http://www.ukclimbing.com/news/ite m.php?id=49981

Physiology

- Define: The study of how living organisms function
- Structure & function are important to understand function
- Why study: Curiosity. Better understand how humans function under normal conditions. Thus, modifications of pathological states back to a 'normal' state might be possible.

• Many of the physiological process are described by chemical and physical properties

• It is important to integrate these concepts with biology.

- The physiology of an animal is well suited to the environment in which it has evolved.
- This is explained by the process of ADAPTATIONgradual change over many generations.
- Acclimatization is a change of an individual over its lifetime of biochemical or anatomical alterations
- Acclimation is like acclimatization but induced by experimentation.

• Homeostasis- The tendency of an organism to regulate and maintain relative internal stability.

• Cannon coined this term 1929

This mostly works by a feed back control.

Such as by a negative feedback.

Examples - Temp, pH, salinity within the body

(b)

Chapter 2

- Read over it for your own benefit
- Know August Krogh principle.

- that there is an animal optimally suited to yield an answer of a physiological problem to be addressed

Chapter 3

• Understanding of molecules and their function for physiological processes.

 Water- it is polar can be used to interact with other ions. It lets Na+Cl- dissolve in body fluids. This is needed for rapid transport of ions.

- Acid: any substance that can donate a proton.
- Base: any substance that combines with a proton.

	pН	$[\mathrm{H^{+}}](\mathrm{mol}\cdot\mathrm{L^{-1}})$	$[\mathrm{OH^-}](\mathrm{mol}\cdot\mathrm{L^{-1}})$	Examples
	0	10^{0}	10^{-14}	
	1	10^{-1}	10^{-13}	Human gastric fluids
↑ Increasing acidity	2	10^{-2}	10^{-12}	
	3	10^{-3}	10^{-11}	Household vinegar
	4	10^{-4}	10^{-10}	
	5	10^{-5}	10^{-9}	Interior of lysosomes
	6	10^{-6}	10^{-8}	Cytoplasm of muscle
Neutral	7	10^{-7}	10^{-7}	Pure water at 25°C
	8	10^{-8}	10^{-6}	Seawater
	9	10^{-9}	10^{-5}	
\downarrow Increasing alkalinity	10	10^{-10}	10^{-4}	Alkaline lakes
	11	10^{-11}	10^{-3}	Household ammonia
	12	10^{-12}	10^{-2}	Saturated lime solution
	13	10^{-13}	10^{-1}	
	14	10^{-14}	10^{0}	

Table 3-2 The pH scale

Hq

FATS:

- 1. Lipids
- 2. Phospholipids for membranes
- 3. Waxes- water proof the surface of insects

Biological Molecules

LIPIDS

Fats - triglyceride

2. Phospholipids for membranes

Saturated- each carbon has a single bond and is staurated with 'H'

Unsaturated- some carbons have a double bond and thus are not saturated with 'H'.

UnsatSat1. Melting Pt.:Decreasedincreased2. Metab:-easily converted to sterols
(ie, Cholesterol).

Need for cholesterol for steroid based hormone production.

Fats are good as a energy store. 1. Little water needed. 2. Stored in adipose tissue. 3. High "H & C" with little "O" so one gets a good energy yield. (1 gram of fat=2 grams of carbohydrates)

Table 3-3The energy content of the threemajor categories of foodstuffs

Substrate	Energy content (kcal \cdot g $^{-1}$)		
Carbohydrates	4.0		
Proteins	4.5		
Fats	9.5		

FATS:

- 1. Lipids
- 2. Phospholipids for membranes
- 3. Waxes- water proof the surface of insects

Carbohydrates

- I. Monosaccharides
- II. Disaccharides

- I. Monosaccharides
 -Six carbon-- hexoses
 -five carbon-- pentoses
- (a) Monosaccharide sugars

(b) Disaccharide sugars

The disaccharides are units of monosaccharides
A. Polymers – Plants—starch
-- Animals– glycogen
Little water needed for storage. So good energy for plants and animals.

