolic functions imply a simplification to 

(3.34) 

This special case is included as curve D in Figure 21. 
The input conductance has already been defined as 
G ,  and the input resistance as R ,  (Eq. 3.61, provided 
that none of the input current can leak leftward at x = 0. 

V = V, exp ( -X )  

Input Conductance for Finite Length 
General Case 

For the general case of Equation 3.25, where B ,  is 
left unspecified, application of Equation 3.7 results 
in the following expression for the input current a t  
x = o  

) (3.35) 
sinh XI + B ,  cosh XI 
coshX, + B ,  sinhX, I,, = VoGm ( 

provided that none of the input current can leak 
leftward a t  X = 0. Then we can express the input 
conductance at X = 0 as 

4, (3.36) G - - = BOGm 

where B,, represents a dimensionless conductance 
ratio that can be expressed 

" - v,, 

G B ,  + tanh XI 
G ,  

(3.37) B - 2 = _ _ _ _ - _ ~  
1 + B ,  tanh XI 0 - 

This important relation shows explicitly how B,, and 
Go depend on B ,  and XI; it defines how the input 

conductance at the origin depends on the still ad- 
justable boundary condition at X = X,. The next 
step is to see how the value of B ,  depends on the 
branches that arise a t  X = XI,  because this then 
provides the basis for a systematic solution of den- 
dritic branching systems (139) or of core conductors 
composed of connected segments of finite length but 
possibly changing diameter (4a, 6,  62). 

Branches at X = XI 

For the case where two branches arise a t  X = XI 
(e.g. Figs. 3 and 2W) we can begin with the basic idea 
that G I  at  XI equals the sum of input conductances 
into the two branches. We can write this 

G ,  = G I ,  + G , ,  (3.38) 
It is important to remember that G ,  is proportional 
to d"', (given constant materials plus extracellular 
isopotentiality); thus the branch with diameter d ,  , 
has a G ,  value that is smaller than that of the 
parent cylinder by the ratio (dll /d, ,):~r' ,  while the 
ratio (d, , /d, ,)3"2 applies to the other branch. Thus, 
when Equation 3.38 is divided through by the parent 
G ,  value, one obtains 

B1 = (dl l /dJiPBll  + (dl2/dJji2B,Z (3.39) 

where B , ,  and B , ,  depend on the next boundary 
conditions (at X,, and X,, in Fig. 3) in the same way 
that B,, was shown to depend on the boundary condi- 
tion at  XI in Equation 3.37; that is 

B,,  + tanh (X,, - XI) 
1 + B,, tanh (X,, - X I )  

(3.40) B _ _ _ ~ _ _ _ .  
I ,  - 

and 

B,, + tanh (X,, - XI)  
1 + B,, tanh (X,, - X I )  

B I t  - (3.41) 

It may be noted that if the first branch happens to 
have a sealed termination a t  X = X,,, this would 
imply B,,  = 0 and B , ,  = tanh (X2, - XI).  However, if 
two or more branches arise a t  X = X 2 , ,  then the 
value of B,, depends on these branches and their 
boundary conditions, and this process can be contin- 
ued stepwise until terminal branches are reached; 
the same must be done for B,,. [A completely worked 
out example can be found in Fig. 5 and Table 1,  
(139). 1 

Comment on Branching Equivalent 
to a Cylinder 

For simplicity, consider a tree composed only of the 
trunk and the two primary branches considered 
above. The two branches can be unequal in diameter 
and in length. If both branches have the same termi- 
nal boundary condition (B, ,  = B,, = B,)  and the same 
dimensionless electrotonic length 
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(X,, - XI) = IX,, - X I )  = (X, - X , )  
then the solutions in t.he two branches, for V = V, at 
X = X I  are identical with respect to X, and this 
means that  

B, + tanh ( X ,  - X I )  
1 + B, tanh ( X ,  - XI)  

(3.42) B , ,  = B,,  = - ~ ~ ~ ~ -- - 

as can be seen from Equations 3.40 and 3.41. If the 
branch diameters satisfy the constraint 

I ,  ,I (3.43) 
then Equations 3.39 and 3.42 together imply tha t  B ,  
= B , ,  = B I Z .  This means tha t  the solution (Eq. 3.25) 
from X = 0 to X = XI is the same as i t  would be if 
this cylinder were simply extended t o X  = X,, with a 
terminal boundary condition corresponding to B,, 
and this characterizes the equivalent cylinder. 

Once this example is understood, i t  can be seen 
that  a dendritic tree with many orders of branching 
can be boiled down to a n  equivalent cylinder in the 
same way, provided that  the d”’ constraint is satis- 
fied at every point of branching and provided tha t  
all terminal branches end at the same electrotonic 
distance from the origin with the same terminal 
boundary condition. Some readers may prefer an- 
other route to the equivalent cylinder [see (14111. 

For neurons whose dendritic trees at least approx- 
imate the equivalent cylinder constraints, this con- 
cept provides a useful basis for a simplified neuron 
model whose parameters can be estimated from ex- 
periment (see Eqs. 5.9-5.16). 

d :1/2 + Si2 = d :%/2 
I ,  

Comment on Membrane Injury at X = XI 

When a n  injury does not completely short-circuit 
the membrane, one must consider a finite injury 
conductance (G,, , ,)  through which an  injury current 
is driven by the local value of V,,,. At X = XI,  V, = 
V, + 23,. and the injury current, positive outward, 
can be expressed 

zinj =- E,.G~,,~ + GinjVl (3.44) 

It is important to distinguish between the two com- 
ponent currents on the right side of Equation 3.44 
because one of them is proportional to the value of 
V,, while the other is independent of V,; recognition 
of this is essential to solution of the problem. 

By conservation of current, this injury current is 
related to the core currents on either side of X = XI;  
for an  unbranched continuation, this can be ex- 
pressed by Equation 3.8 when its input current ( I , )  is 
replaced by minus the injury current. However, if 
two branches arise at X = XI,  the core current to the 
right consists of two components, one for each 
branch. Then, for constant G, , , ,  at X = X I ,  the above 
considerations yield a boundary condition tha t  can 
be expressed 

where Birll = Ginj/Gx (3.46) 

and the definition of B ,  is generalized from Equation 
3.39 to the expression 

B ,  = Blrlj + ( d , , / d , ~ ) ” ~ 2 B , ,  + (dl,/d~l)”’2B12 (3.47) 
This boundary condition is satisfied by a solution 
that  differs slightly from Equation 3.23, namely 

(3.48) 

where the value of V, is still to be determined by the 
boundary condition at X = 0. 

If one chooses V = V,, at X = 0, then Equation 3.48 
requires that  

V = V, cosh (XI - X)  
+ (B ,V,  + ErBinj )  sinh (XI - X )  

V,, - E,B,,, sinh (XI)  
cosh (X,i  + B ,  sinh ( X I )  

v , = -  ~ -~ - - (3.49) 

and substituting this expression into Equation 3.48 
provides the required solution. 

On the other hand, if one chooses dV/dX = 0 at 
X = 0, Equation 3.48 requires that  

(3.50) 

and substituting this expression into Equation 3.48 
provides the solution for this case. 

For a numerical illustration, consider that  El = 

-70 mV, B,,,, = 0.5, XI = 0.25 = tanh ( X I )  = sinh (XI)  
with cosh (XI)  = 1.0, and B , ,  = B, ,  -= 1 with diame- 
ters that  satisfy the contraint defined by Equation 
3.43. Then B ,  = 1.5 and Equation 3.50 gives a mem- 
brane depolarization at X = XI that  is (+70)(0.5)/(1.5 
+ 0.25), or V, = 20 mV, for the zero slope boundary 
condition at X = 0. Then the solution between X = 0 
and X = XI (Eq. 3.48) reduces to 

V = 20 cosh (0.25 - X) -5 sinh (0.25 - X )  

which equals 20 mV a t  X = 0.25 and 18.75 mV a t  X = 
0, with a zero slope at X = 0. From this result, one 
can conjecture (and confirm by using Eq. 3.49) that  
setting V,, > 18.75 mV will result in negative dV/dX 
at X = 0, implying positive I,,, while setting V,, < 
18.75 mV will result in positive dV/dX at X = 0, 
implying negative Z,,. This means that  for 0 < V,, < 
18.75 mV, positive V,, results in negative Ill. This does 
not mean that the injury at X = XI results in a 
negative input resistance at X = 0. (Note that  pas- 
sive membrane is assumed.) Rather, there is a shift 
of a linear I,, vs. V,, relation; that  is, without injury, 
this straight line passes through the origin, but with 
the specific injury defined above, the shifted straight 
line intersects I,, = 0 at V,, = 18.75 mV. This suggests 
the importance of looking at the slope conductance, 

To obtain an expression for the slope conductance, 
we make use of the fact that  dZ,,ldV,, = (dZ,,/dV,) (dV,I 
dV,,). From Equation 3.48, one obtains 

dJ,ildVo. 
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(3.51) Z0 = G ,  [ V ,  sinh XI 
+ (BIV, + EJ3inj)cosh XI] 

and thus that 

dZ,,/dV, = G ,  [sinh XI  + B ,  cosh XI] 

From Equation 3.49 one obtains 

dV,/dV,, = [cosh XI  + B ,  sinh XI]-, 

Combining the last two expressions yields the re- 
quired result 

B ,  + t anhX,  
!?'!A = G ,  ( -1 (3.52) 
d v,, 1 + B ,  t anhX,  

which is remarkably similar to Equations 3.36 and 
3.37, but it must be remembered that here B ,  in- 
cludes the injury, as in Equation 3.47. This result 
shows that the slope conductance a t  X = 0 is a 
positive quantity that is independent of V,,; it also 
defines how the value of this slope conductance de- 
pends on how much the injury changes the value of 
B ,  a t  X = XI. 

