

Left Adrenal Gland

Table 9-7 Metabolic and developmental hormones

Hormone	Tissue of origin	Structure	Target tissue	Primary action	Regulation
Glucagon	Pancreas (alpha cells)	Peptide	Liver, adipose	Stimulates glycogenolysis and release of glucose from	Low serum glucose increases secretion; somatostatin inhibits
lissue					

Table 9-7 Metabolic and developmental hormones

Hormone	Tissue of origin	Structure	Target tissue	Primary action	Regulation
Insulin	Pancreas (beta cells)	Peptide	All tissues except most neuronal tissue	Increases glucose and amino acid uptake by cells	High plasma glucose and amino acid levels and presence of glucagon increase secretion; somatostatin inhibits secretion
Norepinephrine and epinephrine	Adrenal medulla (chromaffin cells)	Catecholamine	Most tissues	Increase cardiac activity; induce vasoconstriction; increase glycolysis, hyperglycemia, and lipolysis	Sympathetic stimulation via splanchnic nerves increases secretion
Thyroxine	Thyroid	Tyrosine derivative	Most cells, but especially those of muscle, heart, liver, and kidney	Increases metabolic rate, thermogenesis, growth, and development; promotes amphibian metamorphosis	TSH induces release

Cholesterol ${ }^{\mathrm{CH}_{2} \mathrm{OH}}$

○

Progesterone

Tyrosine

Increased oxygen consumption and heat production

Table 9-8 Mammalian hormones involved in regulating water and electrolyte balance
\(\left.$$
\begin{array}{ccllcl}\hline \text { Hormone } & \text { Tissue of origin } & \text { Structure } & \text { Target tissue } & \text { Primary action } & \text { Regulation } \\
\hline \begin{array}{c}\text { Antidiuretic hormone } \\
\text { (ADH, vasopressin) }\end{array} & \text { Posterior pituitary } & \text { Nonapeptide } & \text { Kidneys } & \begin{array}{c}\text { Increases water } \\
\text { reabsorption }\end{array} & \begin{array}{c}\text { Increased plasma } \\
\text { osmotic pressure } \\
\text { or decreased } \\
\text { blood volume }\end{array}
$$

stimulates release\end{array}\right]\)| Increased venous |
| :---: |
| pressure stimulates release |

Modified in class

Table 9-9 Important mammalian reproductive hormones

Hormone	Tissue of origin	Structure	Target tissue	Primary action	Regulation
Primary sex hormones					
Estradiol-17 β (estrogens)	Ovarian follicle, corpus luteum, adrenal cortex	Steroid	Most tissues	Promotes development and maintenance of female characteristics and behavior, oocyte maturation, and uterine proliferation	Increased FSH and LH levels stimulate secretion
Progesterone	Corpus luteum, adrenal cortex	Steroid	Uterus, mammary glands	Maintains uterine secretion; stimulates mammary duct formation	Increased LH and prolactin levels stimulate secretion
Testosterone (androgens)	Testes (Leydig cells), adrenal cortex	Steroid	Most tissues	Promotes development and maintenance of male characteristics and behavior and spermatogenesis	Increased LH level stimulates secretion
Other Hormones					
Oxytocin	Posterior pituitary	Nonapeptide	Uterus, mammary glands	Promotes smooth muscle contraction and milk ejection	Cervical distention and suckling stimulate release; high progesterone inhibits release
Prolactin (PL)	Anterior pituitary	Peptide	Mammary glands (alveolar cells)	Increases synthesis of milk proteins and growth of mammary glands; elicits maternal behavior	Continuous secretion of PL-inhibiting hormone (PIH) normally blocks release; increased estrogen and decreased PIH secretion permit release

Juvenile hormone
(b)

Stage of development

BRAIN

Table 9-10 Selected prostaglandins

Tissue of origin	Target tissue	Primary action	Regulation
Seminal vesicles, uterus, ovaries	Uterus, ovaries, fallopian tubes	Potentiates smooth muscle contraction and possibly luteolysis; may mediate LH stimulation of estrogen and progesterone synthesis	Introduced during coitus with semen
Kidney	Blood vessels, especially in kidneys	Regulates vasodilation or vasoconstriction	Increased angiotensin II and epinephrine stimulate secretion; inactivated in lungs and liver
Neuronal tissue	Adrenergic terminals	Blocks norepinephrinesensitive adenylate cyclase	Neuronal activity increases release

Table 9-1I Insect developmental hormones

Hormone	Tissue of origin	Structure	Target tissue	Primary action	Regulation
Bursicon	Neurosecretory cells in brain and nerve cord	Protein $(\mathrm{MW} \sim 40,000)$	Epidermis	Promotes cuticle development; induces tanning of cuticle of newly molted adults	Stimuli associated with molting stimulate secretion
Ecdysone (molting hormone)	Prothoracic glands, ovarian follicle	Steroid	Epidermis, fat body, imaginal disks	Increases synthesis of RNA, protein, mitochondria, and endoplasmic reticulum; promotes secretion of new cuticle	PTTH stimulates secretion
Eclosion hormone	Neurosecretory cells in brain	Peptide	Nervous system	Induces emergence of adult from puparium	Endogenous "clock"
Juvenile hormone (JH)	Corpus allatum	Fatty acid derivative	Epidermis, ovarian follicles, sex accessory glands, fat body	In larva, promotes synthesis of larval structures and inhibits metamorphosis; in adult, stimulates synthesis of yolk protein; activates ovarian follicles and sex accessory glands	Inhibitory and stimulatory factors from the brain control secretion
Prothoracicotropin (PTTH)	Neurosecretory cells in brain	Small protein $(\mathrm{MW} \sim 5000)$	Prothoracic gland	Stimulates ecdysone release	Various environmental and internal cues (e.g., photoperiod, temperature, crowding, abdominal stretch) stimulate release; JH inhibits release in some species