B. Cellulose

C. Chitin (exoskeleton in insects/crustaceans)

Table 16-1Glycogen storage diseases

ŝ

Туре	Defective enzyme	Organ affected	Glycogen in the affected organ	Clinical features
l VON GIERKE'S DISEASE	Glucose 6-phosphatase	Liver and kidney	Increased amount; normal structure.	Massive enlargement of the liver. Failure to thrive. Severe hypoglycemia, ke- tosis, hyperuricemia, hy- perlipemia.
ll POMPE'S DISEASE	α-1,4-Glucosidase (lysosomal)	All organs	Massive increase in amount; normal structure.	Cardiorespiratory failure causes death, usually be-fore age 2.
III CORI'S DISEASE	Amylo-1,6-glucosidase (debranching enzyme)	Muscle and liver	Increased amount; short outer branches.	Like Type I, but milder course.
IV ANDERSEN'S DISEASE	Branching enzyme $(\alpha-1, 4 \longrightarrow \alpha-1, 6)$	Liver and spleen	Normal amount; very long outer branches.	Progressive cirrhosis of the liver. Liver failure causes death usually be- fore age 2.
V McARDLE'S DISEASE	Phosphorylase	Muscle	Moderately increased amount; normal structure.	Limited ability to perform strenuous exercise because of painful muscle cramps. Otherwise patient is nor- mal and well developed.
VI HERS' DISEASE	Phosphorylase	Liver	Increased amount.	Like Type I, but milder course.
VII	Phosphofructokinase	Muscle	Increased amount; normal structure.	Like Type V.
VIII	Phosphorylase kinase	Liver	Increased amount; normal structure.	Mild liver enlargement. Mild hypoglycemia.

Note: Types I through VII are inherited as autosomal recessives. Type VIII is sex-linked.

Chitin

Proteins

- A lot in cells. $\frac{1}{2}$ of the dry mass.
- Various structures.
- -Primary, secondary, tertiary, and quaternary

(a) General structure of alpha-amino acids COOH $NH_2 - C_{\alpha} - H$ R

(b) Structure of a tetrapeptide

Secondary Alpha helix

Secondary

Beta-sheet

Side

Secondary types

- alpha helix: alpha-Keratins for hair and wool

- Beta sheets: (Harder) beta- Keratins for reptile scales and turtle shells

Quaternary- a couple of subunits coming together like Heme units.

ie., Hemoglobin

Molecular chaperones

- Fold other proteins. Maintain their structure.
- To protect proteins from degradation and preserve the overall integrity of intracellular protein pool.
- Example HSP or stress proteins.

DNA & RNA

- DNA isolated in 1869 by Friedrich Miescher. White blood cells and fish sperm.
- DNA- genes
- RNA translating the coded DNA message.

- DNA with mRNA--- Transcription
- mRNA to protein --- Translation
 A-T and C-G in DNA
 But A-U in RNA

Energy in Living cells

- Chemical Rxs taking place (types of tissues)
- Where within the cells? (organelles)

Animals are like chemical machines.Different forms of Energy- ie., thermal and mechanical.

- A measure of a systems energy that it can provide.
- $\Delta G = \Delta H T \Delta S$ Is Gibbs free Energy
- ΔH is heat; ΔS is Entropy

If ΔG is neg then the Rx is spontaneous. Also hold for biochemical Rxs.

(a)

Adenosine group

(a) Enzyme activity versus temperature

(b) Enzyme activity versus pH

Metal ion	Some enzymes requiring this cofactor
Ca^{2+}	Phosphodiesterase
	Protein kinase C
Cu^{2+} (Cu^{+})	Cytochrome oxidase
	Tyrosinase
Fe^{2+} or Fe^{3+}	Catalase
	Cytochromes
	Ferredoxin
	Peroxidase
K ⁺	Pyruvate phosphokinase (also requires
	Mg^{2+}
Mg^{2+}	Phosphohydrolases
0	Phosphotransferases
Mn^{2+}	Arginase
	Phosphotransferases
Na ⁺	Plasma membrane ATPase (also requires
	K^+ and Mg^{2+})
Zn^{2+}	Alcohol dehydrogenase
	Carbonic anhydrase
	Carboxypeptidase

Table 3-6 Metal ions functioning as cofactors

Source: Adapted from Nelson and Cox, 2000.

• Rx A+B \longrightarrow C+D

Reactants to Products

Substrate goes to a Product $S \xrightarrow{k} P$

• Then the Michaelis-Menton equation for a single enzyme Vo of initial rate varies but can be used for determining other factors.