Comment on Steady Synaptic Input at  X = X ,  

The effect of localized but steady synaptic input at 
X = XI is formally similar to that shown for injury 
in the preceding section. Because G, and G, were 
defined as synaptic conductances per unit area in 
Figure 18 and in Equations 2.36 and 2.37, it is help- 
ful to specify a local synaptic surface area ( A )  at 
X = X,. If there is only synaptic excitation, the 
steady synaptic current a t  X = XI equals 

G,A(V,  - E,) = G,AV,  + G,A(E,  - E,) (3.53) 

and Equations 3.45-3.52 apply when B,,,, is replaced 
by B,  = G , A / G , ,  and El is replaced by (E ,  - E,) .  
Similarly, if there is only synaptic inhibition, the 
steady synaptic current a t  X = XI equals 

G,A(V,,  - E , )  = G,AVl + G,A(E, - E,) (3.54) 

and Equations 3.45-3.52 apply when B,,,, is replaced 
by B, = G,A/G,  and E,  is replaced by (E ,  - E,) .  
However, if both synaptic excitation and inhibition 
are present over area A a t  X = X I ,  then the result- 
ant steady synaptic current equals the sum of Equa- 
tions 3.53 and 3.54. Then Equations 3.45-3.52 apply 
when B,,, is replaced by 

(3.55) BE, = (G ,  + G,)A/G,  

[GJEi - E, )  + Gj(Er - Ej)]/(Gc + Gj) 

and E,  is replaced by the weighted mean 

(3.56) 

It may be noted that here any resting leakage, 
G,A(V,, - E, ) ,  if present over area A ,  has been 
assumed negligible relative to synaptic current. 

These results provide a means of determining the 
effects of a steady synaptic input a t  a discrete den- 
dritic location, both with and without applied cur- 

rent a t  X = 0. [For a somewhat different approach to 
such problems, see (3411. 

Distribution of steady synaptic excitation to many 
discrete locations can be approximated as a uniform 
density of steady synaptic excitation over one or 
more regions of membrane surface area, and Equa- 
tions 2.45-2.49 apply to each increment of cable 
length that corresponds to such a region. An illus- 
tration for two such regions is provided by the curve 
T = in Figure 5, based on the mathematical solu- 
tion of Rall (141). Either this same method or a 
compartmental model (143) can be used to treat 
many regions having different densities of synaptic 
excitation andlor inhibition. 

Case of Input to One Branch of 
Dendritic Neuron Model 

Questions related to the input resistance that 
should be expected in a distal branch of an  exten- 
sively branched dendritic tree have been noted and 
discussed elsewhere (3, 100, 105, 148, 150). To obtain 
explicit answers to many of these questions, i t  was 
found useful to construct (by means of superposition 
methods) a complete solution for an  idealized neuron 
model (150). The most symmetrical version of this 
model was composed of N equal dendritic trees; each 
tree was equivalent to a cylinder of electrotonic 
length ( L )  and had M orders of symmetrical dendri- 
tic branching. The input current was injected at a 
single branch terminal. 

Details of the superposition procedure used to 
solve this problem are discussed fully by Rall & 
Rinzel (150) and are not repeated here. The result- 
ing steady-state solution (with k designating order 
of branching) can be expressed 

cosh X A sinh X 
__-- + ~____- 
N sinh L N cosh L 

f F K - , ,  Bk sinh (x - xk) 

k=l cash ( L  - X , )  

(3  .57) 

where A and Bk are simple constants whose values 
are specified according to location, as follows 

in the input tree A = N - 1 ;  
in the input branch 
in the sister branch 
in the parent branch 
in first cousin branches 

in grandparent branch 

in the input trunk 
in the other trees 

Bk = 1, for all k from 1 to M; 
same, except B,  = -1; 
same, except B, = 0; 
same, except B,  = 0,  and 

same, except B ,  = 0 ,  and 

B ,  = 0,  for all k; 
A = 1, assuming, X < 0, and 
Bk = 0 ,  for all k 

B ,  I = -1; 

B,-, = 0; 

This solution was used to compute the particular 
example illustrated in Figure 22, for the case of six 
dendritic trees with three orders of branching; that 
is, N = 6, M = 3, and L = 1, with length increments, 
AX = 0.25 for all trunks and branches. I t  can be 
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FIG. 22. Branching diagram (upper left) and graph (beloui 
showing steady-state values of V as a function of X in all 
branches and trees of the neuron model, for steady current in- 
jected into the terminal of one branch. BI and BS designate the 
input branch and its sist,er branch, respectively; P and GP desig- 
nate their parent and grandparent branch points, respectively; 
BC-I and BC-2 designate first- and second-cousin branches, re- 
spectively, with respect to the input branch; 02' designates the 
other trees of the  neuron model. Model parameters a r e N  = 6, L = 

1, M = 3,  with equal electrotonic length increments AX = 0.25 
assumed for all branches. Ordinates of graph express VIIR.,., 
values, as defined by Eq. 3.57. [See (150).1 

seen that the steepest gradient of membrane poten- 
tial occurs in the input branch (BI). Most of the input 
current reaches the parent branch point (P); very 
little of this current flows into the sister branch (BS), 
whose sealed terminal is responsible for its low input 
conductance at P. Most of the current flows through 
the parent branch, where the gradient with respect to 
dimensionless X is about half as steep as in the input 
branch, because its dl" value is doubled. In contrast 
to the steep gradients in the input branch and the 
parent and grandparent branches, the dashed curve 
in Figure 22 shows the smaller gradient that would 
be obtained if the same input current were equally 
divided between the eight terminal branches of that 
dendritic tree. The fact that this dashed curve coin- 
cides with the solid curve, for X = 0 to X = 0.25, 
illustrates an important and much more general 
property of this solution; the solution in the trunk of 
the input tree is the same for any apportionment of 

the same total input current between these eight 
branch terminals. Of course, the solution in the five 
other trees (OT) also remains unaffected by any such 
reapportionment of input current within the input 
tree. 

[It is noteworthy that the attenuation factor in the 
input branch is 2.4, while that in the sister branch 
(BS), about 1.04, is much smaller, even though these 
two branches have identical core resistance. This 
example should be helpful to those neurophysiolo- 
gists whose intuitions misled them into believing 
that attenuation along a dendritic branch should be 
the same in centripetal and in centrifugal directions. 
Although the core resistance is the same in either 
direction, the boundary conditions are very different. 
The importance of the boundary condition to the re- 
sulting attenuation factor is also shown by Fig. 21 
and Eq. 3.24.1 

The input resistance at  a branch location is consid- 
erably greater than the whole neuron input resist- 
ance ( R N )  at the soma, or common point of origin of 
the N dendritic trees. For this idealized neuron 
model, it was shown (150) that the ratio of the branch 
input resistance (RE,) at  one branch terminal (where 
X = L )  to the more familiar input resistance (R,) can 
be expressed 

RBL = 1 + ( N  - 1) (tanh L)' + N tanh ( L )  
Rx 

(3.58) 
. 2'k-" tanh ( L  - X , )  
k =  I 

This was used to compute the illustrative values 
shown in parentheses in Table 4; this table also 
includes corresponding values of the attenuation 
factor from the input branch terminal to the soma. 
These attenuation factors can be expressed 

TABLE 4. Input Resistance Ratio* and 
Steady-state Attenuation Factor? 

N = 6 L = l 6  
- -  M 

L = 1 0  L = 2 0  .\' = 6 N - 10 

2 (9.5) 
14.7 

3 (15.5) 
23.9 

4 (26.0) 
40.1 

5 (44.6) 
68.8 

6 (78.0) 
120 

7 (138) 
213 

8 (248) 
352 

(17.4) 
65.5 

(30.4) 
114 
(53.6) 
202 
(95.4) 
359 

(172) 
647 

(311) 
1170 
(569) 
2140 

(14.3) (23.61 
33.6 55.4 

(24.2) (40.2) 
56.8 94.4 

(41.7) (69.4) 
98.0 163 

(73.1) (122) 
172 286 

(130) (216) 
305 508 

( 233 ) (388) 
548 912 

(422) (704) 
992 1650 

* Values in parentheses correspond to resistance ratio R,,./R,v 
t Values just  below values in parentheses corre- (Eq. 3.58). 

spond to attenuation factor (Eq. 3.59). 
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which shows, explicitly, that  this attenuation factor 
always exceeds the ratio R B L ! R N .  More general 
expressions that permit other input sites and also 
permit unequal trees and nonsymmetrical branch- 
ing; as well as expressions for input impedance and 
for attenuation in AC steady states, are available 
elsewhere (150). 

