ENDOCRINE PROBLEMS

DISORDERS OF THE ANTERIOR PITUITARY

- Growth hormone (GH)
 - Promotes protein synthesis
 - Mobilizes glucose & free fatty acids
 - Overproduction almost always caused by benign tumor (adenoma)

GIGANTISM

- In children excessive secretion of GH
- Occurs prior to closure of the epiphyses & long bones still capable of longitudinal growth
- Usually proportional
- May grow as tall as 8 ft & weigh >300 lb

ACROMEGALY

- In adults excessive secretion of GH stimulates IGF-1 (Liver).
 - NO negative feedback with tumor.
- Overgrowth of bones & soft tissues
- Bones are unable to grow longer—instead grow thicker & wider
- Rare—3 out of every million
 - M=F

CONTINUED CLINICAL MANIFESTATIONS

- Visual disturbances & HA from pressure of tumor
- Hyperglycemia
- Predisposes to atherosclerosis
- Untreated causes angina, HTN, left ventricular hypertrophy, cardiomegaly

PROGRESSION OF ACROMEGALY
PROGRESSION OF ACROMEGALY

- Removal of tumor transsphenoidal approach
- Hypophysectomy—removal of entire gland with lifetime hormone replacement

TREATMENTS

- Head frame for stereotactic radiosurgery
- Drug therapy
 - Somatostatin analogs
 - Octreotide (Sandostatin)—given SQ 2-3 x weekly
 - Dopamine agonist
 - Cabergoline (Dostinex)—tried first due to low cost, but not as effective
 - GH receptor antagonists
 - Pegvisomant (Somavert)—not for primary tx—does not act on tumor

REVIEW QUESTION

- A person suspected of having acromegaly has an elevated plasma GH Level. In acromegaly, one would also expect the person’s diagnostic results to include:
 - A. Hyperinsulinemia
 - B. A plasma glucose of less than normal.
 - C. Decreased GH levels with an oral glucose challenge test
 - D. A serum somatomedin C (IGF-1) of higher than normal

TREATMENTS

- Somatropin (Omnitrope)—GH for long-term replacement—given daily SQ @ HS
ANSWER

- d. A normal response to GH secretion is stimulation of the liver to produce somatomedin C, or insulin-like growth factor-1 (IGF-1), which stimulates growth of bones & soft tissues. The increase levels of somatomedin C normally inhibit GH, but in acromegaly, the pituitary gland secretes GH despite elevated IGF-1 levels. When both GH & IGF-1 levels are increased, overproduction of GH is confirmed. GH also causes elevation of blood glucose, & normally GH levels fall during an oral glucose challenge but not in acromegaly.

HYPOFUNCTION OF PITUITARY GLAND

- Hypopituitarism
 - Rare disorder
 - Decrease of one or more of the pituitary hormones
 - Secreted by post pit:
 - ADH, oxytocin
 - Secreted by ant pit:
 - ACTH, TSH, follicle-stimulating (FSH), luteinizing hormone (LH), GH & prolactin

ETIOLOGY & PATHOPHYSIOLOGY

- Causes of pituitary hypofunction
 - Tumor (most common)
 - Infections
 - Autoimmune disorders
 - Pituitary infarction (Sheehan syndrome)
 - Destruction of pituitary gland (radiation, trauma, surgery)

- Deficiencies can lead to end-organ failure

CLINICAL MANIFESTATIONS

- Tumor
 - Space-decreased peripheral vision or acuity, anosmia (loss of sense of smell), seizures
- GH deficiency
 - Decreased muscle mass, truncal obesity, flat affect
- FSH & LD deficiencies
 - Menstrual irregularities, decreased libido, changes sex characteristics
- ACTH & cortisol deficiency
 - Fatigue, weakness, dry & pale skin, postural hypotension, fasting hypoglycemia, poor resistance to infection
- Men with FSH & LD deficiencies
 - Testicular atrophy, decreased spermatogenesis, loss of libido, impotence, decreased facial hair & muscle mass

SYNDROME OF INAPPROPRIATE ANTIDIURETIC HORMONE (SIADH)

- Overproduction of ADH or arginine vasopressin (AVP)
- Synthesized in the hypothalamus
- Transported & stored in the posterior pituitary gland
- Major role is water balance & osmolality

