Chapter 19 The Cardiovascular System: Blood Vessels: Part A

Blood Vessels

- Delivery system of dynamic structures that begins and ends at heart
 - Arteries: carry blood away from heart; oxygenated except for pulmonary circulation and umbilical vessels of fetus
 - Capillaries: contact tissue cells; directly serve cellular needs
 - Veins: carry blood toward heart

Structure of Blood Vessel Walls

- Lumen
 - Central blood-containing space
- · Three wall layers in arteries and veins
 - Tunica intima, tunica media, and tunica externa
- Capillaries
 - Endothelium with sparse basal lamina

Tunics

- Tunica intima
 - Endothelium lines lumen of all vessels
 - Continuous with endocardium
 - Slick surface reduces friction
 - Subendothelial layer in vessels larger than 1 mm; connective tissue basement membrane

Tunics

- Tunica media
 - Smooth muscle and sheets of elastin
 - Sympathetic vasomotor nerve fibers control vasoconstriction and vasodilation of vessels
 - Influence blood flow and blood pressure

Tunics

- Tunica externa (tunica adventitia)
 - Collagen fibers protect and reinforce; anchor to surrounding structures
 - Contains nerve fibers, lymphatic vessels
 - Vasa vasorum of larger vessels nourishes external layer

Blood Vessels

- Vessels vary in length, diameter, wall thickness, tissue makeup
- See figure 19.2 for interaction with lymphatic vessels

Arterial System: Elastic Arteries

- Large thick-walled arteries with elastin in all three tunics
- Aorta and its major branches
- Large lumen offers low resistance
- Inactive in vasoconstriction
- Act as pressure reservoirs—expand and recoil as blood

ejected from heart

- Smooth pressure downstream

Arterial System: Muscular Arteries

- Distal to elastic arteries
 - Deliver blood to body organs
- · Thick tunica media with more smooth muscle
- · Active in vasoconstriction

Arterial System: Arterioles

- Smallest arteries
- · Lead to capillary beds
- Control flow into capillary beds via vasodilation and vasoconstriction

Capillaries

- Microscopic blood vessels
- Walls of thin tunica intima

 In smallest one cell forms entire circumference
- Pericytes help stabilize their walls and control permeability
- Diameter allows only single RBC to pass at a time

Capillaries

• In all tissues except for cartilage, epithelia, cornea and

lens of eye

- Provide direct access to almost every cell
- Functions
 - Exchange of gases, nutrients, wastes, hormones, etc., between blood and interstitial fluid

Capillaries

- Three structural types
 - 1. Continuous capillaries
 - 2. Fenestrated capillaries
 - 3. Sinusoid capillaries (sinusoids)

Continuous Capillaries

- · Abundant in skin and muscles
 - Tight junctions connect endothelial cells
 - Intercellular clefts allow passage of fluids and small solutes
- · Continuous capillaries of brain unique
 - Tight junctions complete, forming blood brain barrier

Fenestrated Capillaries

- Some endothelial cells contain pores (fenestrations)
- · More permeable than continuous capillaries
- Function in absorption or filtrate formation (small intestines, endocrine glands, and kidneys)

Sinusoid Capillaries

- Fewer tight junctions; usually fenestrated; larger intercellular clefts; large lumens
- Blood flow sluggish allows modification
 - Large molecules and blood cells pass between blood and surrounding tissues
- Found only in the liver, bone marrow, spleen, adrenal medulla
- Macrophages in lining to destroy bacteria

Capillary Beds

- Microcirculation
 - Interwoven networks of capillaries between arterioles and venules
 - Terminal arteriole → metarteriole
 - Metarteriole continuous with thoroughfare channel (intermediate between capillary and venule)
 - Thoroughfare channel \rightarrow **postcapillary venule** that drains bed

Capillary Beds: Two Types of Vessels

- Vascular shunt (metarteriole—thoroughfare channel) – Directly connects terminal arteriole and postcapillary venule
- True capillaries
 - 10 to 100 exchange vessels per capillary bed
 - Branch off metarteriole or terminal arteriole

Blood Flow Through Capillary Beds

- True capillaries normally branch from metarteriole and return to thoroughfare channel
- Precapillary sphincters regulate blood flow into true capillaries
 - Blood may go into true capillaries or to shunt
- Regulated by local chemical conditions and vasomotor nerves