PASSIVE MEMBRANE POTENTIAL TRANSIENTS AND 
TIME CONSTANTS 

In exploring transient cable properties of neurons, 
there has been concern with the interpretation of 
three quite different classes of experiments. Here the 
class concerned with action potential generation and 
propagation is excluded from further discussion. 
Other experiments make use of electrodes to apply 
(subthreshold) current, either brief current or pro- 
longed constant current, to produce recordable volt- 
age transients; the analysis of these transients in- 
volves estimation of the cable parameters ( T ,  A ,  L,  
and input resistance) in relation to membrane pa- 
rameters and geometric parameters of the neuron; 
this permits some assessment of how well the predic- 
tions of cable theory can account for transients ob- 
tained under various conditions. The third class of 
experiments involves the time course of synaptic po- 
tentials produced by various distributions of excit- 
atory and inhibitory synaptic inputs over the soma 
and dendritic surfaces of a neuron; the extent to 
which cable theory predictions agree with these ob- 
servations provides a contribution toward under- 
standing “integrative” properties a t  the neuronal 
level. 

Passive Decay Transients 
The simplest membrane potential decay transient 

is proportional to the single exponential function, 
exp ( - - t / ~ ) ,  where T is the passive membrane time 
constant. Such simple exponential decay to the rest- 
ing potential should not be expected to occur in gen- 
eral; it occurs when several conditions are satisfied 
simultaneously: ( a )  all applied current must be 
turned off; ( b )  the membrane must nowhere be sub- 
jected to a voltage clamp, short circuit, or significant 
injury; ( c )  the membrane conductance, capacitance, 
and emf must remain at  their resting values and be 
uniform over the membrane surface; and ( d )  the 
amount of membrane depolarization or hyperpolari- 
zation must be initially uniform over the membrane 
surface. Then all points of the membrane undergo 
identical decay of potential; each local element of 
membrane capacity discharges through its associated 
local element of membrane resistance; no current 
flows from one region of membrane to another; in 
fact, the net membrane current density (resistive 

plus capacitive) is zero everywhere (see Eqs. 2.10, 
2.11, and 2.16). 

In contrast, when only the first three conditions are 
satisfied, but the initial polarization is not uniform, 
the decay transient is more complicated and it is 
different at different membrane locations. In those 
regions where the membrane potential has been dis- 
placed farthest from the resting value, the rate of 
decay will be initially more rapid than elsewhere and 
more rapid than for the case of uniform decay. The 
net membrane current density is not zero every- 
where, because there is a flow of current between the 
more polarized regions and the less (or oppositely) 
polarized regions of the membrane surface. This cur- 
rent tends to redistribute charge on the membrane 
capacity and thus tends to equalize the membrane 
polarization toward a uniform distribution. This 
equalization takes place simultaneously with (and 
more rapidly than) the passive local discharge 
through local membrane resistance. The resultant 
decay transient a t  any point of the membrane is the 
sum of many component exponential decays with 
different time constants. This can be expressed 

V = Co exp ( - t / ~ * )  + C ,  exp ( - t / ~ ~ )  (4.1) 

+ c, exp ( - t / T 2 )  + . . . 
where the longest time constant 

7o = R m C m  (4 .2)  

is simply the passive membrane time constant, while 
the equalizing time constants, ( T , ,  T ~ ,  . . . , T,) are 
shorter, having values that depend on neuron geome- 
try. For a cable of finite length, corresponding to a 
membrane cylinder with sealed ends, the mathemati- 
cal solution (as expressed by Eq. 1.161, implies equal- 
izing time constants defined by the expression 

(4 .3)  

for positive integer values of n. The coefficients Co, 
C , ,  . . . , C ,  have values that depend on the initial 
distribution of membrane polarization and on the 
point of observation chosen (see Eqs. 1.16-1.18); 
thus, for the membrane cylinder with sealed ends, 
the C, of Equation 4.1 for any chosen point X have 
the values 

(4.4) 

where the coefficients B, represent the Fourier coef- 
ficients given by Equations 1.17 and 1.18. 

The importance of these equations is that they 
provide a basis for estimating both T,) and L from 
experimental decay transients, provided that condi- 
tions a-c above are satisfied and that we are dealing 
either with a membrane cylinder having sealed ends 
or with a dendritic neuron that can be well approxi- 
mated by an equivalent cylinder (141, 145, 146, 161) 
with sealed-end boundary conditions. I t  should be 

C ,  = B,  cos (nrX/L) 
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added tha t  the transient response to a n  applied cur- 
rent  step contains the same time constants, but the 
values of the coefficients a re  changed in a system- 
atic way (see Eqs. 4.10-4.15). Also, one should be 
warned that  if a voltage clamp, short circuit, or 
significant injury is present, all the time constants 
become changed lsee (145) for details]. 

Time Constant Ratios and Electrotonic Length 

and L = nn[rl,/r, - 1]-”2 (4 .6 )  

It follows, for example, tha t  a value of L = n corre- 
sponds to rl,/rl = 2, while a value of L = m i 2  = 1.57 
corresponds to rI,/rI = 5. The method of estimating 
rl,, r I ,  and rl,/rl by “peeling” exponential decays has  
been described elsewhere (1451, together with com- 
ments on conditions tha t  a re  favorable for such esti- 
mation. 

This method has  been applied to motoneurons of 

130). Two examples are shown in Figure 23. Such 
experiments have provided estimates of r,,/r, tha t  
range from about 3.5 to 11; this corresponds to a 

In experiments, it  is possible to Obtain cat spinal cord in several laboratories (6,  7, 18, 119, good estimates of the time constant ratio rl,/rl and 
sometimes of ro/r2 as  well. Thus i t  is useful to note 
tha t  Equations 4.2 and 4.3 imply that  

rl,/r, = 1 + (nn/L)’ (4.5) range of L values from 1 to 2 (with a mean value of 

I 8 ’\ 

8 F ?- 
0 

88 TI = 1.0 msec 
8 

L \ 

\ I I  I I I I I 

2 4 6 8 10 12 msec 

FIG. 23. Two examples of peeling the  membrane time constant away from the first equalizing 
time constant, 7,; data  are slopes (dVldt) of response at  a motoneuron soma to a n  applied current 
step. A :  top, start of the membrane potential response to hyperpolarizing current steps with 5 
traces superimposed. Tangents on the slope a re  drawn a t  the lst, 3rd, 5th, and 7th ms for dVidt 
determinations. Plot of dVldt on logarithmic scale vs. time shows a n  almost linear late part  of its 
slope but considerable deviations from linearity in the  initial part (bot tom).  Replots of these 
deviations during the initial 4 ms on logarithmic scale (A) reveal the second-order time constant 7 ,  

(dashed l ine) .  !From Lux et  al .  (119).1 €4: semilogarithmic plot of the slope (dVldt) vs. t ,  of the 
response to a constant current step applied to a motoneuron soma. 0 ,  the  dVldt values plotted on a 
log scale; straight l ine through the tail has  a slope implying T,,, = 5.3 ms. o, difference between the  
dVldt values of the smooth curve and those of the dashed line extrapolated back from the straight 
tail. Heauier dashed line through o has  a slope implying r i  = 1.0 ms. [From Burke & ten 
Bruggincate (IS) . ]  
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about 1.5) for the cylinders tha t  are most nearly 
equivalent to these motoneurons. This agrees well 
with a n  earlier estimate of L between 1 and 2 that  
was made [(143, 145); cf. (13911 by considering the 
joint implications of both the range of input resist- 
ance values ( RN) found in electrophysiologically 
studied motoneurons and the range of anatomic 
measurements (1) made with a different sample of 
motoneurons. 

In view of the uncertainties attached to using 
anatomic and electrophysiological data  from differ- 
ent  samples of motoneurons (1391, i t  is noteworthy 
tha t  two of the most recent studies have overcome 
this difficulty. Lux and his colleagues (119) used 
autoradiography, while Barrett & Crill (5, 6) used 
Procion dye injection, to help them make anatomic 
measurements of dendritic branching in the same 
individual motoneurons whose transient responses 
and input resistance they had measured electro- 
physiologically. They found quite good agreement 
between the two methods of estimating L; such 
agreement serves to increase one’s confidence in the 
approximate validity and the usefulness of the un- 
derlying neuron model. 

A somewhat different method of estimating L 
from transients has  been described and illustrated 
by Jack and Redman and their colleagues (86, 89- 
93). They obtained a similar range of L values for cat 
spinal motoneurons. For the details of their meth- 
ods, and for their assessment of these neuron models 
and of the distribution of synaptic input locations, 
their papers should be consulted directly. 