PATHOPHYSIOLOGY OF SIADH

- Increased antidiuretic hormone (ADH) →
- Increased water reabsorption in renal tubules →
- Increased intravascular fluid volume →
- Dilutional hyponatremia & decreased serum osmolality
SIADH

- ADH is released despite normal or low plasma osmolarity
- S/S: cerebral edema, lethargy, confusion, seizures, coma
- S/S:
 - Dilutional hyponatremia
 - Fluid retention
 - Hypochloremia
 - NI renal function, <U/O
 - Concentrated urine
 - Serum hypoosmolality

CAUSES OF SIADH

- Malignant Tumors
 + Sm cell lung CA
 + Prostate, colorectal, thymus CA
 + Pancreatic CA
- CNS Disorders
 + Brain tumors
 + Lupus
 + Infections: meningitis
 + Head injury: skull fx, subdual hematoma
- Misc conditions
 + HIV
 + Lung infection
 + hypothyroidism
- Drug therapy
 + Oxytocin
 + Thiazide diuretics
 + SSRIs
 + Tricyclic antidepressants
 + opioids

DIAGNOSTIC STUDIES & TREATMENT

- Simultaneous measurements of urine and serum osmolality
- Na <134 mEq/L
- Urine specific gravity > 1.005
- Serum osmolality < 280 mOsm/kg (280 mmol/kg)
- Treatment
 + Treat underlying cause
 + Restore nl fluid volume & osmolality
 + Restrict fluids to 800-1000cc/day if Na >125 mEq/L & Lasix
 + Serum Na <120 mEq/L, seizures can occur, tx with hypotonic Na+ solution (3%-5%) slowly

DIABETES INSIPIDUS (DI)

- Deficiency of production or secretion of ADH OR a decreased renal response to AHD
- Results in fluid & electrolyte imbalances
- Types of DI
 + Central DI (neurogenic DI)
 + Nephrogenic DI

PATHOPHYSIOLOGY OF DI

- Decreased ADH
- Decrease water absorption in renal tubules
- Decreased intravascular fluid volume
- Excessive urine output resulting in increased serum osmolality (hypernatremia)

THYROID GLAND DISORDERS

- Thyroid hormones (T3 & T4) regulate energy metabolism and growth and development

[Image of thyroid gland and related anatomical structures]
THYROID ENLARGEMENT

- Goiter—hypertrophy & enlargement of thyroid gland
- Caused by excess TSH stimulation
- Can be caused by inadequate circulating thyroid hormones

THYROID ENLARGEMENT

- Found in pts with Graves’ disease
- Persons that live in a iodine-deficient area (endemic goiter)
- Surgery is used to remove large goiters

ENLARGEMENT OF THE THYROID GLAND

- TSH & T4 levels are used to determine if goiter is associated with hyper-/hypo- or normal thyroid function
- Check thyroid antibodies to assess for thyroiditis

TREATMENT OF NODULES

- US
- CT
- MRI
- Fine-needle aspiration (FNA)—one of the most effective methods to identify malignancy
- Serum calcitonin (increased levels associated with CA)

THYROIDITIS

- Inflammation of thyroid
- Chronic autoimmune thyroiditis (Hashimoto’s disease)—nl tissue replaced by lymphocytes & fibrous tissue
- Causes
 + Viral
 + Infection bacterial
 + Fungal infection

DX STUDIES & MANAGEMENT OF THYROIDITIS

- Dx studies
 + T3 & T4 initially elevated and then may become depressed
 + TSH levels are low and then elevated
 + TSH high & dec hormone levels in Hashimoto’s thyroiditis
TREATMENT OF THYROIDITIS

- Recovery may take weeks or months
- Antibiotics or surgical drainage
- ASA or NSAIDS—if doesn’t respond in 50 hours, steroids as used
- Propranolol (Inderal) or atenolol (Tenormin) for elevated heart rates

HYPERTHYROIDISM

- More susceptible to Addison’s disease, pernicious anemia, Graves’ disease, gonadal failure
- Hyperactivity of the thyroid gland with sustained increased in synthesis & release of thyroid hormones
- M＞W
- Peaks in persons 20-40 yrs old
- Most common type is Graves’ disease