Venous System: Venules

- Formed when capillary beds unite
 - Smallest postcapillary venules
 - Very porous; allow fluids and WBCs into tissues
 - Consist of endothelium and a few pericytes
- Larger venules have one or two layers of smooth muscle cells

Veins

- Formed when venules converge
- Have thinner walls, larger lumens compared with corresponding arteries
- · Blood pressure lower than in arteries
- Thin tunica media; thick tunica externa of collagen fibers and elastic networks
- Called capacitance vessels (blood reservoirs); contain up to 65% of blood supply

Veins

- Adaptations ensure return of blood to heart despite low pressure
 - Large-diameter lumens offer little resistance
 - Venous valves prevent backflow of blood
 - Most abundant in veins of limbs
 - Venous sinuses: flattened veins with extremely thin walls (e.g., coronary sinus of the heart and dural sinuses of the brain)

Vascular Anastomoses

- Interconnections of blood vessels
- Arterial anastomoses provide alternate pathways (collateral channels) to given body region
 - Common at joints, in abdominal organs, brain, and heart; none in retina, kidneys, spleen
- Vascular shunts of capillaries are examples of arteriovenous anastomoses
- Venous anastomoses are common

Physiology of Circulation: Definition of Terms

- Blood flow
 - Volume of blood flowing through vessel, organ, or entire circulation in given period
 - Measured as ml/min
 - Equivalent to cardiac output (CO) for entire vascular system
 - Relatively constant when at rest
 - Varies widely through individual organs, based on needs

Physiology of Circulation: Definition of Terms

- Blood pressure (BP)
 - Force per unit area exerted on wall of blood vessel by blood
 - Expressed in mm Hg
 - Measured as systemic arterial BP in large arteries near heart
 - Pressure gradient provides driving force that keeps blood moving from higher to lower pressure areas

Physiology of Circulation: Definition of Terms

- Resistance (peripheral resistance)
 - Opposition to flow
 - Measure of amount of friction blood encounters with vessel walls, generally in peripheral (systemic) circulation
- Three important sources of resistance
 - Blood viscosity
 - Total blood vessel length
 - Blood vessel diameter

Resistance

- Factors that remain relatively constant:
 - Blood viscosity
 - The "stickiness" of blood due to formed elements and plasma proteins
 - Increased viscosity = increased resistance
 - Blood vessel length
 - Longer vessel = greater resistance encountered

Resistance

- Blood vessel diameter
 - Greatest influence on resistance
- Frequent changes alter peripheral resistance
- Varies inversely with fourth power of vessel radius
 - E.g., if radius is doubled, the resistance is 1/16 as much
 - E.g., Vasoconstriction \rightarrow increased resistance

Resistance

- Small-diameter arterioles major determinants of peripheral resistance
- Abrupt changes in diameter or fatty plaques from atherosclerosis dramatically increase resistance
 - Disrupt laminar flow and cause turbulent flow
 - Irregular fluid motion \rightarrow increased resistance

Relationship Between Blood Flow, Blood Pressure, and Resistance

- Blood flow (F) directly proportional to blood pressure gradient (ΔP)
 - If ΔP increases, blood flow speeds up
- Blood flow inversely proportional to peripheral resistance (R)
 - If R increases, blood flow decreases:

 $F = \Delta P/R$

• R more important in influencing local blood flow because easily changed by altering blood vessel diameter

Systemic Blood Pressure

- · Pumping action of heart generates blood flow
- Pressure results when flow is opposed by resistance
- Systemic pressure
 - Highest in aorta
 - Declines throughout pathway
 - 0 mm Hg in right atrium
- · Steepest drop occurs in arterioles

Arterial Blood Pressure

- · Reflects two factors of arteries close to heart
 - Elasticity (compliance or distensibility)
 - Volume of blood forced into them at any time
- Blood pressure near heart is pulsatile

Arterial Blood Pressure

- **Systolic pressure**: pressure exerted in aorta during ventricular contraction
 - Averages 120 mm Hg in normal adult
- Diastolic pressure: lowest level of aortic pressure
- Pulse pressure = difference between systolic and diastolic pressure
 - Throbbing of arteries (pulse)

Arterial Blood Pressure

- Mean arterial pressure (MAP): pressure that propels blood to tissues
- MAP = diastolic pressure + 1/3 pulse pressure
- Pulse pressure and MAP both decline with increasing distance from heart
- Ex. BP = 120/80; MAP = 93 mm Hg