The fact that  some motoneurons of cat spinal cord 
do not fit the simple linear membrane model has been 
known for some time. Ito & Oshima (88) described a 
time constant of about 25 ms which is much larger 
than the passive membrane time constant; this corre- 
sponds to some incompletely understood slow process 
that  underlies overshoots and undershoots and possi- 
bly also the anomalous rectification studied by Nel- 
son & Frank (129). Such complications appear to be 
significant only in some motoneurons and negligible 
in others (18, 88, 130); possible errors resulting from 
this complication have been examined and discussed 
(18). It is noteworthy that  the neurons of the red 
nucleus (183a) are  free of such complications; their 
linear behavior and their special suitability for theo- 
retical studies have recently been restudied and con- 
firmed in much greater detail (183). An application of 
off-transient analysis to cultured muscle cells has 
been reported by Fischbach et al. (48b). 

Effect of Large L a n d  Infinite L 

When the value of L is large, the value of r1L in 
Equations 4.3 and 4.5 is small, with the result that  
the succession of time constants r,,, r , ,  . . ., r,, is 
closely spaced. Then these time constants cannot be 

reliably separated experimentally. Also the sum of 
such closely spaced exponential decays becomes nu- 
merically very close to the solution for semi-infinite 
length; for this purpose, values of L greater than 4 
are already rather large. 

In the case of an  initial point charge at X = 0, the 
solution (Eq. 4.1 or 1.16) a t X  = 0 can be expressed 

V/(Q,,/Ac,L) = exp ( - t/ro) 
(4.7) 

-l 2 exp ( - t / T n )  
n = l  

where r ,  is defined by Equation 4.3 or 4.5.  When L is 
very large, this infinite series becomes numerically 
very close to solution (Eq. 1.22) at X = 0, which can 
be expressed (for semi-infinite length) 

V/(Q,,/Ac,) = (rt/r)-lr2 exp (-t/r) (4.8) 
where T is the same as rr, above. To analyze experi- 
mental data, i t  is very useful to note the advantage 
of multiplying both sides of Equation 4.8 by the 
square root o f t ,  and taking the natural log of both 
sides to obtain 

(4.9) 
This provides a basis for estimating T from experi- 
mental data where L is very large. In 1960, when 
dendritic trees were treated as though they were 
semi-infinite in length, such plotting [of dVldt for 
the response to an applied current step; see Eqs. 4.24, 
4.251 provided a basis for estimating the motoneu- 
ron membrane time constant from experimental 
data (140). Even now, where the value ofL is known 
to lie in the range from 1 to 2,  such plotting can 
provide information about the boundary condition at 
the dendritic terminals as discussed by Jack and 
Redman [see (921, Fig. 12 and (93), Fig. 71. 

10g,[t’’~V] = -t/7 + constant 

Transient Response to Applied Current Step, 
for Finite Length 

If a constant current ( I )  is applied across the 
membrane at X = 0, beginning at T = 0, then the 
transient response for the cylinder with sealed ends 
can be expressed 

V(X ,T)  = V(X,m) 

n=O 

where the steady state is 

cash ( L  - X )  
= IR ,  - 

sinh L 
the time constants are the same as before (Eqs. 4.2 
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and 4.3),  and the Fourier coefficients (B,) are de- 
fined by Equations 1.17 and 1.18 with W(X) set equal 
to V(X,m) of Equation 4.11, with the result that 

B,, = IR,/L (4.12) 

and 

At X = 0, this transient response can be expressed 
more simply as 

V(0,T) = ZR, [coth L - 

Because the experimental estimation of T,,, T , ,  T ~ , / T , ,  

and L have made use of the slope, dVldt, of such 
experimental transients, we note that Equation 4.14 
implies 

r 

(4.15) 

+ 2 C exp (-t/T,,) 1 
n = l  

which is proportional to the time course of V in 
Equation 4.7 and hence proportional to what is 
known as the response function at X = 0 for an 
instantaneous point charge input a t  X = 0, T = 0. 

The same time constants are present in Equations 
4.7,  4.10, 4.14, and 4.15; however, the coefficient 
ratios are different. Both Equations 4.7 and 4.15 
have C,/C, ,  = 2, but the corresponding ratio for the 
current step response is BJB,, = ~ T , / T ~ ,  in Equation 
4.14 and ~ ( T , / T , , )  cos (nnXIL) for the more general 
Equation 4.10. Beciause these coefficient ratios are 
beginning to be studied experimentally L(183); also 
N. Tsukahara, personal communication and L. van 
Keulen and R. de Jongh, personal communication], 
it is important to point out that these theoretical 
ratios are for an idealized point charge or point 
current a t  X = 0 of the finite cable, and, except for 
Equations 4.10 and 1.16, the point of observation is 
also assumed to be a t  X = 0. 

If, for example, the initial charge is spread locally 
(i.e., constant from X = 0 to X = A and zero from 
X = A toX = L )  then Equations 1.16 and 1.18 yield a 
coefficient ratio for the decay transient a t  any loca- 
tion (X) that can be expressed 

C, , /C, ,  = 2 Sin(nTA1L2 cos (nrXIL) (4.16) 
nxA lL 

which reduces to 2.0 when A = 0 and also location 
x = 0. 

On the other hand, when the theory explicitly 
includes a lumped soma at  X = 0, with a dendriticl 
soma input conductance ratio ( p )  [see (1451, p. 1492- 
14961, then Equation 4.10 becomes generalized to 

where the steady state is 

cash (L - X )  
V(X,.c) = ZR, (4.18) 

cosh L 

Here the time constant ratios 

T J T ,  = 1 + an2 (4.19) 

are not as simple as Equation 4.5 because the values 
of a, correspond to roots of the transcendental equa- 
tion 

(YL cot ((YL) = - p  L coth L = -k (4.20) 

and the values of B,, in Equation 4.17 can be ex- 
pressed 

tanh L + L/k  
- - (4.21) B 

IRN k + 1 L + L/k 
-L  - P+1- 

and 

(4.22) 2 B,, T"/TlI B, cos ( (YJ) = - - 

1 + (a,L)'/(K2 + k )  

where k is the positive constant defined in Equation 
4.20. [For examples of roots of Eq. 4.20, see (211, 
Table I1 of Appendix IV gives values of their a ,  
which correspond to CUL here.] For the limiting case 
of dendritic dominance, p = 00 = k, and (Y, = nr1L; 
then the solution defined by Equations 4.17-4.22 
simplifies to that of Equations 4.10-4.13. [It is noted 
that Eqs. 4.21 and 4.22 have not previously been 
published; my derivation made use of a modified 
orthogonality; recently L. van Keulen and R. de 
Jongh (personal communication) obtained equiva- 
lent expressions by a different method.] 

Whether these theoretical expressions can be used 
to provide good experimental estimates of both L 
and p from an analysis of transients has not yet been 
established; this is a matter for future testing. Ex- 
tensive computations and preliminary plotting (W. 
Rall, unpublished observations, 1962) using Equa- 
tions 4.17-4.22 at  X = 0, with several values ofp and 
of L,  did show that p > 5 and L > 3 give results that 
are very close in most respects to p = 00 and L = to. 
Thus it was possible to make a preliminary judg- 
ment that the L values of motoneurons lie in a range 
(now known to be 1-2) where the transient is sensi- 
tive to the value of L (and thus provides a basis for 
estimating L from experiment), while the p values of 
motoneurons seem to lie in a range [usually >5; see 
(13011 where the transient is not very sensitive to the 
exact value of p (and thus provides a poor basis for 
estimating p from experimental transients). 

It is important to point out that Jack & Redman 
(93) also obtained extensive numerical solutions for 
finite values of p and L .  These were based on a 
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difficult mathematical solution [see their derivation 
in (931, Appendix], which is expressed as an infinite 
series involving parabolic cylinder functions. They 
showed that the limiting form of this series, as either 
L or p is increased to x ,  agrees with previously ob- 
tained results. Their theoretical solution, for the re- 
sponse to an instantaneous point charge, was then 
convolved numerically with a transient input current 
to obtain results thay have presented graphically and 
discussed in some detail [see (93), Figs. 4-81. By 
means of these results, they have provided a detailed 
procedure for estimating T ,  L ,  and p from experimen- 
tal data; they also include a third parameter, a, 
which relates to the brevity of the input current. 
With their collaborators (86, 87, 89-93) they have 
provided a careful application of these procedures to 
motoneurons of cat spinal cord; this research provides 
not only valuable new data, but also valuable testing 
of the underlying theoretical model. Many of the data 
were found to fit the model well, confirming L values 
between 1 and 2 and p values greater than 3, but with 
considerable variability in the p values. Some of their 
data provide puzzling departures from theoretical 
predictions; sometimes increasing the value of p to x 
does not result in a good fit. These discrepancies have 
been carefully discussed by Iansek & Redman (861, 
and they provide valuable clues for further study. 
They (86) have suggested that the resistivity of the 
soma membrane is lower than that of the dendrites, 
perhaps by a factor of 3 in some of these cases; they 
suggest tonic synaptic inhibitory input to the soma as 
an explanation. The possible contribution of an in- 
jury conductance (Ginj) at  the site of microelectrode 
puncture may also need consideration as a source of 
such discrepancies in transient time course. Such 
explanations (either synaptic inhibition at the soma 
or Ginj at  the soma) can be tested by additional experi- 
ments using voltage clamping at  the soma; then any 
abnormal (but constant) conductance at  the soma 
would be satisfied by the clamping circuit almost 
instantly; the remaining transient current would be 
determined only by the dendrites, independently of p 
and of any constant somatic conductances. Mathe- 
matical solutions for voltage clamping at the soma 
have been noted, both for dendritic cylinders of semi- 
infinite length (140) and those of finite length [ (145); 
see also Eqs. 4.32-4.461. Such solutions could also be 
obtained numerically by using the computational 
method suggested by Norman (131). 