GRAVES’ DISEASE

- Autoimmune disease
- Unknown etiology
- Excessive thyroid secretion & thyroid enlargement
- Precipitating factors: stressful life events, infection, insufficient iodine supply
- Remissions & exacerbations
- May progress to destruction of thyroid tissue
- 75% of all hyperthyroidism cases
- Pt has antibodies to TSH receptor

TOXIC NODULAR GOITERS

- Function independent of TSH stimulation
- Toxic if associated with hyperthyroidism
- Multinodular goiter or solitary autonomous nodule
- Benign follicular adenomas

CLINICAL MANIFESTATIONS

- Bruit present
- Ophthalmopathy—abnl eye appearance or function
- Exophthalmos—protrusion of eyeballs from orbits—20-40 % of pts
- Usually bil, but unilateral or asymmetric

CLINICAL MANIFESTATIONS

- Weight loss
- Apathy
- Depression
- Atrial fibrillations
- Confusion
- Increased nervousness
DIAGNOSTIC STUDIES

- TSH—decreased
- Elevated free T4 (free is the form of hormone that is biologically active)
- RAIU (radioactive iodine uptake) test—Graves’ uptake 35-95%; thyroiditis uptake < 2%
- ECG
- Ophthalmologic examination
- TRH stimulation tests

COLLABORATIVE CARE

- Goal: block adverse effects of hormones & stop oversecretion
- Iodine: used with other drugs to prepare for OR or tx of crisis—1-2 wks max effect
- Antithyroid drugs:
 - Propylthiouracil (PTU)—has to be taken TID
 - Methimazole (Tapazole)
- Total or subtotal thyroidectomy
- B-adrenergic blockers—symptomatic relief
 + Propranolol (Inderal)
 + Atenolol (Tenormin)—used in pts with heart disease or asthma

COLLABORATIVE CARE

- Radioactive Iodine Therapy—treatment of choice for non-pregnant women; damages or destroys thyroid tissues; max effect seen in 2-3 months; post hypothyroidism seen in 80% of patients
- Nutritional therapy:
 + High-calories: 4000-5000 kcal/day
 + Six meals a day
 + Snacks high in carbs, protein
 + Particularly Vit A, B6, C & thiamine
 + Avoid caffeine, high-fiber, highly seasoned foods

HYPOTHYROIDISM

- Common medical disorder in US
- Insufficient circulating thyroid hormone
- Primary—related to destruction of thyroid tissue or defective hormone synthesis
- Can be transient
- Secondary—related to pituitary disease or hypothalamic dysfunction
- Most common cause iodine deficiency or atrophy thyroid gland (in US)
- May results from tx of hyperthyroidism
- Cretinism hypothyroidism in infancy

HYPOTHYROIDISM

- Cretinism—hypothyroidism that develops in infancy
- All newborns are screened at birth for hypothyroidism

CLINICAL MANIFESTATIONS

- S/S vary on severity of deficiency, age onset, patient’s age
- Nonspecific slowing of body processes
- S/S occur over months or years
- Long-termed effects more pronounced in neurologic, GI, cardiovascular, reproductive & hematologic sytems
CLINICAL MANIFESTATIONS

- Fatigue
- Lethargy
- Somnolence
- Decreased initiative
- Slowed speech
- Depressed appearance
- Increased sleeping
- Anemia

CLINICAL MANIFESTATIONS

- Decreased cardiac output
- Decreased cardiac contractility
- Bruise easily
- Constipation
- Cold intolerance
- Hair loss
- Dry, course skin
- Weight gain
- Brittle nails
- Muscle weakness & swelling
- Hoarseness
- Menorrhagia
- Myxedema—occurs with long-standing hypothyroidism

CLINICAL MANIFESTATIONS

- Puffiness
- Periorbital edema
- Masklike effect
- Coarse, sparse hair
- Dull, puffy skin
- Prominent tongue

MORE MYXEDEMA

- Myxedema coma:
 - Medical emergency
 - Mental drowsiness, lethargy & sluggishness may progress to a grossly impaired LOC
 - Hypotension
 - Hypoventilation
 - Subnormal temperature

TESTING & TREATMENT

- Serum TSH is high
- Free T4
- Hx & physical
- Cholesterol (elevated)
- Triglycerides (elevated)
- CBC (anemia)
- CK (increased)
- Levothyroxin (Synthroid)
 - Levels are checked in 4-6 wks and dosage adjusted
 - Take meds regularly
 - Lifelong treatment
 - Monitor pts with CAD
 - Monitor HR & report to HCP >100 bpm
 - Promptly report chest pain, weight loss, insomnia, nervousness
EXPECTED OUTCOMES