Capillary Blood Pressure

- Ranges from 17 to 35 mm Hg
- Low capillary pressure is desirable
 - High BP would rupture fragile, thin-walled capillaries
 - Most very permeable, so low pressure forces filtrate into interstitial spaces

Venous Blood Pressure

- · Changes little during cardiac cycle
- Small pressure gradient; about 15 mm Hg
- Low pressure due to cumulative effects of peripheral resistance
 - Energy of blood pressure lost as heat during each circuit

Factors Aiding Venous Return

- 1. **Muscular pump**: contraction of skeletal muscles "milks" blood toward heart; valves prevent backflow
- 2. **Respiratory pump**: pressure changes during breathing move blood toward heart by squeezing abdominal veins as thoracic veins expand
- 3. Venoconstriction under sympathetic control pushes blood toward heart

Maintaining Blood Pressure

- Requires
 - Cooperation of heart, blood vessels, and kidneys
 - Supervision by brain
- Main factors influencing blood pressure
 - Cardiac output (CO)
 - Peripheral resistance (PR)
 - Blood volume

Maintaining Blood Pressure

- $F = \Delta P/R$; $CO = \Delta P/R$; $\Delta P = CO \times R$
- Blood pressure = CO × PR (and CO depends on blood volume)
- Blood pressure varies directly with CO, PR, and blood volume
- Changes in one variable quickly compensated for by changes in other variables

Cardiac Output (CO)

- CO = SV × HR; normal = 5.0-5.5 L/min
- Determined by venous return, and neural and hormonal controls
- Resting heart rate maintained by cardioinhibitory center via parasympathetic vagus nerves
- Stroke volume controlled by venous return (EDV)

Cardiac Output (CO)

- During stress, cardioacceleratory center increases heart rate and stroke volume via sympathetic stimulation
 - ESV decreases and MAP increases

Control of Blood Pressure

- · Short-term neural and hormonal controls
 - Counteract fluctuations in blood pressure by altering peripheral resistance and CO
- Long-term renal regulation
 - Counteracts fluctuations in blood pressure by altering blood volume

Short-term Mechanisms: Neural Controls

- Neural controls of peripheral resistance
 - Maintain MAP by altering blood vessel diameter
 - If low blood volume all vessels constricted except those to heart and brain
 - Alter blood distribution to organs in response to specific

Short-term Mechanisms: Neural Controls

- Neural controls operate via reflex arcs that involve
 - Baroreceptors
 - Cardiovascular center of medulla
 - Vasomotor fibers to heart and vascular smooth muscle
 - Sometimes input from chemoreceptors and higher brain centers

The Cardiovascular Center

- Clusters of sympathetic neurons in medulla oversee changes in CO and blood vessel diameter
- · Consists of cardiac centers and vasomotor center
- Vasomotor center sends steady impulses via sympathetic efferents to blood vessels → moderate constriction called vasomotor tone
- Receives inputs from baroreceptors, chemoreceptors, and higher brain centers

Short-term Mechanisms: Baroreceptor Reflexes

- Baroreceptors located in
 - Carotid sinuses
 - Aortic arch
 - Walls of large arteries of neck and thorax

Short-term Mechanisms: Baroreceptor Reflexes

- Increased blood pressure stimulates baroreceptors to increase input to vasomotor center
 - Inhibits vasomotor and cardioacceleratory centers, causing arteriolar dilation and venodilation
 - Stimulates cardioinhibitory center
 - \rightarrow decreased blood pressure

Short-term Mechanisms: Baroreceptor Reflexes

- · Decrease in blood pressure due to
 - Arteriolar vasodilation
 - Venodilation
 - Decreased cardiac output

Short-term Mechanisms: Baroreceptor Reflexes

- If MAP low
 - → Reflex vasoconstriction → increased CO → increased blood pressure
 - Ex. Upon standing baroreceptors of carotid sinus reflex protect blood to brain; in systemic circuit as whole aortic reflex maintains blood pressure
- Baroreceptors ineffective if altered blood pressure sustained

Short-term Mechanisms: Chemoreceptor Reflexes

- Chemoreceptors in aortic arch and large arteries of neck detect increase in CO₂, or drop in pH or O₂
- Cause increased blood pressure by
 - Signaling cardioacceleratory center \rightarrow increase CO
 - Signaling vasomotor center \rightarrow increase vasoconstriction