Applied Current Step with L Large or Infinite 

Just as large values of L cause the sum of closely 
spaced exponentials in Equation 4.7 to become nu- 
merically close to Equation 4.8, large L also causes 
the corresponding Equation 4.14 for the response at  
X = 0 to a constant current step applied at  X = 0, T = 
0 to become numerically close to the following expres- 
sion for semi-infinite length 

V = IR, erf [(t/~)'"] 

Where the error function is defined 

(4.23) 

erf(x) = ~ exp (-y2)dy 

and is available as a tabulated function Le.g., see 
Appendix 11, (21)]. It may be noted that erf(0) = 0, 
erf(x) = 1, and erf( - x )  = -erf(x). Differentiation of 
Equation 4.23 with respect to t yields an expression 
for the slope 

v% 2 r  0 

IR 
dV/dt = - (t/7)-'I2 exp (-t/T) (4.24) 

As should be expected, this slope is proportional to 
Equation 4.8 for the response function at X = 0 for 
an  instantaneous point charge a t  X = 0. Thus, as 
noted with Equation 4.9, here the expression 

log, [tllZdV/dt] = - t / T  + constant (4.25) 

provides the basis for a plot of LRT dV/dt (i.e., log of 
root T times dVldt, plotted vs. t 1 to estimate T where 
L is very large. A discussion of such plotting, to- 
gether with theoretical expressions for the complica- 
tion provided by a lumped soma (1401, and by both 
lumped soma and finite length, can be found in the 
studies by Jack & Redman [(92, 93); see also (9111. 

It should be emphasized that Equation 4.23 repre- 
sents a useful special case (at X = 0)  of a more 
general and more complicated expression for the 
transient response a t  any X, for a current step ap- 
plied at  X = 0. This more general expression has 
been well established since 1946 by the classic stud- 
ies of Hodgkin & Rushton (80) and Davis & Lorente 
de NO (33). For the semi-infinite region (0 I X I x )  

this solution can be expressed 

V(X, T) 
V(0,X) 

T G  

+ (1/2) e x p ( - ~ ) e r f c ( ~ / 2 v ' T  - fl) (4.26) =i - (1/2) exp( + ~ ) e r f c ( ~ / 2 . \ / ? ;  + fl) 
where V(0,x) = IR, for a semi-infinite length hav- 
ing a sealed end a t  X = 0, or V(O,x) = ZR,, = 
(1/2)ZRx for a doubly infinite length that extends 
from --x to + x ,  and I is current applied across the 
membrane at X = 0; the complementary error func- 
tion is defined erfc(x) = 1 - erf(x); i t  decreases 
monotonically from erfc(-x) = 2, through erfc(0) = 
1, to erfc ( + x )  = 0. Equation 4.26 corresponds to 
previously published equations [ (801, Eq. 4.1,  Table 
1, and Fig. 2C; also (331, Eq. 37 and Fig. 61 and is 
illustrated here by Figure 24. 

It should be noted that the rather complicated 
expression on the right side of Equation 4.26 be- 
comes greatly simplified for either T = = or X = 0. 
When T = x ,  we see that erfc( - x )  = 2 and erfc( + x )  

= 0 reduce the right side of Equation 4.26 simply to 
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exp( -X ) ,  which is the well-known steady-state dec- 
rement with distance for semi-infinite length. For 
X = 0, one obtains (1/2)[1 - erf(-fl)  - 1 + 
erf( d T ) ] ,  which reduces simply to erf( fl), in con- 
firmation of Equation 4.23. This transient, a t  X = 0, 
rises steeply for small values of T .  On the other 
hand, the transient a t  large values of X rises very 
slowly for small values of T and is effectively de- 
layed (Fig. 24); when X is large enough and T is 
small enough that the values of ( X / 2 f i *  fi) are 
large (e.g., >2.8), then both the complementary er- 
ror functions in Equation 4.26 have very small val- 
ues (e.g., Furthermore the effect of distance 
X on the slope dV/dT is shown explicitly by differen- 
tiating Equation 4.26 and rearranging terms to  ob- 
tain 

It should be noted that this expression is propor- 
tional, as it should be, to the fundamental solution 
(Eq. 1.22) for an  instantaneous point source. Thus 
the several useful properties that are pointed out 
next for Equation 4.27 have a related meaning for 
Equation 1.22. 

Equation 4.27 shows that, for any given value of 

x=  0 

lA /- 

0 I T  2r 3r 4r taec 

0 1r 2T 3r 4T t sec 

FIG. 24.  Two dlfferent graphs based on Eq. 4.26,  as plotted by 
Davis & Lorente de NO (331. A :  curves plotted t o  the same ampli- 
tude scale show both slofling and reduced amplitude with dis- 
tance. B :  curves replotted relative to the steady-state value a t  
each location Li.e., V ( X ,  T ) / V ( X ,  x ) ]  to highlight the changing 
shape of the delayed rise. 

T ,  the slope dV/dT is smaller a t  distance X than at  
X = 0, by the factor 

dV/dT at (X'T) = exp ( -. - (4.28) 
dV/dT at (0 ,T )  

Thus, when T = 0.1, this slope factor equals 0.082 for 
X = 1 and 0.000045 for X = 2. Also, by taking the 
natural log of Equation 4.28 and rearranging, we 
can obtain the expression 

(4 .29)  
{ dV/dt a t  ___  (0,") 

dV/dt a t  ( x , t )  
x' = ( A ' / ~ ) 4 t  log,, 

which can be used to plot paired experimental val- 
ues of x" versus 4t log,, {dV/dt ratio} to fit a straight 
line having a slope of A.'/r. If T has already been 
determined from the transient at x = 0,  or by some 
other method, this provides an estimate of A"; con- 
versely, if A has already been determined from the 
steady state, this provides an estimate of T. 

A different, but somewhat similar relation can be 
obtained from a consideration of the point of inflec- 
tion in each of the transients defined by Equation 
4.26. Such points of inflection are found mathemati- 
cally by differentiating Equation 4.27 with respect 
to  T and setting this equal to zero. [This is equiva- 
lent to  finding the paired values of X and T for the 
electrotonically spreading peak of Eq. 1.22, as previ- 
ously presented by Fatt and Katz (47, pp. 332 and 
3631.1 

The resulting relation of such paired values can be 
expressed 

x" = (A2)(4T' + 22') (4.30) 

When T has already been estimated, one can use 
Equation 4.30 as the basis for a plot of paired values 
of x" versus (4T' + 2 T )  to fit a straight line having a 
slope of A'. 

A still different property of this kind was noted 
and used by Hodgkin & Rushton (80).  From the 
theoretical curves of Equation 4.26 it was found that 
there is an almost linear relation between each 
value ofX and its corresponding value of T for which 
the transient V at X reaches half its steady-state 
value V(X, x ) ;  a plot of such paired values ofX and T 
has a slope AX/AT = 2; this means that a plot of 
paired experimental x and t values would be ex- 
pected to  fit a slope 

Axlht  ~ X / T  (4.31) 

This provides an alternate means of estimating 
either h or T when the other has already been esti- 
mated. Also, for example, the ratio of A'IT from 
Equation 4.29 and ~ A / T  from Equation 4.31 yields A/  
2, without knowing T; this estimate of A can be 
compared with that obtained from steady-state dec- 
rement with distance. 

Clearly there are several different but interre- 
lated ways to  estimate the values of T and A ,  as was 
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emphasized also by Hodgkin & Rushton (801, as well 
as by Fat t  and Katz (47, 98). The more closely the 
experimental conditions fit the idealized assump- 
tions of the mathematical physics, the better should 
be the agreement between the different ways of 
estimating T and A .  As already noted in the discus- 
sion of input resistance, the earlier experiments (80, 
98) were performed with extracellular electrodes 
and involved estimation of both ri and r,, (for the 
extracellular layer under the oil) and the various 
ratios such as r(,/(r(, + ri); subsequent experiments 
using intracellular electrodes and a large extracel- 
lular volume (47) could treat r(, as negligible and 
thus make use of simpler expressions for A and input 
resistance and lead to simpler estimation of Ri  or 
diameter and resulting estimates of R,, and C,,, (see 
Table 1 and Eqs. 3.15-3.22). 

It may be noted that  when a lumped soma is 
placed at x = 0, Equations 4.23-4.27 are  replaced by 
more complicated expressions, which a re  not repro- 
duced here (92, 93, 140); the solution was by means 
of Laplace transforms (21, 91-93, 140). The generali- 
zation of Equation 4.26 to a three-dimensional prob- 
lem has recently been reported (132). 