Key is when $Vo = \frac{1}{2} Vmax$ Then; $\underline{Vmax} = \underline{Vmax}[S]$ will be Km=[S] 2 Km + [S]

So Km can be determined by a plot. In this kind of plot many values are needed for the curve. A linear plot is easier and more accurate.

$\underline{1} = \underline{Km} + \underline{1}$ Vo $Vm[S] \quad Vmax$

(a) Competitive inhibition

(b) Noncompetitive inhibition

Metabolic Rx in the body must be regulated.

- Not all or none Rxs for process like ATP (energy)
- Many Rx regulated by enzymes. They are proteins; they are made and broken down.
- These are amino acids so Temp, pH, and salts will have an effect on their function.
- Also the cell does not want to much excess protein around so make Enzymes as needed.

Ex: The neurotransmitter/hormone: Norepinephrine can inhibit tyrosine hydroxylase which is an enzyme that makes Norepi.

Formation of oxalic acid from ethylene glycol is inhibited by ethanol. Energy within the cells used to drive the tissue- to organ- to system.

2 ATP

36 ATP (?)

Total 38 ATP (?)

$C_6H_{12}O_6 + 6 O_2 = 6 CO_2 + 6 H_2O$ with O_2 metabolism

Inner membrane ETC and most ATP is produced

Table 14-4ATP yield from the complete oxidation of glucose

Reaction sequence	ATP yield per glucose
Glycolysis: glucose into pyruvate (in the cytosol)	
Phosphorylation of glucose	<u> </u>
Phosphorylation of fructose 6-phosphate	<u> </u>
Dephosphorylation of 2 molecules of 1,3-DPG	+2
Dephosphorylation of 2 molecules of phosphoenolpyruvate	+2
2 NADH are formed in the oxidation of 2 molecules of glyceraldehyde 3-phosphate	
Conversion of pyruvate into acetyl CoA (inside mitochondria)	
2 NADH are formed	. * / /
Citric acid cycle (inside mitochondria)	
2 molecules of guanosine triphosphate are formed from 2 molecules of succinyl CoA	+2
6 NADH are formed in the oxidation of 2 molecules each of isocitrate, α -ketoglutarate, and malate	
2 FADH ₂ are formed in the oxidation of 2 molecules of succinate	
Oxidative phosphorylation (inside mitochondria)	
2 NADH formed in glycolysis; each yields 2 ATP (assuming transport of NADH by the glycerol phosphate shuttle)	+4
2 NADH formed in the oxidative decarboxylation of pyruvate; each yields 3 ATP	+ 6
2 FADH ₂ formed in the citric acid cycle; each yields 2 ATP	+4
6 NADH formed in the citric acid cycle;	10
each yields 3 ATP	+18
NET YIELD PER GLUCOS	E + 30

~
TCA and ETC:			
Molecule	ATP worth		Total
4 NADH	3		12
1 FADH ₂	2		2
1GTP	1		<u>1</u>
			15
	X2 TCA c	eycles =	30 ATP
Glycolysis:			
	Gly Net A	ТР	2
			32 Total
	2 NADH in Gly (3 ATP/eacl	h)	6
			38 Total
But use	2 ATP for the transport into N	Mit	<u>-2</u> (1 ATP for each NADH)
	-		36 ATP Grand total

Endosymbiotic theory Lynn Margulis

FIGURE 3-18 Linkage of glycolysis with citric acid cycle pathways is an anaerobic metabolic pathway that provides additional ATP formation. These pathways are found, for example, in many platyhelminth worms.

Anaerobic-Bacteria, some yeasts, some invertebrates can live in low O_2 .

Ex. Clostridium botulinum can not grow in O_2 .

Aerobic- require a supply of O_2 . Some tissues like muscle can function anaerobically and build up an " O_2 debt" but pay back occurs.

With O_2 the cells are 20 times more efficient to produce ATP.

Homework problems

Competitive

- 1. Binds at active site
- 2. Increase [S] removes inhibition
- 3. Increase [I] more block till saturated

(alter rate and Increase Km, without a change on Vmax)

4. Slope changes

Non- Competitive

- 1. Dose not binds at active site
- 2. Increase [S] no effect
- 3. Increase [I] more block till saturated

(no change on Km, but decrease Vmax)

4. Slope changes

ADENINE- THYMINE BASE PAIR Adenine Thymine

GUANINE - CYTOSINE BASE PAIR