Short-term Mechanisms: Influence of Higher Brain Centers

- Reflexes in medulla
- Hypothalamus and cerebral cortex can modify arterial pressure via relays to medulla
- · Hypothalamus increases blood pressure during stress
- Hypothalamus mediates redistribution of blood flow during exercise and changes in body temperature

Short-term Mechanisms: Hormonal Controls

- Short term regulation via changes in peripheral resistance
- Long term regulation via changes in blood volume

Short-term Mechanisms: Hormonal Controls

- Cause increased blood pressure
 - Epinephrine and norepinephrine from adrenal gland \rightarrow increased

CO and vasoconstriction

- Angiotensin II stimulates vasoconstriction
- High ADH levels cause vasoconstriction
- Cause lowered blood pressure
 - Atrial natriuretic peptide causes decreased blood volume by antagonizing aldosterone

Long-term Mechanisms: Renal Regulation

- Baroreceptors quickly adapt to chronic high or low BP so are ineffective
- Long-term mechanisms control BP by altering blood volume via kidneys
- Kidneys regulate arterial blood pressure
 - 1. Direct renal mechanism
 - 2. Indirect renal (renin-angiotensin-aldosterone) mechanism

Direct Renal Mechanism

- Alters blood volume independently of hormones
 - Increased BP or blood volume causes elimination of more urine, thus reducing BP
 - Decreased BP or blood volume causes kidneys to conserve water, and BP rises

Indirect Mechanism

- The renin-angiotensin-aldosterone mechanism
 - $-\downarrow$ Arterial blood pressure \rightarrow release of renin
 - Renin catalyzes conversion of angiotensinogen from liver to

angiotensin I

 Angiotensin converting enzyme, especially from lungs, converts angiotensin I to angiotensin II

Functions of Angiotensin II

- Increases blood volume
 - Stimulates aldosterone secretion
 - Causes ADH release
 - Triggers hypothalamic thirst center
- Causes vasoconstriction directly increasing blood pressure

Chapter 19

The Cardiovascular System: Blood Vessels: Part B

Monitoring Circulatory Efficiency

- Vital signs: pulse and blood pressure, along with respiratory rate and body temperature
- Pulse: pressure wave caused by expansion and recoil of arteries
- Radial pulse (taken at the wrist) routinely used
- **Pressure points** where arteries close to body surface
 - Can be compressed to stop blood flow

Measuring Blood Pressure

- Systemic arterial BP
 - Measured indirectly by auscultatory method using a sphygmomanometer
 - Pressure increased in cuff until it exceeds systolic pressure in brachial artery
 - Pressure released slowly and examiner listens for sounds of Korotkoff with a stethoscope

Measuring Blood Pressure

- **Systolic pressure**, normally less than 120 mm Hg, is pressure when sounds first occur as blood starts to spurt through artery
- Diastolic pressure, normally less than 80 mm Hg, is

pressure when sounds disappear because artery no longer constricted; blood flowing freely

Variations in Blood Pressure

- Transient elevations occur during changes in posture, physical exertion, emotional upset, fever.
- Age, sex, weight, race, mood, and posture may cause BP to vary

Alterations in Blood Pressure

- Hypertension: high blood pressure
 - Sustained elevated arterial pressure of 140/90 or higher
 - Prehypertension if values elevated but not yet in hypertension range
 - May be transient adaptations during fever, physical exertion, and emotional upset
 - Often persistent in obese people

Homeostatic Imbalance: Hypertension

- Prolonged hypertension major cause of heart failure, vascular disease, renal failure, and stroke
 - Heart must work harder → myocardium enlarges, weakens, becomes flabby
 - Also accelerates atherosclerosis

Primary or Essential Hypertension

- 90% of hypertensive conditions
- No underlying cause identified
 - Risk factors include heredity, diet, obesity, age, diabetes mellitus, stress, and smoking
- No cure but can be controlled
 - Restrict salt, fat, cholesterol intake
 - Increase exercise, lose weight, stop smoking
 - Antihypertensive drugs

Homeostatic Imbalance: Hypertension

- Secondary hypertension less common
 - Due to identifiable disorders including obstructed renal arteries, kidney disease, and endocrine disorders such as hyperthyroidism and Cushing's syndrome
 - Treatment focuses on correcting underlying cause

Alterations in Blood Pressure

- Hypotension: low blood pressure
 - Blood pressure below 90/60 mm Hg
 - Usually not a concern
 - · Only if leads to inadequate blood flow to tissues
 - Often associated with long life and lack of cardiovascular illness