Voltage Clamp a t  X = 0, with Infinite L 

When a voltage clamp is suddenly applied a t  X = 
0 to a previously resting cable of semi-infinite or 
infinite length, the solution is closely related to 
Equation 4.26 and can be expressed 

V(X, r )  
V(0 ,clamp) 

~~ 

(4.32) 
+ (1/2)exp(-~)erfci~/2\/?;-- fi = {  + ( 1 / 2 ) e x p ( + ~ ) e r f c ( ~ / 2 ~ +  \/Ti 

[A corresponding expression can be found in Car- 
slaw & Jaeger (211, Eq. 7, p. 135, and Laplace trans- 
form no. 19, Appendix V.] I t  may be noted that ,  as 
with Equation 4.26, here also setting T = 3~ reduces 
the right side to exp( -X), the steady-state solution; 
however, setting X = 0 reduces the right side to 
unity, as i t  must for the voltage-clamping boundary 
condition. 

Here, differentiation with respect to T yields, on 
rearrangement, the expression 

dV/dT 
_____.~ = (7rTT1'YX/2) exp (-:; - T) V(0,clamp) (4.33) 

which differs somewhat from Equation 4.27. At any 
T, the ratio of slopes at any two locations (XI and X , )  
can be expressed 

dV/dT, at (X,,T) X,' - x 2 
~ = @) exp (-z~) (4.34) dV/dT, a t  (X,,T) 

By taking natural logs of both sides, one can obtain 

X,i - XI,  

dV/dt at (x,,t)] (4.35) 
dV/dt at (x,, t )  

= ( A 2 / T ) 4 t  log,. { c) ___ 

for voltage clamping at X = 0, for semi-infinite 
length (cf. Eq. 4.29 for the applied current step). 
This could be used to estimate the value of ( A ' / T )  

from experiments where the slopes of the transients 
(Eq. 4.32) can be measured for several values of x 
and t. However, if measurements a re  possible only 
at X = 0, one must measure the clamping current 
transient tha t  is proportional to (-dV/dX) at X = 0. 
Differentiation of Equation 4.32 with respect to X 
yields 

X ,  
- (TT) 112 exp (- 

- T) 4T 
- expression on right side 

(4.36) ~- ~~ 

V(0,clamp) 
( of Eq. 4.26 

and settingX = 0 yields the following proportionality 
for the time course of the current supplied by the 
voltage clamp 

I o( (rr)--I/, exp (-7') + erf(T"') (4.37) 

in agreement with a result obtained in 1960 1(140), 
p. 529-530 and p. 5151; as then noted [(140), p. 5151, 
such a clamping current has  a time derivative that  
can be expressed by the proportionality 

a/& o( - (t)-"/2 exp (- t/T) (4.38) 

This provides a basis for plotting log,. [P i s  (-dZ/dt)] 
versus t to obtain a slope equal to - (  1 / ~ )  for voltage 
clamping at X = 0, with semi-infinite length, as- 
suming membrane properties remain passive. These 
results also provide a basis for analyzing data  ob- 
tained when voltage clamping a neuron soma, if 
dendritic electrotonic length is very large and the 
membrane remains passive. Results for finite den- 
dritic length are considered next. 

Voltage Clamp with Finite Length 

There may be considerable future application of a 
voltage clamp at X = 0, with a sealed end at X = L;  
also a pair of equal voltage clamps at X = 0 and X = 
2L, with observations made at X = L or other inter- 
mediate locations, has  the merit of testing only the 
region of core conductor between the paired voltage 
clamps. The solution (145) of both problems, in the 
region from X = 0 to X = L, can be expressed 

z 

+ C A,, sin (at1x) exp ( - t / T t l )  
11= I 

(4.39) 
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where all = (2n - l)n/2L (4.40) 

and 

T,,  = RlllClll /~l  + all2) (4.41) 

are not the same as those for the current step with 
sealed end at X = L. .For a zero initial condition, the 
Fourier coefficients (All)  are calculated for F ( X )  equal 
to minus the steady state; then 

where the second version facilitates comparison 
with a result given by Carslaw & Jaeger I (21), Eq. 8,  
p. 135; there is agreement when careful considera- 
tion is given to the effect of shifting from their 
voltage-clamp locations, at 2 (, to the locations, X 
= 0 and X = 2L, used herel. Here the summation 
runs from n = 1 to x, because there is no term 
having the passive membrane time constant, T~~ = 

R,,,C,,,, in the presence of a voltage clamp or short 
circuit (145 1. 

At X = L ,  sin (cu,,L) = - ( -  l ) l I ,  and the transient 
can be expressed 

(4.43) 

where a,, and T,, are given by Equations 4.40 and 
4.41. When such a transient is recorded midway 
between a pair of voltage clamps, one should explore 
estimating at least T ,  and T ? ,  and then 2L; perhaps 
even more complete curve fitting can be carried out. 
It may be noted that  for L = 7112, r1  = r1,/2 and T? = 
T o / l O ,  implying tha t  T 1 / r 2  = 5; for L = n, T~ = ~ J 1 . 2 5 ,  
and T-  = ~ , , / 3 . 2 5 ,  implying a value of 2.6 for the ratio 
T , / T ? .  However, to estimate L directly from T ,  and T ? ,  

one can make use of the relation 

(4.44) 

At X = 0, the transient current supplied by the 
voltage clamp to the region from X = 0 to X = L is 
proportional to (-dV/dX) at X = 0. This current 
time course is proportional to 

and this current has  a time derivative 

dlldt x -~ 9 u,,' exp (-t /Tll)  (4.46) 

For very large values ofL,  these two expressions can 
be expected to become numerically proportional to 
the corresponding expressions (Eqs. 4.37 and 4.38) 

n - l  

for semi-infinite length. Future  testing is needed to 
verify the expected usefulness of these expressions; 
they have the merit t ha t  (with good voltage clamp- 
ing) the presence of a lumped soma membrane at 
X = 0, and even the added complication of either a low 
somatic R,,, value or a somatic injury conductance, 
Gillj (provided they remain constant), would not be 
expected to modify these transients after the initial 
instant. This contrasts with the case of a n  applied 
current step. 

A very recent study of various voltage-clamping 
arrangements, including active membrane proper- 
ties, has  been reported by Moore et al. (125a). 

Transient Response to Current Injected 
at One Branch of Model 

The response function, for an  instantaneous point 
charge delivered to one branch terminal of a n  
idealized neuron model, has  been derived (using 
superposition methods), and explicit expressions 
have been provided, both in the Laplace transform 
domain and in the time domain (161). The full de- 
tails and notation are not repeated here. The mathe- 
matical expressions in the time domain a re  infinite 
series of two types: one converges rapidly for large 
values of T ,  while the other converges well for small 
values of T ;  computations with both expressions 
were used to obtain the solid curve displayed in 
Figure 25 with semi-log scaling. 

Useful physical intuitive insight can be obtained 

102 
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FIG. 25. Response function at the  input  branch terminal  ( so l id  
curLic), compared with 2 asymptotic cases ( t l n s h d  ct r rcvs) ;  ordi- 
na tes  a r e  plotted on a logarithmic scale. Insc t ,  neuron model with 
ipput injected a t  o n r  branch terminal .  Solid L uriv represents  t h e  
response function as T -  x (Eq. 4.47); its left intercept represents  
1.0, and  N = 6. L ~ ~ t i * c ~ t f n s h ( ~ /  curoc is a s t ra ight  line represent ing 
uniform decay and  representing t h e  asymptotic behavior of t h e  
response function as T - ( E q .  4 .47) ;  i ts  left intercept represents  
a value of ]/I; btacausc N L  = 6. Uppvr tfoshcd cure(' represents  t h r  
asymptotic behavior as 7' - 0; th i s  also represents t h e  response 
for a semi-infinite length of terminal  branch (Eq.  4 .48) .  For any  
combination t h a t  makes Q,,R I ,IT = 1 mV. t h e  values of t h c  
functions plotted herc would correspond to \' in millivolts. I Sec 
(16l) . l  
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by understanding the reasons why this response 
function (at the site of charge injection) approaches 
the upper dashed curve of Figure 25 for very small 
values of T ,  and why it  approaches the lower dashed 
straight line for very large values of T .  The straight 
line corresponds to 

Qo 

NLAc,, 
V ( T )  = -__- exp ( - T )  (4.47) 

This limiting case corresponds to the simple expo- 
nential decay that would occur a t  all locations if the 
original charge were distributed evenly over the 
entire neuron model; it may be noted that NLhc, 
represents the total membrane capacity of this neu- 
ron model, where each of N equivalent cylinders has 
a length AL and a membrane capacity per unit 
length c,. The solid curve approaches the lower 
dashed line as the distribution of charge gradually 
becomes equalized over the entire surface (161). The 
upper dashed curve represents the response to an  
instantaneous charge (QJ placed a t  the terminal of 
an Mth order branch, for the limiting case when the 
branch length is extended to very great length. In 
agreement with Equations 1.22, 1.23, and 4.8, this 
transient can be expressed 

where 

because, with M orders of symmetrical branching, 
the R, value of an  Mth order branch is 2Il times that 
(R,,.%) of the trunk; similarly, the capacity per A 
length of the branch is 2-h’ times that (Ac,) of the 
trunk. This limiting transient (upper dashed curve 
in Fig. 25) agrees with that in the neuron model 
during the earliest time, before significant charge 
has spread to the point where the input branch takes 
origin from its parent branch. The earliest deviation 
of the solid curve from this dashed curve is due, 
physically, to the fact that further spread of charge 
is facilitated by the lower resistance provided by the 
larger diameter parent branch, in parallel with the 
sister branch. All such effects, a t  all branch points, 
are provided for in the complete response function 
(161) and account for the way in which the solid 
curve in Figure 25 passes from early agreement with 
Equation 4.48 to late agreement with the uniform 
decay of Equation 4.47. 