- Adhere to lifelong therapy
- Have relief from symptoms
- Maintain an euthyroid state as evidenced by nl TSH levels
- Severe myxedema of leg

DISORDERS OF THE ADRENAL CORTEX

- Main classifications of adrenal cortex steroid hormones:
 + Mineralocorticoid
 - Regulates K+ & sodium balance
 + Androgen
 - Contribute to growth & development in males/females & sexual activity in adult women
 + Glucocorticoid
 - Cortisol is primary one
 - Regulate metabolism, increase glu levels, critical in physiologic stress response

CUSHING SYNDROME

- Caused by excess of corticosteroids, more specifically: glucocorticoids
- Hyperfunction of adrenal cortex
- Women > Men
- 20-40 yrs age group

Other causes:
+ ACTH-secreting pituitary tumor (Cushing’s disease)
+ Cortisol-secreting neoplasm in adrenal cortex
+ Prolonged high doses of corticosteroids
+ CA of lungs or malignant growth

CLINICAL MANIFESTATIONS OF CUSHING

- Thin, fragile skin
- Poor wound healing
- Acne—red cheeks
- Purplish red striae
- Bruises
- Fat deposits on back of neck & shoulders (buffalo hump)
- Rounding of face (moon face)
- HTN, edema of extremities
- Inhibition of immune response
- Sodium/water retention

This infant had a 3 pound weight gain in 1 day
DIAGNOSTIC STUDIES FOR CUSHING

- 24-hr urine for free cortisol (50-100 mcg/day)
- Plasma cortisol levels may be elevated
- High-dose dexamethasone suppression test (false-positive results with depression, acute stress, active alcoholics)
- CBC—leukocytosis
- CMP—hyperglycemia, hypokalemia
- Hypercalciuria
- Plasma ACTH level
- History and physical

TREATMENT OF CUSHING SYNDROME

- Adrenalectomy (open or laparoscopic)
- If caused by steroid tx, taper & discontinue
- Drug therapy:
 + Metyrapone
 + Mitotane (Lysodren)—“medical adrenalectomy”
 + Ketoconazole (Nizoral)
 + Aminogluthethimide (Cytaclor)

HYPOFUNCTION OF ADRENAL CORTEX—ADDISON’S DISEASE

- All 3 classes of adrenal corticosteroids are reduced
- Most common cause is autoimmune response
- Other causes: AIDS, metastatic cancer, TB, infarction, fungal infections
- M=W (JFK had Addison’s)
- Occurs in <60 yrs of age

CLINICAL MANIFESTATIONS OF ADDISON’S

- Bronzed or smoky hyperpigmentation of face, neck, hands (esp creases), buccal membranes, nipples, genitalia
- Anemia, lymphocytosis
- Depression
- Delusions

CLINICAL MANIFESTATIONS OF ADDISON’S

- Fatigability
- Tendency toward coexisting autoimmune diseases
- N/V/D, abd pain
- Hypotension
- Vasodilation
- Weight loss
- Hyponatremia, dehydration

DIAGNOSTIC STUDIES & TREATMENT

- CT scan
- MRI
- ACTH-stimulations test
- History & physical
- Plasma cortisol levels
- Serum electrolytes
- CBC
- Urine for free cortisol (will be low)

- Q day glucocorticoid (hydrocortisone) replacement (2/3 upon awakening & 1/3 in evening)
- Salt additives for excess heat or humidity
- Daily mineralocorticoid in the am
- Increased doses or cortisol for stress situations (OR, hospitalizations)
SIDE EFFECTS OF CORTICOSTEROIDS

- Hypocalcemia R/T anti-vitamin D effect
- Weakness & skeletal muscle atrophy
- Predisposition to peptic ulcer disease (PUD)
- Hypokalemia
- Mood & behavior changes

COMPLICATIONS OF STERIOD THERAPY

- Steroids taken for longer than 1 week will suppress adrenal production
- Always wean steroids, do not abruptly stop
- Take early in the am with food

- Predisposes to DM
- Delayed healing
- HTN → predisposes to heart failure
- Protein depletion predisposes to pathologic fx esp compression fx of vertebrae