Homeostatic Imbalance: Hypotension

• Orthostatic hypotension: temporary low BP and dizziness when suddenly rising from sitting or reclining position

- Chronic hypotension: hint of poor nutrition and warning sign for Addison's disease or hypothyroidism
- Acute hypotension: important sign of circulatory shock; threat for surgical patients and those in ICU

Blood Flow Through Body Tissues

- Tissue perfusion involved in
 - Delivery of O_2 and nutrients to, and removal of wastes from, tissue cells
 - Gas exchange (lungs)
 - Absorption of nutrients (digestive tract)
 - Urine formation (kidneys)
- Rate of flow is precisely right amount to provide proper function

Velocity of Blood Flow

- Changes as travels through systemic circulation
- · Inversely related to total cross-sectional area
- Fastest in aorta; slowest in capillaries; increases in veins
- Slow capillary flow allows adequate time for exchange between blood and tissues

Autoregulation

- Automatic adjustment of blood flow to each tissue relative to its varying requirements
- Controlled intrinsically by modifying diameter of local arterioles feeding capillaries

- Independent of MAP, which is controlled as needed to maintain constant pressure
- Organs regulate own blood flow by varying resistance of own arterioles

Autoregulation

- Two types of autoregulation
 - Metabolic controls
 - Myogenic controls
- Both determine final autoregulatory response

Metabolic Controls

- Vasodilation of arterioles and relaxation of precapillary sphincters occur in response to
 - Declining tissue O2
 - Substances from metabolically active tissues (H⁺, K⁺, adenosine, and prostaglandins) and inflammatory chemicals

Metabolic Controls

- Effects
 - Relaxation of vascular smooth muscle
 - Release of NO (powerful vasodilator) by endothelial cells
- Endothelins released from endothelium are potent vasoconstrictors
- NO and endothelins balanced unless blood flow inadequate, then NO wins
- Inflammatory chemicals also cause vasodilation

Myogenic Controls

- Myogenic responses keep tissue perfusion constant despite most fluctuations in systemic pressure
- Vascular smooth muscle responds to stretch
 - Passive stretch (increased intravascular pressure) promotes increased tone and vasoconstriction
 - Reduced stretch promotes vasodilation and increases blood flow to the tissue

Long-term Autoregulation

 Occurs when short-term autoregulation cannot meet tissue nutrient requirements

Angiogenesis

- Number of vessels to region increases and existing vessels enlarge
- Common in heart when coronary vessel occluded, or throughout body in people in high-altitude areas

Blood Flow: Skeletal Muscles

- Varies with fiber type and activity
 - At rest, myogenic and general neural mechanisms predominate maintain ~ 1L /minute
 - During muscle activity
 - Active or exercise hyperemia blood flow increases in direct proportion to metabolic activity
 - · Local controls override sympathetic vasoconstriction
 - Muscle blood flow can increase $10 \times$

Blood Flow: Brain

- Blood flow to brain constant as neurons intolerant of ischemia; averages 750 ml/min
- Metabolic controls
 - Decreased pH of increased carbon dioxide cause marked vasodilation
- Myogenic controls
 - Decreased MAP causes cerebral vessels to dilate
 - Increased MAP causes cerebral vessels to constrict

Blood Flow: Brain

- Brain vulnerable under extreme systemic pressure changes
 - MAP below 60 mm Hg can cause **syncope** (fainting)
 - MAP above 160 can result in cerebral edema

Blood Flow: Skin

- Blood flow through skin
 - Supplies nutrients to cells (autoregulation in response to O₂ need)
 - Helps regulate body temperature (neurally controlled) primary function
 - Provides a blood reservoir (neurally controlled)

Blood Flow: Skin

- Blood flow to venous plexuses below skin surface regulates body temperature
 - Varies from 50 ml/min to 2500 ml/min, depending on body temperature
 - Controlled by sympathetic nervous system reflexes initiated by temperature receptors and central nervous system

Temperature Regulation

- As temperature rises (e.g., heat exposure, fever, vigorous exercise)
 - Hypothalamic signals reduce vasomotor stimulation of skin vessels \rightarrow
 - Warm blood flushes into capillary beds \rightarrow
 - Heat radiates from skin

Temperature Regulation

- Sweat also causes vasodilation via bradykinin in perspiration
 - Bradykinin stimulates NO release
- As temperature decreases, blood is shunted to deeper, more vital organs