When this response function is convolved with the 
brief input current transient shown a t  upper left of 
Figure 26, the resulting voltage transient a t  the 
input location is shown as V(L,T) in Figure 26. Also 
convolution with the response function a t  the soma 
(X = 0) for Z(T), applied (in any proportions) to one 
or more branch terminals, resulted in the voltage 
transient shown as V(0,T) in Figure 26; the ampli- 

tude of this transient has been amplified 200 times 
relative to V(L,T) .  The same transients, plotted to a 
logarithmic amplitude scale, are included in Figure 
27, which also shows the voltage transients com- 
puted a t  several other locations. It can be seen that, 
with increasing electrotonic distance from the input 
branch terminal (BI), to the parent node (PI, on 
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FIG. 26. Computed voltage time course at the input-receiving 
branch terminal (solid curue) and at the soma (lower dashed 
curue) for a particular time course [ I ( T ) ]  of injected current 
(upper dashed curue). Neuron model is shown at upper right, and 
parameters used were N = 6, M = 3 ,  X I  = 0.25,  X ,  = 0.5 ,  X:, = 
0.75, a n d L  = 1. Ordinate values for the solid curve using scale at 
left represent dimensionless values of V ( L ,  T)l(2MR.r,Z,,e) I see 
(16l) l .  Soma response (lower dashed curue) has been amplified 
200 times; the ordinate values, using scale a t  right, represent 
dimensionless values of V ( 0 ,  T)/(2”R.I,I,,e) [see (161)l. Factor 
2h1R.r,Z,,e equals 8 x (4.56 R N )  x (Z,,e) which is approximately 
equal to 100 times the product R, and I , , .  For example, i fRN = lo6 
( 1  andl , ,  = 10.” A, the above factor is approximately 1 V; then the 
left-hand scale can be read in volts for V ( L ,  T )  and the right-hand 
scale can be read in volts for V ( 0 ,  T). 
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FIG. 27. Semi-log plots of transient membrane potential vs. T 
a t  successive sites along the mainline in the neuron model for 
transient current injected into the terminal of one branch. BZ 
designates the input branch terminal, while P ,  GP,  and GGP 
designate the parent, grandparent, and great grandparent nodes, 
respectively, along the mainline from BI to the soma. Response at 
the terminals of the trees not receiving input directly is labeled 
07’. Model parameters, neuron branching diagram, and current 
time course are the same as  in Fig. 26. Ordinate values represent 
dimensionless values of V ( X ,  T)I(2”R.,J,,e) where V ( X ,  T )  was 
obtained as the convolution of I ( T )  with K ( X ,  T; L )  defined in 
reference (161). 
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FIG. 28. Semi-log plots of voltage vs. T at all the branch 
terminals in the neuron model for transient current injected into 
the terminal of one branch. Refer to Fig. 26 for model parameters 
and input current time course. BI and BS designate the input 
branch terminal and the sister branch terminal, respectively. 
BC-1 and BC-2 designate the terminals of the 2 first-cousin and 
the 4 second-cousin branches, respectively, in the input tree, 
while OT designates the branch terminals of the other 5 trees. 
Transients are computed :and scaled as indicated in Fig. 27. [See 
(161).1 

through to the soma and to the terminals of the 
other trees (OT), the time of peak becomes increas- 
ingly delayed and the peak amplitude becomes in- 
creasingly attenuated. These peak times and atten- 
uation factors have been collected in Table 5, to- 
gether with those a t  the other branch terminals. In 
Figure 28 the transients computed for these other 
branch terminals are displayed; the membrane po- 
tential in the sister branch (BS) becomes equalized 
most rapidly with that in the input branch (BI); 
equalization with the first-cousin branches (BC-1) 
takes longer and with the second-cousin branches 
(BC-2) takes even longer. These equalizations are 
governed by time constants that depend on the elec- 
trotonic distances between these branch terminals. 
Further discussion of these results can be found in 
the original paper (161). Other calculations and dis- 
cussion of transient attenuation have been provided 
by Barrett & Crill (’i), Redman (1591, and Rall (144, 
148). 

RELATIONS BETWEEN NEURON MODEL PARAMETERS 

The background and assumptions of dendritic 
neuron models are discussed in the section DENDRITIC 
ASPECTS OF NEURONS, with comments on the experi- 

mental testing and the biophysical insights that have 
resulted. In subsequent sections the mathematical 
results of cable theory that are needed for the inter- 
pretation of electrophysiological experiments both 
with axons and with dendritic neurons are developed. 
Here these results are used to summarize the rela- 
tions between various neuron parameters, especially 
with regard to the interpretation of experiments 
made with motoneurons of cat spinal cord. 

Input Resistance and Membrane Resistivity 
The neuron input resistance (Rs) is a basic mea- 

sured parameter; however, the resting membrane 
resistivity (R,) must be estimated by means of geo- 
metric and cable considerations. For simplicity, i t  
has usually been assumed that R,  has the same 
value for the soma and all the dendritic branches. 
However, there have been early suggestions (46b, 
139, 140) that the value of R ,  could be different a t  
different locations, and quite recently it has been 
pointed out that the value at the soma might be 
significantly lower than in the dendrites (6, 86). 
Also it has been recognized that R ,  may not be a t  its 
resting value in a given experiment, because there 
may be background synaptic activity (excitatory 
andlor inhibitory) impinging on the neuron, possi- 
bly with a nonuniform distribution over the surface. 
Even for resting conditions, R ,  must be regarded as 
an effective value for an overall surface area that is 
partly occluded by a high density of inactive synap- 
tic endings. 

In general, the neuron input conductance (G, = 
l / R s )  can be expressed 

where G ,  is the soma conductance, G ,  is the input 
conductance of the axon, and the last expression 
represents the combined dendritic input conduct- 
ance where GDj represents the input conductance of 
the jth dendritic tree and the summation symbol 
implies a summation composed of all the dendritic 
trees. Usually G ,  is not explicitly included, either 
because it is the 
may be regarded 

It is useful to 
ductance ratio 

smallest component or because i t  
as included with the dendrites. 
define the dendritic-to-soma con- 

TABLE 5. Transient Attenuation Factors and Peak T i n e s  and Steady-state Attenuation Factors 

(5.2) 

Location BI P GP GGP Soma BS BC-l  BC-2 OT 
~~ ~ 

Peak time 0.04 0.085 0.135 0.21 0.35 0.12 0.27 0.46 0.84 
Peak value x 10’ 64.8 14.5 3.75 1.05 0.276 12.8 2.54 0.557 0.135 
Transient attenuation factor 1.0 4.5 17.3 62 235 5.1 25 116 479 
Steady-state attenuation factor 1.0 2.3 5.3 12.0 23.9 2.4 6.0 15.5 34.0 

- 
Peak times and values from Figs. 27 and 28. 
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Although it has been difficult to determine values of 
p precisely, the fact that the more recent estimates 
of p usually exceed 5 and often exceed 10 or 15 
provides an order of magnitude measure of dendritic 
dominance. If we neglect GA, Equations 5.1 and 5.2 
imply that 

(5.3) Gx = (P + 1)Gs 

and 

(5.4) 

The soma conductance can be expressed 

GS = As/Rms + Ginj (5.5) 

where As represents the soma membrane area and 
Ginj represents an injury conductance that is zero 
only when the membrane seals perfectly around the 
microelectrode. Some electrode penetrations result 
in injury currents that reduce the measured resting 
potential; when such reduction is to half the normal 
resting potential, one can conclude that Ginj is as 
large as the intact value of G,. Those experiments 
are rejected, but what about a smaller injury con- 
ductance, such as one that reduces the resting po- 
tential by lo%? This might not be detected and not 
be rejected. Yet it would be responsible for much 
more than a 10% change in the effective values of G, 
and p .  For example, if the uninjured neuron had a p 
value of 9, implying that G, = 10 G,, then the injury 
that increased G, by 10% would have increased G, 
by 100%. Such doubling of Gs must halve the value 
of p from 9 to 4.5; these changed values can also be 
summarized as 

G,/Gs = 110/20 = 5.5 = p + 1 

Such effects of injury may well be responsible for 
some of the variability found in experimental esti- 
mates of p. 