Blood Flow: Lungs

- Pulmonary circuit unusual
 - Pathway short
 - Arteries/arterioles more like veins/venules (thin walled, with large lumens)
 - Arterial resistance and pressure are low (24/10 mm Hg)

Blood Flow: Lungs

- Autoregulatory mechanism opposite that in most tissues
 - Low O₂ levels cause vasoconstriction; high levels promote vasodilation
 - · Allows blood flow to O2-rich areas of lung

Blood Flow: Heart

- During ventricular systole
 - Coronary vessels are compressed
 - · Myocardial blood flow ceases
 - Stored myoglobin supplies sufficient oxygen
- During diastole high aortic pressure forces blood through coronary circulation
- At rest ~ 250 ml/min; control probably myogenic

Blood Flow: Heart

- During strenuous exercise
 - Coronary vessels dilate in response to local accumulation of vasodilators
 - Blood flow may increase three to four times
 - Important–cardiac cells use 65% of O2 delivered so increased blood flow provides more O2

Blood Flow Through Capillaries

- Vasomotion
 - Slow, intermittent flow
 - Reflects on/off opening and closing of precapillary sphincters

Capillary Exchange of Respiratory Gases and Nutrients

- Diffusion down concentration gradients
 - O₂ and nutrients from blood to tissues
 - CO2 and metabolic wastes from tissues to blood
- Lipid-soluble molecules diffuse directly through endothelial membranes
- Water-soluble solutes pass through clefts and fenestrations
- Larger molecules, such as proteins, are actively transported in pinocytotic vesicles or caveolae

Fluid Movements: Bulk Flow

- Fluid leaves capillaries at arterial end; most returns to blood at venous end
 - Extremely important in determining relative fluid volumes in blood and interstitial space
- Direction and amount of fluid flow depend on two opposing forces: hydrostatic and colloid osmotic pressures

Hydrostatic Pressures

• Capillary hydrostatic pressure (HP_c) (capillary blood pressure)

- Tends to force fluids through capillary walls
- Greater at arterial end (35 mm Hg) of bed than at venule end (17 mm Hg)
- Interstitial fluid hydrostatic pressure (HP_{if})
 - Pressure that would push fluid into vessel
 - Usually assumed to be zero because of lymphatic vessels

Colloid Osmotic Pressures

- Capillary colloid osmotic pressure (oncotic pressure) (OP_c)
 - Created by nondiffusible plasma proteins, which draw water toward themselves
 - ~26 mm Hg
- Interstitial fluid osmotic pressure (OP_{if})
 - Low (~1 mm Hg) due to low protein content

Hydrostatic-osmotic Pressure Interactions: Net Filtration Pressure (NFP)

- NFP—comprises all forces acting on capillary bed
 NFP = (HP_c + OP_{if}) (HP_{if} + OP_c)
- Net fluid flow out at arterial end
- Net fluid flow in at venous end
- More leaves than is returned
 - Excess fluid returned to blood via lymphatic system

Circulatory Shock

Any condition in which

- Blood vessels inadequately filled
- Blood cannot circulate normally
- · Results in inadequate blood flow to meet tissue needs

Circulatory Shock

- Hypovolemic shock: results from large-scale blood loss
- Vascular shock: results from extreme vasodilation and decreased peripheral resistance
- **Cardiogenic shock** results when an inefficient heart cannot sustain adequate circulation

Circulatory Pathways: Blood Vessels of the Body

- Two main circulations
 - Pulmonary circulation: short loop that runs from heart to lungs and back to heart
 - Systemic circulation: long loop to all parts of body and back to heart

Developmental Aspects

- Endothelial lining arises from mesodermal cells in blood islands
- Blood islands form rudimentary vascular tubes, guided by cues
- Vascular endothelial growth factor determines whether vessel becomes artery or vein
- The heart pumps blood by the 4th week of development

Developmental Aspects

- Fetal shunts (foramen ovale and ductus arteriosus) bypass nonfunctional lungs
- Ductus venosus bypasses liver
- Umbilical vein and arteries circulate blood to and from placenta
- Congenital vascular problems rare

Developmental Aspects

- Vessel formation occurs
 - To support body growth
 - For wound healing
 - To rebuild vessels lost during menstrual cycles
- With aging, varicose veins, atherosclerosis, and increased blood pressure may arise