Although Equations 5.3 and 5.5 can be used to 
obtain the expression 

(5.6) 

its usefulness is limited by the uncertainties in the 
values of Ginj/Gs and p .  For experimentally esti- 
mated values ofA, and R N ,  one can use Equation 5.6 
to assess the implications of various hypothetical 
values of Ginj/Gs and p .  For example, consider R ,  = 
2 MR and A, = lo-* cm’. Then for p = 10 with Ginj = 
0, Equation 5.6 implies Rms = 2,200 R cm’. However, 
if p = 10 with Ginj/Gs = 0.5,  it implies Rms = 4,400 Cl 
cm‘; on the other hand, if p is halved while Ginj is 
assumed zero, then Equation 5.6 would yield R,, = 
1,200 R cm‘. 

Dendritic Tree Input Resistance and 
Membrane Resistivity 

Valuable simplification occurs when dendritic 
trees are treated as equivalent cylinders (see sub- 
section Results for Trees Equivalent to Cylinders). 
Here results are given for more general dendritic 
trees. The input conductance of the jth dendritic tree 
can be expressed 

G,, = Gx,Bo, (5.7) 

where d,,, is its trunk diameter and B,,, is a factor 
that depends on the diameters and the electrotonic 
lengths of its branches in a manner explained in 
1959 [(139); see Eqs. 3.37-3.411. If the branches were 
equivalent to an extension of the trunk to infinite 
length, then B,,, = 1, while, for an equivalent cylin- 
der of finite length, B,,, = tanh (L,), where L, repre- 
sents the electrotonic length of this dendritic tree, 
and it has been assumed that the dendritic terminals 
are sealed. In general the value of B,,, depends on the 
branch lengths and diameters and on the value of 
R,,,,. The values of Rmu and of R,  are needed for the A 
values in the dendritic branches of different diame- 
ters. When complete anatomic information is availa- 
ble, one can calculate the values of B,,, for several 
tentative values of R,, [e.g., see (4a, 6, 119, 139)). 
Then comparison with experimentally measured in- 
put resistance (R,) permits one to estimate a range of 
compatible values for Rmo. 

Here it is useful to combine Equations 5.4 and 5.7 
as though the B,,, values were already known; then 
the dendritic membrane resistivity can be expressed 
in terms of its square root 

= (n/2)(Rm&-1’2 Bo, (do,)~jr2 

For example, suppose that p = 10 and Ri = 70 R cm; 
then the factor in large parentheses equals about 0.2 
(R crn)-li2. If Boj = 0.8 for all trees, then a large 
motoneuron with a combined dendritic trunk d”” 
value of 600 x lop6 cm3” with an  R ,  value of 0.5 MR 
would imply an R,, value of 2,300 R cm’, while a 
smaller motoneuron having a Xd”‘ value of 200 x 
10-6 CmB/2 with an R, value of 2.5 MR would imply 
an R,, value of 6,400 R cmr. The experimental 
sample of Lux et al. (119) has mean values of R, = 
1.07 MR, Xd3” = 335 x and R ,  = 2,750 R 
em’, suggesting an average Boj value around the 0.8 
value used above. The experimental sample of Bar- 
rett & Crill (6) showed reduction of Xd”* with elec- 
trotonic distance from the soma (this implies a 
smaller value of B,,j, but the initial taper also makes 
it difficult to decide where the trunk diameters 
should be measured); they obtained an estimate of a t  
least 1,800 Q cm2 for R,  and suggested that R,, 
could easily be as large as 8,000 R cm’, if the value of 
RmS is small. 
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Results for Trees Equivalent to Cylinders 

I t  may be noted that  the dendritic surface area is 
not explicit in Equation 5.8, because i t  is buried in 
complicated cable considerations. This can be reme- 
died when each deridritic tree satisfies the con- 
straints for representation as a n  equivalent cylinder 
with a sealed end (119, 141-143, 148). Then i t  can be 
shown for each tree t,hat 

(5.9) 

where A,, = (rrd is the membrane surface area of the 
equivalent cylinder, which also equals the surface 
area of the original dendritic tree (141-143). [To 
obtain Eq. 5.9 from E:q. 5.7, with subscript j deleted, 
note tha t  

and tha t  B,, = tanh (L) for an  equivalent cylinder 
having a sealed end (see Eqs. 3.6, 3.29, and 3.371.1 
For small values of I, = P / A ,  the value of tanh(L) is 
close to L; that is, if L < 0.4, the discrepancy is less 
than 5%. Then Equation 5.9 reduces to 

(5.10) 

which agrees with the simple intuitive concepts of 
surface area and membrane resistivity when the 
membrane potential is nearly uniform: electrotonic 
decrement is negligible for small L with a sealed 
end. In  contrast, for very large values of L ,  the value 
of t a n h ( l )  is very close to 1.0, and Equation 5.9 
reduces to 

A I) 
R”,,, 

GI, = ~ 

, for L small 

Here, as L -+ x ,  GI, -+ G ,  and the surface area of the 
cylinder becomes infinite; however, the numerator 
of Equation 5.11 corresponds to the finite surface 
area for a length ( A )  of this cylinder. 

For dendritic trees equivalent to cylinders of in- 
termediate electrotonic length, Equation 5.9 is used 
with Equation 5.4 to obtain the expression 

where A,,j and Lj  are the surface area and the elec- 
trotonic length, respectively, of the j th  dendritic tree 
or of its equivalent cylinder. If these trees all have 
the same electrotonic length (L,,), this expression is 
further simplified to 

Rmi, = (1 + l / p ) R s A d a n h  (Ld/LI) (5.13) 

where A,,, represents the summed surface area of 
these dendritic trees or their equivalent cylinders. 

Having obtained this result, one can simplify fur- 
ther  to obtain Equation 5.16. First, however, i t  
seems worthwhile to note tha t  the assumptions 
made so far provide useful expressions for p and also 
for the ratio of combined dendritic surface area to 
the combined d1I2 value of the dendritic trunks. Thus 
Equations 5.7-5.13 can be used to obtain the ratio 

A~J&i!,,j:”2 = ( T / ~ ) L , ) ( R ~ ~ ~ ) / R ~ ) ” ’  (5.14) 

Also Equations 5.2, 5.5, 5.9, and 5.13 can be used to 
express the value of p in terms of the dendritic and 
somatic values of surface area and membrane resis- 
tivi ties 

provided tha t  the dendritic trees are all equivalent 
to cylinders of the same electrotonic length. Sup- 
pose, for example, tha t  L,, = 1.5, implying 
tanh(L,,)/L,, = 0.6; then a surface area ratio 
(Axl,/As) of 20 would imply p = 12, if Gillj = 0 and R,,,, 
= Rml); however, i t  would imply p = 6, if Girlj = 0 
with RlnS equal to half R,,,,, or if Gillj = As/R,,,s with 
Rms = R ~ I ) .  

Result for Neuron Equivalent to Cylinder 

When the dendritic trees are equivalent to cylin- 
ders of the same electrotonic length and when p is 
large, but not accurately known, a useful overall 
estimate of R,  can be obtained 

R,, 2- R,A,tanh iLN)/LN (5.16) 

where A, and L, represent the surface area and t,he 
electrotonic length of that cylinder most nearly 
equivalent to the whole neuron (i.e., soma plus den- 
drites). Here A, equals All, plus A,, and L, exceeds 
L,, by only a small amount when p is large (145, 148). 

The usefulness of Equation 5.16 is greatly en- 
hanced by the fact tha t  the value of LN can be esti- 
mated from an  analysis of transients l(91-93, 145, 
146); see Eq. 4.61. Such estimates of L, seem to be 
more reliable than the estimates of p (6, 86, 119, 
145). The range of values, from 1 to 2 for L,  of cat 
spinal motoneurons implies a range, from 0.76 to 
0.48 for the value of tanh(L,)/L, in Equation 5.16. 
The estimates of L, and R,  can be made electrophys- 
iologically; however, the estimate of soma-dendritic 
surface area (A,) requires careful histological study 
and measurement of the same neuron. This experi- 
mental feat has  been achieved by Lux et al. (119) 
and by Barrett & Crill ( 5 ,  6). Such measurements 
provide not only estimates of A,, but  also estimates 
of A, and Ed ’ i2 .  Also the measurements of branch 
diameters permit a n  assessment of how well the 
dendritic trees satisfy the d”’ constraint for equiva- 
lence to a cylinder; in their analysis of 50 branch- 
ings, Lux et al. (119) found approximate satisfaction 
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of this constraint; however, Barrett & Crill (6) re- 
ported decreasing hd”” with distance away from the 
soma. In any case, when detailed anatomic meas- 
urements are available, one can use Eq. 5.16 to 

urements, as well as the possibility of injury or of 
different soma membrane resistivity noted with 
Equations 5.5,5.6, and 5.15 [see (6,119,139,145)l. 

provide an initial estimate of R,; then this estimate 
can be tested together with the best estimate of R i ,  
by carrying out a detailed computation of the input 
conductance of each dendritic tree (6, 119,139) to see 
how nearly this combined dendritic input conduct- 
ance can account for the whole neuron input con- 
ductance. Even after refinement by such testing, the 
resulting estimated range of values for R, should be 
qualified by noting such possible sources of error as 
shrinkage (or swelling) between the time of the 
electrical measurements and the histological meas- 
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